請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2520
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林增毅 | |
dc.contributor.author | Ting-Ru Yang | en |
dc.contributor.author | 楊婷茹 | zh_TW |
dc.date.accessioned | 2021-05-13T06:41:23Z | - |
dc.date.available | 2021-01-04 | |
dc.date.available | 2021-05-13T06:41:23Z | - |
dc.date.copyright | 2018-01-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-11-01 | |
dc.identifier.citation | Amman, G.D., McGregor, M.D., Schmitz, R.F., Oakes, R.D. 1988. Susceptibility of lodgepole pine to infestation by mountain pine beetle stands following partial cutting of stands. Canadian Journal of Forest Research. 18: 688–695.
Cade, B.S., Terrell, J.W., Schroeder, R.L. 1999 Estimating effects of limiting factors with regression quantiles. Journal of Ecology 80: 311–323. Cade, B.S., Noon, B.R. 2003. A gentle introduction to quantile regression for ecologists. Journal of Frontiers in Ecology and the Environment. 1(8): 412–420. Chisman, H.H., Schumacher, F.X. 1940. On the tree–area ratio and certain of its applications. Journal of Forestry. 38: 311–317. Cochran, P.H., Barrett, J.W. 1993. Long-term response of planted ponderosa pine to thinning in Oregon’s Blue Mountains. Western Journal of Applied Forestry. 8: 126–132. Curtis, R.O. 1970. Stand density measures: an interpretation. Journal of Forest Science. 16: 403–414. Curtis, R.O. 1971. A tree area power function and related density measures for Douglas-fir. Journal of Forest Science. 17: 146–159. Curtis, R.O. 1982. Notes: A simple index of stand density for Douglas-fir. Journal of Forest Science. 28(1): 92–94. Dean, T.J. 1991. Effect of growth rate and wind sway on the relation between mechanical and water-flow properties in slash pine seedling. Canadian Journal of Forest Research. 21(10): 1051–1056. Dean, T.J., Jokela, E.J. 1992. A density management diagram for slash pine plantations in the lower Coastal Plain. Southern Journal of Applied Forestry. 16: 178–185. Dean, T.J., Baldwin Jr, V.C. 1996. The relationship between Reineke’s stand-density index and physical stem mechanics. Journal of Forest and Ecology Management. 81: 25–34. Dean, T.J., Baldwin Jr, V.C. 1996. Growth in loblolly pine plantations as a function of stand density and canopy properties. Journal of Forest and Ecology Management. 82: 49–58. Devine, W.D., Harrington, C.A. 2004. Garry oak woodland restoration in the Puget Sound region: Releasing oaks from overtopping conifers and establishing oak seedlings. Proceeding s of the 16th International Conference of the Society for Ecological Restoration (CD–ROM), Aug. 24–26, Victoria BC, Canada. Drew, T.J., Flewelling, J.W. 1977. Some recent Japanese theories of yield-density relationships and their application to Monterey pine plantations. Forest Science. 23(4): 517–534. Drew, T.J., Flewelling, J.W. 1979. Stand density management: an alternative approach and its application to Douglas-fir plantations. Journal of Forest Science. 25: 518–532. Ducey, M.J., Larson, B.C. 1997. Thinning decisions using stand density indices: the influence of uncertainty. Western Journal of Applied Forestry. 12(3): 88–92. Ducey, M.J., Larson, B.C. 1999. Accounting for bias and uncertainty in nonlinear stand density indices. Journal of Forest Science. 45(3): 452–457. Ducey, M.J., Larson, B.C. 2003. Is there a correct stand density index? an alternative interpretation. Western Journal of Applied Forestry. 18: 179–184. Ducey, M.J., Knapp, R.A. 2010. A stand density index for complex mixed species forests in the northeastern United States. Journal of Forest and Ecology Management. 260: 1613–1622. Gingrich, S.F. 1967. Measuring and evaluating stocking and stand density in upland hardwood forests in the central states. Journal of Forest Science. 13: 39–53. Grah, R.F. 1961. Relationship between tree spacing, knot size, and log quality in young Douglas-fir stands. Journal of Forestry. 59: 270–272. Harrington, C.A., Reukema, D.L. 1983. Initial shock and long-term thinning in a Douglas-fir plantation. Journal of Forest Science. 29: 33–46. Hurst, J.M. 2012. Determinants of tree mortality in mixed old-growth Nothofagus forest. Journal of Forest Ecology and Management. 270: 189–199. Hutchings, M.J., Budd, S.J. 1981. Plant competition and its course through time. Journal of Bioscience. 31: 640–645. Jacobs, M.R. 1954. The effect of wind sway on the form and development of Pinus radiata D. Don. Australian Journal of Botany. 2: 35–51. Kanehira, Ryozō. (1926) Anatomical characters and identification of Formosan woods with critical remarks from the climatic point of view—Part I. Anatomical characters of the important Japanese woods. Taihoku, Bureau of productive industries, Government of Formosa. 86 p. Kellogg, R.M., Steucek, G.L. 1980. Mechanical stimulation and xylem production in Douglas-fir. Journal of Forest Science. 26: 643–651. Kershaw, J.A., Jr., Fischer, B.C. 1991. A stand density management diagram for sawtimber-sized mixed upland central hardwoods. General Technical Report NE–148, USDA, Forest Service, Northeastern Forest Experiment Station. Kershaw, J.A., Jr., Ducey, M. J., Beers, T.W., Husch, B. 2016. Forest Mensuration, 5th. Ed. Wiley/Blackwell. 640 p. Koenker, R., Bassett, G. 1978. Regression quantile. Journal of Econometrica. 46(1): 33–50. Koenker, R., 2004. Quantreg: An R package for quantile regression and related methods [online]. Available from http://cran.r-project.org (accessed 19.10.08). Krajicek, J.E., Brinkman, K.A., Gingrich, S.F. 1961. Crown competition – a measure of density. Journal of Forest Science. 7: 35–42. Larson, P.R. 1965. Stem form of young Larix as influenced by wind and pruning. Journal of Forest Science. 11: 412–424. Long, J.N., Smith, F.W. 1984. Relation between size and density in developing s tands: a description and possible mechanisms. Journal of Forest Ecology and Management. 7: 191–206. Long, J.N. 1985. A practical approach to density management. Journal of Forestry Chronicle. 23: 23–26. Long, J.N., McCarter, J.B., Jack, S.B. 1988. A modified density management diagram for coastal Douglas-fir. Western Journal of Applied Forestry. 3: 88–89. Long, J.N., Daniel, T.W. 1990. Assessment of growing stock in uneven-aged stands. Western Journal of Applied Forestry. 5: 93–96. Marshall, D.D., Curtis, R.O. 2002. Levels of growing stocking cooperative study in Douglas-fir. General Technical Report PNW–RP–537, USDA, Forest Service, Pacific Northwest Research Station. McCarter, J.B., Long, J.N. 1986. A lodgepole pine density management diagram. Western Journal of Applied Forestry. 1(1): 6–11. Megraw, R.A. 1986. Douglas-fir wood properties. Book of Douglas–fir: Stand management for the future. Pp. 81–96. Newton, P.F. 1997. Stand density management diagrams: Review of their development and utility in stand-level management planning. Journal of Forest Ecology and Management. 98: 251–265. Nyland, R.D. 1996. Silviculture: concepts and applications. New York, NY: McGraw-Hill Companies, Inc. 633 p. Oliver, W.W., Lindquist, J.L., Strothmann, R.O. 1994. Young-growth redwood stands respond well to various thinning intensities. Western Journal of Applied Forestry. 9:106–112. R Development Core Team (2016), R: A Language and Environment for Statistical Computing. Vienna, Austria: The R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Available online at http://www.R-project.org/. Reineke, L.H. 1933. Perfecting a stand-density index for even-age forests. Journal of Agricultural Research. 46: 627–638. Roach, B.A. 1977. A stocking guide for Allegheny hardwoods and its use in controlling intermediate cuttings. General Technical Report NE–373, USDA, Forest Service, Northeastern Forest Experiment Station. Rueda, R., Williamson, G.B. 1992. Radial and vertical wood specific gravity in Ochroma pyramidale (Cav. ex Lam.) Urb. (Bombacaceae). Journal of Biotropica. 24: 512–518 Scharf, F.S., F. Juanes and M. Sutherland. 1998. Inferring ecological relationships from the edges of scatter diagrams: Comparison of regression techniques. Journal of Ecology. 79(2): 448–460. Shaw, J.D. 2000. Applications of stand density index to irregularly structured stands. Western Journal of Applied Forestry. 15: 40–42. Solomon, D.S., Zhang, L. 2002. Maximum size-density relationships for mixed softwoods in the northeastern USA. Journal of Forest Ecology and Management. 155: 163–170. Stage, A.R. 1968. A tree-by-tree measure of site utilization for grand fir related to stand density index. Research Note INT–77, USDA, Forest Service, Intermountain Forest and Range Experiment Station. Stiell, W.M. 1982. Growth of clumped versus equally spaced trees. Journal of Forestry Chronicle. 58: 23–25. Stout, S.L., Marquis, D.A., Ernst, R.L. 1987. A relative density measure for mixed-species stands: tree-area ratios are more accurate than stocking charts. Journal of Forestry. 85: 45–47. Tadaki, Y. 1968. The primary productivity and the stand density control in Acacia mollissima stand. Bulletin of Forest Experiment Station (Tokyo). 216: 99–125. Tappeiner, J.C., Maguire, D.A., Harrington, T.B. 2007. Silviculture and Ecology of Western U.S. forests. Oregon State University Press. Corvallis. 448 p. U.S. Department of Agriculture, 2005. A Strategic Assessment of Forest Biomass and Fuel Reduction Treatments in Western States. General Technical Report RMRS–GTR–149. USDA, Forest Service, Rocky Mountain Research Station. Wiemann, M. C., Williamson, G.B. 1988. Extreme radial changes in wood specific gravity in some tropical pioneers. Journal of Wood and Fiber Science. 20: 344–349. Wiemann, M. C., Williamson, G.B. 1989a. Radial gradients in the specific gravity of wood in some tropical and temperate trees. Journal of Forest Science. 35: 197–210. Wiemann, M. C., Williamson, G.B. 1989b. Wood specific gravity gradients in tropical dry and montane rain forest trees. American Journal of Botany. 76: 924–928. Williamson, G.B., Wiemann, M.C. 2010. Measuring wood specific gravity … correctly. American Journal of Botany. 97(3): 519–524. Wilson, F.G. 1946. Numerical expression of stocking in terms of height. Journal of Forestry. 44: 758–761. Wilson, F.G. 1979. Thinning as an orderly discipline: a graphic spacing schedule for red pine. Journal of Forestry. 77: 483–486. Woodall, C.W., Miles, P.D., Vissage, J.S. 2005. Determining maximum stand density index in mixed species stands for strategic-scale stocking assessments. Journal of Forest and Ecology Management. 216: 367–377. Woodall, C.W., Perry, C.H., Miles, P.D. 2006. The relative density of forests in the United States. Journal of Forest Ecology and Management. 226: 368–372. Yoda, K., Kira, T., Ogawa, H., Hozumi, K. 1963. Self‐thinning in overcrowded pure stands under cultivated and natural conditions (intraspecific competition among higher plants XI). Journal of Biological Science. 14: 107–129. Zeide, B. 2005. How to measure stand density. Journal of Trees 19: 1–14. Zhang, L., Bi, H., Gove, J.H., Heath, L.S. 2005. A comparison of alternative methods for estimating the self-thinning boundary line. Canadian Journal of Forest Research. 35(6): 1507–1514. Cheng, Chih-Hsin; Hung, Chih-Yu; Huang, Yu-Hsuan; Lee, Chung-Yu; Chen, Chiou-Pin; Pai, Chuang-Wen. 2014. 溪頭台灣杉人工林之林分特性與發展. 中華林學季刊. 47(2): 155–168. Hsu, Hsiao-Hua. 2014. 永續台灣─台灣的生物多樣性. 科學發展. 501: 44–49. Lin, Guo-Jang. 2003. 台灣森林多樣性之經營. 台灣林業. 29(3): 7–20. Lin, Chao-Song; Horng, Fu-Wen. 1991. 六龜地區臺灣杉人工林之生長. 林業試驗研究報告季刊. 6(3): 229–248. Li, Hui-Lin; Keng, Hsuan (1994) Flora of Taiwan, Second Edition. 654 p. Su, Yuan-Ya. 2014. 台灣檜木林自我疏伐曲線之建立. 宜蘭大學碩士論文. 71 p. Taiwan Forestry Research Institute. 1992. 重要商用木材之一般性質. 林業叢刊第1號. 207 p. Taiwan Forest Bureau. 2004. 台灣的自然資源與生態資料庫—Part I.生物多樣性. 229 p. Taiwan Forest Bureau. 2016. 你所不知道的森林. The 70th Newsletter. URL: http://recreation.forest.gov.tw/ePaper/2016_70/ePaper_10070-03.html Taiwan Forest Bureau. 2016. 第四次全國森林資源調查報告. Wang, Ya-Nan; Tsai, Ming-Jer; Liou, Chii-Fuw; Cheng, Ching-Peng. 2009. 不同林分密度臺灣杉人工林下層疏伐對其生長之影響. 臺大實驗林研究報告. 23(4): 295–307. Yen, Tian-Ming. 2002. 紅檜人工林林分密度管理圖. 中華林學季刊. 35(1): 55–67. Yu, Jui-Chu; Tsai, Ming-Jer; Wang, Ya-Nan. 2011. 溪頭之一千株及二千株栽植密度柳杉長期試驗地之生長比較. 臺大實驗林研究報告. 25(1): 25–32. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2520 | - |
dc.description.abstract | 林分密度指數可以呈現林內競爭強度,其利用決定初期栽植密度與疏伐等方式來經營林木的空間分布、控制樹冠的發展及維持森林的健康程度。最典型的林分密度指數在1933年由Reineke所建立,此指數於人工純林有很佳的研究結果,但並不適於混合林,目前可替代的林分密度指數仍被探索中。在臺灣,天然林的面積大約佔有105萬公頃,其中85 %的天然林面積屬於混合林,當前林分密度指數的相關研究多著重於單一優勢物種的天然林或是單一物種的人工林,以紅檜與柳杉的研究較多,極少研究致力於調查或發展可適用於臺灣天然混合林的林分密度指數。由於進行林分密度的管理,對於森林保護與水土保持等目標極為重要,因此,開發天然混合林的林分密度指數來制定森林經營管理方針是有必要的。本研究將臺灣第四次森林資源調查的檜木混合林及松樹混合林等資料,代入Ducey和Knapp在2010年建立的相對密度模式,為了使臺灣的資料能在此模式下有顯著的結果以及得到更完整的相對密度模式建立方針,代入的過程需要再額外加入三個步驟,包括添加1 %的隨機雜訊於所有樣木的比重值、以大於10 %的檜木或松樹胸高斷面積比例作為樣區挑選的基準值、選擇最大值、最小值的相交分位數以及各參數平均值來決定相對密度模式的參數估計。本研究不僅提供獲取某混合林林分相對密度公式的初步流程,更提供一個快速評估檜木混合林以及松樹混合林等樣區的相對密度公式,以利對此樣區進行森林經營管理之策略。 | zh_TW |
dc.description.abstract | Stand Density Index (SDI) is a numerical value that captures intensity of competition within a forest stand. It is a tool for managing spatial arrangement of trees, controlling crown development and maintaining degree of forest health through decision made on initial planting density and thinning schedule. However, classic Reineke’s SDI (Reineke 1933) has been found to be unsuitable for mixed species and structurally complex forest stands. Alternative measures of SDI are being explored. Natural forests in Taiwan cover an area of approximately 1.5 million ha with 85% of them classified as mixed species forests. Current SDI research in Taiwan focuses on single-species natural and plantation forests such as Chamaecyparis formosensis and Cryptomeria japonica forests. Very few studies investigate and develop SDI for mixed species natural forests in Taiwan. Because management of these forests is crucial for conservation and protection against soil erosion, it is necessary to develop SDI for mixed species natural forests to establish guidelines for management of these forests. Therefore, based on the model by Ducey and Knapp (2010), relative SDI was developed for false cypress and pine forests using data from the 4th Taiwan National Forest Inventory. Plots with at least 10% of basal area per hectare of target species were used for model fitting. During model fitting, it was discovered that specific gravity played an important role on model convergence. Lastly, three different relative SDI models for each forest type were produced that predicted minimum, mean and maximum relative SDI for a forest stand. The major result from this study was that relative SDI could now be calculated for the mixed-species and structurally complex false cypress and pine forests that allows a manager to meet forest management strategies. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:41:23Z (GMT). No. of bitstreams: 1 ntu-106-R05625014-1.pdf: 2876422 bytes, checksum: 39133c92da534f64975d4f582877f714 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Acknowledgement i
Chinese Abstract ii English Abstract iii Chapter 1 Introduction 1 1.1 Goals and Objectives 3 Chapter 2 Literature Reviews 4 2.1 Definitions and Effects of Stand Density 4 2.1.1 Stand Density-Management Diagrams (SDMDs) 5 2.1.2 Related Effects Caused by Density Management 6 2.1.2.1 Effects on Growths of Individual Trees 7 2.1.2.2 Effects on Wood Volume and Quality 8 2.1.2.3 Effects on Developments of Stands 9 2.1.2.4 Effects on Forest Stand as Ecosystem 11 2.2 Types of Stand Density Measures 12 2.2.1 Number of Trees (N, N/ha) 12 2.2.2 Basal Area (BA, m2/ha) 12 2.2.3 Volume (V, m3/ha) 13 2.2.4 Tree-Area Ratio (TAR) 15 2.2.5 Stand Density Index (SDI) 17 2.2.6 Curtis’s Relative Density (CRD) 18 2.2.7 Relative Spacing (RS, %) 20 2.2.8 Crown Competition Factor (CCF) 21 2.3 Developments of SDI from Pure to Mixed-Species Forests 23 Chapter 3 Materials and Methods 27 3.1 Materials 27 3.1.1 Cypress and Pine Forests of Taiwan 27 3.1.2 Fourth Taiwan FRI Data 30 3.1.3 Specific Gravity (SG) 31 3.2 Methods 33 Chapter 4 Results 37 4.1 Data Summary on X0 and X1 by Forest Type 37 4.2 Reference Maximum SDI 38 4.3 Relative Density (Ducey and Knapp Model) 39 4.3.1 Preliminary Fit 39 4.3.2 Random Noise for SG 41 4.4 Implied Maximum ASDI 43 4.4.1 Effects of Random Noise 43 4.4.2 Effects of Basal Area Threshold 43 4.5 Final Relative Density Models by Forest Type 45 4.5.1 Selection of Quantiles 45 4.5.2 Final Relative Density Formulae 48 Chapter 5 Discussion 50 5.1 Trends of Coefficients 50 5.2 Random Noise 52 5.3 Basal Area Threshold 54 5.4 Guideline of Establishing Relative Density Measurements 56 5.5 Design Forest Management Strategies 58 Chapter 6 Conclusion 60 References 61 Figures 69 Tables 91 Appendix 1: Figures 111 Appendix 2: Tables 116 | |
dc.language.iso | en | |
dc.title | 發展林分相對密度指數於檜木及松樹混合林 | zh_TW |
dc.title | Developing Relative Stand Density Index for Structurally Complex Mixed Species Cypress and Pine Forests | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王兆桓,邱祈榮 | |
dc.subject.keyword | 林分密度指數,相對密度,分位數迴歸,混合林,森林經營管理, | zh_TW |
dc.subject.keyword | Stand density index (SDI),Relative density (RD),Quantile regression,Mixed-species forest,Forest management, | en |
dc.relation.page | 128 | |
dc.identifier.doi | 10.6342/NTU201701706 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-11-02 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
顯示於系所單位: | 森林環境暨資源學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf | 2.81 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。