請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25352
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉宏輝 | |
dc.contributor.author | Wan-Min Huang | en |
dc.contributor.author | 黃婉珉 | zh_TW |
dc.date.accessioned | 2021-06-08T06:10:07Z | - |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-04 | |
dc.identifier.citation | Acharya, M.M., Hattiangady, B., and Shetty, A.K. (2008). Progress in neuroprotective strategies for preventing epilepsy. Prog Neurobiol 84, 363-404.
Aronica, E., Gorter, J.A., Redeker, S., van Vliet, E.A., Ramkema, M., Scheffer, G.L., Scheper, R.J., van der Valk, P., Leenstra, S., Baayen, J.C., et al. (2005). Localization of breast cancer resistance protein (BCRP) in microvessel endothelium of human control and epileptic brain. Epilepsia 46, 849-857. Bailey, A., Le Couteur, A., Gottesman, I., Bolton, P., Simonoff, E., Yuzda, E., and Rutter, M. (1995). Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 25, 63-77. Basic, S., Hajnsek, S., Bozina, N., Filipcic, I., Sporis, D., Mislov, D., and Posavec, A. (2008). The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy. Seizure 17, 524-530. Bauman, M.L., and Kemper, T.L. (2005). Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23, 183-187. Begley, D.J. (2004). ABC transporters and the blood-brain barrier. Curr Pharm Des 10, 1295-1312. Benarroch, E.E. (2007). GABAA receptor heterogeneity, function, and implications for epilepsy. Neurology 68, 612-614. Bethmann, K., Fritschy, J.M., Brandt, C., and Loscher, W. (2008). Antiepileptic drug resistant rats differ from drug responsive rats in GABA A receptor subunit expression in a model of temporal lobe epilepsy. Neurobiol Dis 31, 169-187. Blatt, G.J., Fitzgerald, C.M., Guptill, J.T., Booker, A.B., Kemper, T.L., and Bauman, M.L. (2001). Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31, 537-543. Brooks-Kayal, A.R., Shumate, M.D., Jin, H., Lin, D.D., Rikhter, T.Y., Holloway, K.L., and Coulter, D.A. (1999). Human neuronal gamma-aminobutyric acid(A) receptors: coordinated subunit mRNA expression and functional correlates in individual dentate granule cells. J Neurosci 19, 8312-8318. Brooks-Kayal, A.R., Shumate, M.D., Jin, H., Rikhter, T.Y., and Coulter, D.A. (1998). Selective changes in single cell GABA(A) receptor subunit expression and function in temporal lobe epilepsy. Nat Med 4, 1166-1172. Capon, F., Allen, M.H., Ameen, M., Burden, A.D., Tillman, D., Barker, J.N., and Trembath, R.C. (2004). A synonymous SNP of the corneodesmosin gene leads to increased mRNA stability and demonstrates association with psoriasis across diverse ethnic groups. Hum Mol Genet 13, 2361-2368. Catterall, W.A., Goldin, A.L., and Waxman, S.G. (2005). International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 57, 397-409. Chang, B.S., and Lowenstein, D.H. (2003). Epilepsy. N Engl J Med 349, 1257-1266. Chen, C.C., Chen, T.F., Hwang, Y.C., Wen, Y.R., Chiu, Y.H., Wu, C.Y., Chen, R.C., Chen, T.H., and Liou, H.H. (2006). Population-based survey on prevalence of adult patients with epilepsy in Taiwan (Keelung community-based integrated screening no. 12). Epilepsy Res 72, 67-74. Chen, R.C., Chang, Y.C., Chen, T.H., Wu, H.M., and Liou, H.H. (2005). Mortality in adult patients with epilepsy in Taiwan. Epileptic Disord 7, 213-219. Collins, A.L., Ma, D., Whitehead, P.L., Martin, E.R., Wright, H.H., Abramson, R.K., Hussman, J.P., Haines, J.L., Cuccaro, M.L., Gilbert, J.R., et al. (2006). Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics 7, 167-174. Czuczwar, S.J., and Patsalos, P.N. (2001). The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs 15, 339-350. D'Hulst, C., Atack, J.R., and Kooy, R.F. (2009). The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov Today 14, 866-875. Dallas, S., Miller, D.S., and Bendayan, R. (2006). Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 58, 140-161. Dudbridge, F. (2008). Likelihood-based association analysis for nuclear families and unrelated subjects with missing genotype data. Hum Hered 66, 87-98. Eriksson, M., Brown, W.T., Gordon, L.B., Glynn, M.W., Singer, J., Scott, L., Erdos, M.R., Robbins, C.M., Moses, T.Y., Berglund, P., et al. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423, 293-298. Fatemi, S.H., Halt, A.R., Realmuto, G., Earle, J., Kist, D.A., Thuras, P., and Merz, A. (2002). Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 22, 171-175. Fatemi, S.H., Reutiman, T.J., Folsom, T.D., Rooney, R.J., Patel, D.H., and Thuras, P.D. (2010). mRNA and protein levels for GABAAalpha4, alpha5, beta1 and GABABR1 receptors are altered in brains from subjects with autism. J Autism Dev Disord 40, 743-750. Granger, P., Biton, B., Faure, C., Vige, X., Depoortere, H., Graham, D., Langer, S.Z., Scatton, B., and Avenet, P. (1995). Modulation of the gamma-aminobutyric acid type A receptor by the antiepileptic drugs carbamazepine and phenytoin. Mol Pharmacol 47, 1189-1196. Haenisch, S., Zimmermann, U., Dazert, E., Wruck, C.J., Dazert, P., Siegmund, W., Kroemer, H.K., Warzok, R.W., and Cascorbi, I. (2007). Influence of polymorphisms of ABCB1 and ABCC2 on mRNA and protein expression in normal and cancerous kidney cortex. Pharmacogenomics J 7, 56-65. Haerian, B.S., Lim, K.S., Tan, C.T., Raymond, A.A., and Mohamed, Z. (2011). Association of ABCB1 gene polymorphisms and their haplotypes with response to antiepileptic drugs: a systematic review and meta-analysis. Pharmacogenomics 12, 713-725. HapMap (2003). The International HapMap Project. Nature 426, 789-796. HapMap (2005). A haplotype map of the human genome. Nature 437, 1299-1320. Hoffmann, K., and Loscher, W. (2007). Upregulation of brain expression of P-glycoprotein in MRP2-deficient TR(-) rats resembles seizure-induced up-regulation of this drug efflux transporter in normal rats. Epilepsia 48, 631-645. Hung, C.C., Chen, C.C., Lin, C.J., and Liou, H.H. (2008). Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenet Genomics 18, 390-402. Hung, C.C., Tai, J.J., Lin, C.J., Lee, M.J., and Liou, H.H. (2005). Complex haplotypic effects of the ABCB1 gene on epilepsy treatment response. Pharmacogenomics 6, 411-417. Hussman, J.P. (2001). Suppressed GABAergic inhibition as a common factor in suspected etiologies of autism. J Autism Dev Disord 31, 247-248. ILAE (1981). Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 22, 489-501. ILAE (1985). Proposal for classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 26, 268-278. Kang, J.Q., and Macdonald, R.L. (2009). Making sense of nonsense GABA(A) receptor mutations associated with genetic epilepsies. Trends Mol Med 15, 430-438. Kasperaviciute, D., Catarino, C.B., Heinzen, E.L., Depondt, C., Cavalleri, G.L., Caboclo, L.O., Tate, S.K., Jamnadas-Khoda, J., Chinthapalli, K., Clayton, L.M., et al. (2010). Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study. Brain 133, 2136-2147. Kim, W.J., Lee, J.H., Yi, J., Cho, Y.J., Heo, K., Lee, S.H., Kim, S.W., Kim, M.K., Kim, K.H., In Lee, B., et al. (2010). A nonsynonymous variation in MRP2/ABCC2 is associated with neurological adverse drug reactions of carbamazepine in patients with epilepsy. Pharmacogenet Genomics 20, 249-256. Kimchi-Sarfaty, C., Oh, J.M., Kim, I.W., Sauna, Z.E., Calcagno, A.M., Ambudkar, S.V., and Gottesman, M.M. (2007). A 'silent' polymorphism in the MDR1 gene changes substrate specificity. Science 315, 525-528. Koepp, M.J., Labbe, C., Richardson, M.P., Brooks, D.J., Van Paesschen, W., Cunningham, V.J., and Duncan, J.S. (1997). Regional hippocampal [11C]flumazenil PET in temporal lobe epilepsy with unilateral and bilateral hippocampal sclerosis. Brain 120 ( Pt 10), 1865-1876. Kubota, H., Ishihara, H., Langmann, T., Schmitz, G., Stieger, B., Wieser, H.G., Yonekawa, Y., and Frei, K. (2006). Distribution and functional activity of P-glycoprotein and multidrug resistance-associated proteins in human brain microvascular endothelial cells in hippocampal sclerosis. Epilepsy Res 68, 213-228. Kwan, P., Poon, W.S., Ng, H.K., Kang, D.E., Wong, V., Ng, P.W., Lui, C.H., Sin, N.C., Wong, K.S., and Baum, L. (2008). Multidrug resistance in epilepsy and polymorphisms in the voltage-gated sodium channel genes SCN1A, SCN2A, and SCN3A: correlation among phenotype, genotype, and mRNA expression. Pharmacogenet Genomics 18, 989-998. Kwan, P., Wong, V., Ng, P.W., Lui, C.H., Sin, N.C., Wong, K.S., and Baum, L. (2011). Gene-wide tagging study of the association between ABCC2, ABCC5 and ABCG2 genetic polymorphisms and multidrug resistance in epilepsy. Pharmacogenomics 12, 319-325. Lagrange, A.H., Botzolakis, E.J., and Macdonald, R.L. (2007). Enhanced macroscopic desensitization shapes the response of alpha4 subtype-containing GABAA receptors to synaptic and extrasynaptic GABA. J Physiol 578, 655-676. Liou, H.H., Chen, R.C., Chen, C.C., Chiu, M.J., Chang, Y.Y., and Wang, J.D. (2005). Health related quality of life in adult patients with epilepsy compared with a general reference population in Taiwan. Epilepsy Res 64, 151-159. Loscher, W. (2005). How to explain multidrug resistance in epilepsy? Epilepsy Curr 5, 107-112. Loscher, W., Klotz, U., Zimprich, F., and Schmidt, D. (2009). The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 50, 1-23. Loscher, W., and Potschka, H. (2002). Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther 301, 7-14. Loup, F., Wieser, H.G., Yonekawa, Y., Aguzzi, A., and Fritschy, J.M. (2000). Selective alterations in GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci 20, 5401-5419. Ma, D.Q., Whitehead, P.L., Menold, M.M., Martin, E.R., Ashley-Koch, A.E., Mei, H., Ritchie, M.D., Delong, G.R., Abramson, R.K., Wright, H.H., et al. (2005). Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 77, 377-388. Mazumder, B., Seshadri, V., and Fox, P.L. (2003). Translational control by the 3'-UTR: the ends specify the means. Trends Biochem Sci 28, 91-98. Mazzuferi, M., Palma, E., Martinello, K., Maiolino, F., Roseti, C., Fucile, S., Fabene, P.F., Schio, F., Pellitteri, M., Sperk, G., et al. (2010). Enhancement of GABA(A)-current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy. Proc Natl Acad Sci U S A 107, 3180-3185. Nackley, A.G., Shabalina, S.A., Tchivileva, I.E., Satterfield, K., Korchynskyi, O., Makarov, S.S., Maixner, W., and Diatchenko, L. (2006). Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314, 1930-1933. Nicoll, R.A. (2004). My close encounter with GABA(B) receptors. Biochem Pharmacol 68, 1667-1674. Pickering, B.M., and Willis, A.E. (2005). The implications of structured 5' untranslated regions on translation and disease. Semin Cell Dev Biol 16, 39-47. Picton, A.J., and Fisher, J.L. (2007). Effect of the alpha subunit subtype on the macroscopic kinetic properties of recombinant GABA(A) receptors. Brain Res 1165, 40-49. Pitkanen, A., Kharatishvili, I., Karhunen, H., Lukasiuk, K., Immonen, R., Nairismagi, J., Grohn, O., and Nissinen, J. (2007). Epileptogenesis in experimental models. Epilepsia 48 Suppl 2, 13-20. Pitkanen, A., and Lukasiuk, K. (2009). Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav 14 Suppl 1, 16-25. Prakriya, M., and Mennerick, S. (2000). Selective depression of low-release probability excitatory synapses by sodium channel blockers. Neuron 26, 671-682. Raol, Y.H., Lund, I.V., Bandyopadhyay, S., Zhang, G., Roberts, D.S., Wolfe, J.H., Russek, S.J., and Brooks-Kayal, A.R. (2006). Enhancing GABA(A) receptor alpha 1 subunit levels in hippocampal dentate gyrus inhibits epilepsy development in an animal model of temporal lobe epilepsy. J Neurosci 26, 11342-11346. Rasheed, S., Stashuk, D.W., and Kamel, M.S. (2010). Integrating heterogeneous classifier ensembles for EMG signal decomposition based on classifier agreement. IEEE Trans Inf Technol Biomed 14, 866-882. Regesta, G., and Tanganelli, P. (1999). Clinical aspects and biological bases of drug-resistant epilepsies. Epilepsy Res 34, 109-122. Remy, S., and Beck, H. (2006). Molecular and cellular mechanisms of pharmacoresistance in epilepsy. Brain 129, 18-35. Rogawski, M.A., and Loscher, W. (2004). The neurobiology of antiepileptic drugs. Nat Rev Neurosci 5, 553-564. Sakaeda, T. (2005). MDR1 genotype-related pharmacokinetics: fact or fiction? Drug Metab Pharmacokinet 20, 391-414. Sauna, Z.E., Kimchi-Sarfaty, C., Ambudkar, S.V., and Gottesman, M.M. (2007). Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res 67, 9609-9612. Schmidt, D., and Loscher, W. (2005). Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 46, 858-877. Shetty, A.K., and Turner, D.A. (2001). Glutamic acid decarboxylase-67-positive hippocampal interneurons undergo a permanent reduction in number following kainic acid-induced degeneration of ca3 pyramidal neurons. Exp Neurol 169, 276-297. Siddiqui, A., Kerb, R., Weale, M.E., Brinkmann, U., Smith, A., Goldstein, D.B., Wood, N.W., and Sisodiya, S.M. (2003). Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 348, 1442-1448. Sieghart, W. (1995). Structure and pharmacology of gamma-aminobutyric acidA receptor subtypes. Pharmacol Rev 47, 181-234. Simeone, T.A., Wilcox, K.S., and White, H.S. (2006). Subunit selectivity of topiramate modulation of heteromeric GABA(A) receptors. Neuropharmacology 50, 845-857. Sisodiya, S.M., Martinian, L., Scheffer, G.L., van der Valk, P., Cross, J.H., Scheper, R.J., Harding, B.N., and Thom, M. (2003). Major vault protein, a marker of drug resistance, is upregulated in refractory epilepsy. Epilepsia 44, 1388-1396. Smith, G.B., and Olsen, R.W. (1995). Functional domains of GABAA receptors. Trends Pharmacol Sci 16, 162-168. Stefan, H., Lopes da Silva, F.H., Loscher, W., Schmidt, D., Perucca, E., Brodie, M.J., Boon, P.A., Theodore, W.H., and Moshe, S.L. (2006). Epileptogenesis and rational therapeutic strategies. Acta Neurol Scand 113, 139-155. Tate, S.K., Depondt, C., Sisodiya, S.M., Cavalleri, G.L., Schorge, S., Soranzo, N., Thom, M., Sen, A., Shorvon, S.D., Sander, J.W., et al. (2005). Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A 102, 5507-5512. Taylor, C.P., Gee, N.S., Su, T.Z., Kocsis, J.D., Welty, D.F., Brown, J.P., Dooley, D.J., Boden, P., and Singh, L. (1998). A summary of mechanistic hypotheses of gabapentin pharmacology. Epilepsy Res 29, 233-249. Thompson, S.A., Whiting, P.J., and Wafford, K.A. (1996). Barbiturate interactions at the human GABAA receptor: dependence on receptor subunit combination. Br J Pharmacol 117, 521-527. Treiman, D.M. (2001). GABAergic mechanisms in epilepsy. Epilepsia 42 Suppl 3, 8-12. Ufer, M., Mosyagin, I., Muhle, H., Jacobsen, T., Haenisch, S., Hasler, R., Faltraco, F., Remmler, C., von Spiczak, S., Kroemer, H.K., et al. (2009). Non-response to antiepileptic pharmacotherapy is associated with the ABCC2 -24C>T polymorphism in young and adult patients with epilepsy. Pharmacogenet Genomics 19, 353-362. von Ahsen, N., and Oellerich, M. (2004). The intronic prothrombin 19911A>G polymorphism influences splicing efficiency and modulates effects of the 20210G>A polymorphism on mRNA amount and expression in a stable reporter gene assay system. Blood 103, 586-593. Whiting, P.J. (2003). GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today 8, 445-450. Whittemore, E.R., Yang, W., Drewe, J.A., and Woodward, R.M. (1996). Pharmacology of the human gamma-aminobutyric acidA receptor alpha 4 subunit expressed in Xenopus laevis oocytes. Mol Pharmacol 50, 1364-1375. Zhang, G., Raol, Y.H., Hsu, F.C., Coulter, D.A., and Brooks-Kayal, A.R. (2004). Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience 125, 299-303. Zimprich, F., Sunder-Plassmann, R., Stogmann, E., Gleiss, A., Dal-Bianco, A., Zimprich, A., Plumer, S., Baumgartner, C., and Mannhalter, C. (2004). Association of an ABCB1 gene haplotype with pharmacoresistance in temporal lobe epilepsy. Neurology 63, 1087-1089. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25352 | - |
dc.description.abstract | 背景介紹: 三成的癲癇病人即使給予適當的藥物治療仍有發作情形,成為難治型癲癇。同一類型的癲癇病人對藥物反應不盡相同,因此個體間基因型的差異可能在癲癇藥物治療上扮演重要角色。GABAA 受體是抗癲癇藥物治療重要的標的分子之一。其由五個次單元所組成,兩個α次單元、兩個β次單元及一個其它型次單元,其中α次單元是當中多樣性最高(α1-α6)且和GABA結合的次單元,有許多文獻指出不同α次單元所組成的GABAA受體對GABA及許多抗癲癇藥有不同的反應,因此α次單元上的基因多型性極有可能影響癲癇病人對藥物治療的反應。
目標:探討GABAA受體α次單元基因多型性對癲癇症藥物治療的影響。 研究方法: 我們收納了758位癲癇病人及194位正常受試者,針對α次單元六種亞型相對應的基因GABRA1-GABRA6,利用選取標籤單核苷酸多型性的方法,對這六個基因區域進行相關性分析。並額外分析了在SCN1A、SCN2A、ABCB1、ABCC2基因上報導過會影響癲癇治療的單核苷酸多型性。 結果:我們在GABRA1-GABRA6成功鑑定了132個標籤單核苷酸多型性,研究結果發現GABRA4 intron7 上rs17599416這個曾被報導過和自閉症相關的位點會影響使用phenobarbital病人對藥物的反應,反應不好的病人傾向帶有對偶基因型A (odds ratio 2.8261,95% confidence interval: 1.1968- 6.6736,未校正p-value=0.01792),GABRA2基因下游的rs511310在使用phenobarbital的病人中傾向帶有對偶基因型G (odds ratio 6.413,95% confidence interval: 2.203-18.67,未校正p-value=0.000363)。另在羅吉斯迴歸中發現GABRA3 intron1上的rs4828696在不同藥物使用分組條件中對藥物反應有不同程度的影響。 討論與結論: 這是一篇完整探討GABAA受體α次單元基因和癲癇治療相關性的研究,我們發現了幾個標籤單核苷酸多型性所代表的基因區域可能影響癲癇藥物治療的效果,更多獨立樣本的研究可以進一步驗證我們的發現,定序標籤單核苷酸多型性附近可能影響基因功能的序列,並針對可能影響基因功能的單核苷酸多型性做進一步功能研究是未來可以探討的方向。 | zh_TW |
dc.description.abstract | Background: Approximately 30% of patients continue to have seizures despite optimized drug treatment. The responses to AEDs may differ in patients even with the same type of epilepsy. It is possible that genetic polymorphisms may, to certain degree, cause the response variability of the epilepsy pharmacotherapy. The ionotropic receptors of gamma-aminobutyric acid (GABAA) are among the most important target sites for AEDs. The most common subunit composition of GABAA receptors is two α, two β, and one other subunits. The α subunit family is the most diverse, with six different subtypes (α1–α6). GABA binding occurs at α subunits. Many lines of evidence indicate different GABAA receptors composed of different α subunits have different response to GABA and other AEDs.
Aims: Here we hypothesize that genetic polymorphisms in α subunits may, to certain degree, explain variable responses in different epilepsy patients. Methods: 758 epilepsy patients, all with comprehensive clinical data, and 194 controls were enrolled in this study. We genotyped tagging SNPs at the 6 α subunits genes, GABRA1-GABRA6,and other SNPs in SCN1A,SCN2A,ABCB1,ABCC2 ,which have previously associated with epilepsy treatment outcome. Results: We demonstrated the association between phenobarbital response and a SNP (rs17599416) in the intron7 of GABRA4, a gene previously shown to be associated with autism. Patients with the “A allele” were more likely to be drug resistant (odds ratio 2.8261, 95% confidence interval: 1.1968 to 6.6736, nominal p-value=0.01792). rs511310 in the downstream region of GABRA2 also showed an effect on phenobarbital response. Patients with the “G allele” were more likely to be drug resistant (odds ratio 6.413, 95% confidence interval: 2.203-18.67,nominal p-value=0.000363). Using the logistic regression model, rs4828696 in intron1 of GABRA3 was associated with the drug response on different level in patients with different drug usage. Discussion and conclusion: This report, to our knowledge, is the first association study to have comprehensive coverage of all 6 α subunits of GABAA receptor genes and reasonably good sample size. Further replication using an independent sample collection will be essential to confirm our findings. Functional assays will help to illustrate how those associated genes influence the pharmacotherapy responses of AEDs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:10:07Z (GMT). No. of bitstreams: 1 ntu-100-R98443022-1.pdf: 1976617 bytes, checksum: 109eb520ce218816624c780394988fe9 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 第一章 緒論 1
第一節 癲癇症 1 第二節 癲癇症藥物治療及難治型癲癇 3 第三節 基因多型性對癲癇症藥物治療影響 6 第四節 GABA系統 9 第五節 研究目的 14 第二章 研究方法與材料 15 第三章 研究結果 20 第四章 討論 26 第五章 參考文獻 34 第六章 圖表 43 圖目錄 圖一 癲癇藥物作用過程 5 圖二 難治型癲癇機轉假說 5 圖三 IlluminaR GoldenGateR Genotyping 結果 43 圖四 PCR-RFLP基因型鑑定結果 48 圖五 rs17599416 和exon的距離 56 圖六 rs17599416和周圍SNP連鎖不平衡情形 56 圖七 rs511310和周圍SNP連鎖不平衡情形 57 圖八 rs511310附近的transcription factor結合位 57 圖九rs4828696和周圍SNP連鎖不平衡情形 58 圖十 rs4828696附近的transcription factor結合位 58 表目錄 表一 抗癲癇藥和其分子標的 4 表二 所有鑑定的SNP 位點 59 表三 ABCB1基因PCR引子 63 表四 ABCB1基因PCR-RFLP使用的限制酵素 63 表五-表十一 病人特性 64 表十二 在GABRA1-GABRA6所鑑定的各位點其對偶基因在癲癇病人及正常受試者分佈沒有差異 71 表十三-表十九 GABRA1-GABRA6對偶基因型分布 75 表二十-表二十六 GABRA1-GABRA6基因型分佈 82 表二十七 GABRA1-GABRA6單體型分佈 89 表二十八 將性別做為modifier後,X 染色體上SNP對偶基因型、基因型對不同性別抗藥性影響 100 表二十九 ABCC2 rs717620 116 表三十 ABCC2 rs2273697在使用phenytoin的病人 116 表三十一 ABCC2 rs2273697在使用phenobarbital的病人 116 表三十二 ABCB1 對偶基因型分佈 117 表三十三 ABCB1 基因型分佈 117 表三十四 ABCB1 單體型分佈 118 表三十五-表四十一 羅吉斯迴歸分析 119 | |
dc.language.iso | zh-TW | |
dc.title | 基因多型性對癲癇症藥物治療反應之影響 | zh_TW |
dc.title | Effects of Genetic Polymorphisms on Epilepsy
Pharmacotherapy Outcome | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳沛隆,戴政,丁詩同,洪靚娟 | |
dc.subject.keyword | 難治型癲癇,單核苷,酸多型性,GABAA受體, | zh_TW |
dc.subject.keyword | Intractable epilepsy,SNP,GABAA receptor, | en |
dc.relation.page | 127 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-04 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。