Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25224
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張淑惠
dc.contributor.authorShih-Kuang Leeen
dc.contributor.author李世光zh_TW
dc.date.accessioned2021-06-08T06:05:46Z-
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-22
dc.identifier.citationBhattacharya, P. K., Chernoff, H. and Yang, S. S. (1983). Nonparametric Estimation of the Slope of a Truncated Regression. Ann. Statist., 11, 505-514.
Chaieb, L. L., Rivest, L. P. and Abdous, B. (2006). Estimating Survival under a Dependent Truncation. Biometrika, 93, 655-669.
Fine, J. P. and Tsiatis, A. A. (2000). Testing for Difference in Survival with Delayed Ascertainment. Biometrics, 56, 145-153.
Fygenson, M. and Ritov, Y. (1994). Monotone estimating functions for censored data. Ann. Statist., 22, 732-746.
Gehan, E. A. (1965). A Generalized Wilcoxon Test for Comparing Arbitrarily Singly-Censored Samples. Biometrika, 52, 203-223.
Hyde, J. (1977). Testing Survival under Right Censoring and Left Truncation. Biometrika, 64, 225-230.
Kalbfleisch, J.D. and Lawless, J. F. (1989). Inference Based on Retrospective Ascertainment: An Analysis of the Data on Transfusion-Related AIDS. J. Amer. Stat. Assoc., 84, 360-372.
─ ─ ─(1991). Regression Models for Right Truncated Data with Application to AIDS Incubation Times and Reporting Lags. Statist. Sinica, 1, 19-32.
Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data (2nd ed.). New York: Wiley.
Lai, T. L. and Ying, Z. (1992). Linear Rank Statistics in Regression Analysis with Censored or Truncated Data. J. Multivariate Anal., 40, 13-45.
Lagarias, J. C., Reeds, J. A., Wright, M. H. and Wright, P. E. (1998). Convergence Properties of the Nelder-Mead Simplex Method in Low Dimension. SIAM. J. Optim., 9, 112-147.
Martin E. C. and Betensky, R. A. (2005). Testing Quasi-Independence of Failure and Truncation Time via Conditional Kendall’s Tau. J. Amer. Statist. Assoc., 100, 484-492.
Nelder, J. A. and Mead, R. (1965). A Simplex Algorithm for Function Minimization. Computer Journal, 7, 308-313.
Peng, L. and Fine, J. P. (2006). Rank Estimation of Accelerated Lifetime Models With Dependent Censoring. J. Amer. Statist. Assoc., 101, 1085-1093.
Reid, N. (1994). A Conversation with Sir David Cox. Statist. Sci., 9, 439-455.
Tsai, W. Y. (1990). Testing the Assumption of Independence of Truncation Time and Failure Time. Biometrika, 77, 169-177.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25224-
dc.description.abstract存活分析中截切資料是很常見的一種資料型態,此資料的形成是因取樣的方式造成只能收到某些特性的樣本。例如左截切資料的事件時間必大於截切時間才可被收為樣本。若在可觀察範圍下事件時間與截切時間獨立則稱為類獨立,在此假設成立之下利用排序的方法來建構半母數加速事件時間模型的參數估計式已有成熟的發展。在很多情況下類獨立的假設並不成立,因此本文考慮當事件時間與截切時間相依時,以人工截切方式建立對完整存活時間的可比較配對和以設限的存活函數為權重調整因設限而未使用的資訊來建立U統計量型式迴歸參數的估計式。藉著模擬結果證實本文提出的參數估計式在事件時間與截切時間相依時所得到參數估計值具有一致性和穩健性,而對於須要類獨立假設成立的排序估計方法,在事件時間與截切時間相依時所得到的參數估計值可能有偏差。本文將所提出的參數估計方法運用在老人安養院及輸血感染愛滋病的資料上。此外,本文所提出的參數估計式為不可微函數,因此文中也會探討解不可微函數的兩段法和Nelder-Mead所提的方法等兩種解根演算法。zh_TW
dc.description.abstractIn observational studies, truncated survival data are often collected according to a certain sampling criterions in. For example, in left-truncated data, event time is observed only if it is larger than truncation time. In a semiparametrically accelerated failure time model, rank-based methods developed for estimating regression parameters for truncated data require the assumption of quasi-independence that the event time and truncation time are independent under the observable region. Quasi-independence assumption may fail to hold in many situations. Therefore, we develop a robust U-statistic-based estimating equation to estimate the regression parameters without relying on the quasi-independence assumption. In our proposed method, comparable pairs for uncensored cases are established and artificial truncation as well as inverse-censoring-probability weighted technique are used to modify truncation and censoring effects. Our simulation shows that our proposed estimators are consistent when event time and truncation time are dependent. However, the naive estimator from the rank-based estimating equation requiring the quasi-independence assumption is biased when event time and truncation time are strongly correlated. We apply our proposed method to the channing house data and transfusion-related AIDS data. Since our proposed estimating equation is a nondifferentiable function with respect to regression parameters, we also compare two root-finding algorithms for nondifferentiable function, bisection and Nelder-Mead methods, in this thesis.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:05:46Z (GMT). No. of bitstreams: 1
ntu-96-R94842004-1.pdf: 516697 bytes, checksum: 384aa78cbcfb94bfc436f46ace1aaa6d (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents第一章 導論 1
第一節 單向截切資料 1
第二節 研究動機 3
第二章 統計方法回顧 6
第一節 半母數加速事件時間模型 6
第二節 一般化的加權對數-排序檢定估計式 7
第三節 U統計量在分析存活資料的應用 8
第三章 統計方法 13
第一節 類獨立情形下的加速事件時間模型與迴歸參數的估計方法 13
第二節 無設限情況下相依截切的加速事件時間模型的參數估計 16
第三節 設限干擾下相依截切的加速事件時間模型的參數估計 19
第四章 模擬 20
第一節 資料生成 20
第二節 兩段法與Nelder-Mead演算法的比較 21
第三節 模擬結果 25
第五章 實際資料 26
第一節 老人安養院資料分析 26
第二節 愛滋病診斷分析 27
第六章 結果與討論 31
附錄 32
參考文獻 44
dc.language.isozh-TW
dc.title在截切資料加速時間模式下的穩健排序估計方法zh_TW
dc.titleRobust Rank Estimation of Accelerated Failure Time Model
with Truncated Data
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴政,陳秀熙,曾信嘉,嚴明芳
dc.subject.keyword加速事件時間模型,人工截切,相依截切,U統計量,zh_TW
dc.subject.keywordAccelerated failure time model,Artificial truncation,Dependent truncation,U-statistic,en
dc.relation.page45
dc.rights.note未授權
dc.date.accepted2007-07-24
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
504.59 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved