Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25180
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱智賢
dc.contributor.authorCheng-Wei Linen
dc.contributor.author林政緯zh_TW
dc.date.accessioned2021-06-08T06:04:28Z-
dc.date.copyright2007-07-29
dc.date.issued2007
dc.date.submitted2007-07-25
dc.identifier.citation吳兩新、王惠玲、方世偉、莊榮輝、章淑貞、黃森源、林仁壽。1989。牛乳中助孕素免疫微滴盤之建立。國立台灣大學農學院研究報告 29:173-183。
Acton, S., A. Rigotti, K. T. Landschulz, S. Xu, H. H. Hobbs, and M. Krieger. 1996. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271: 518-520.
Alila, H. W., and W. Hansel. 1984. Origin of different cell types in the bovine corpus luteum as characterized by specific monoclonal antibodies. Biol Reprod 31: 1015-1025.
Ben-Izhak, O., M. M. Bar-Chana, L. Sussman, V. Dobiner, J. Sandbank, M. Cagnano, H. Cohen, and E. Sabo. 2002. Ki67 antigen and PCNA proliferation markers predict survival in anorectal malignant melanoma. Histopathology 41: 519-525.
Berisha, B., D. Schams, M. Kosmann, W. Amselgruber, and R. Einspanier. 2000. Expression and tissue concentration of vascular endothelial growth factor, its receptors, and localization in the bovine corpus luteum during estrous cycle and pregnancy. Biol Reprod 63: 1106-1114.
Boocock, C. A., D. S. Charnock-Jones, A. M. Sharkey, J. McLaren, P. J. Barker, K. A. Wright, P. R. Twentyman, and S. K. Smith. 1995. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst 87: 506-516.
Boonyaprakob, U., J. E. Gadsby, V. Hedgpeth, P. Routh, and G. W. Almond. 2003. Expression and localization of vascular endothelial growth factor and its receptors in pig corpora lutea during the oestrous cycle. Reproduction 126: 393-405.
Boonyaprakob, U., J. E. Gadsby, V. Hedgpeth, P. A. Routh, and G. W. Almond. 2005. Expression and localization of hypoxia inducible factor-1alpha mRNA in the porcine ovary. Can J Vet Res 69: 215-222.
Bouzahzah, B., F. Nagajyothi, M. S. Desruisseaux, M. Krishnamachary, S. M. Factor, A. W. Cohen, M. P. Lisanti, S. B. Petkova, R. G. Pestell, M. Wittner, S. Mukherjee, L. M. Weiss, L. A. Jelicks, C. Albanese, and H. B. Tanowit. 2006. Cell cycle regulatory proteins in the liver in murine trypanosoma cruzi infection. Cell Cycle 5: 2396-2400.
Brown, M. S., and J. L. Goldstein. 1986. A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34-47.
Bruick, R. K., and S. L. McKnight. 2001. A conserved family of prolyl-4-hydroxylases that modify hif. Science 294: 1337-1340.
Budnik, L. T., and A. K. Mukhopadhyay. 1987. Desensitisation of LH-stimulated cyclic AMP accumulation in isolated bovine luteal cells--effect of phorbol ester. Mol Cell Endocrinol 54: 51-61.
Budnik, L. T., and A. K. Mukhopadhyay. 1991. Epidermal growth factor, a modulator of luteal adenylate cyclase. Characterization of epidermal growth factor receptors and its interaction with adenylate cyclase system in bovine luteal cell membrane. J Biol Chem 266: 13908-13913.
Camp, T. A., J. O. Rahal, and K. E. Mayo. 1991. Cellular localization and hormonal regulation of follicle-stimulating hormone and luteinizing hormone receptor messenger rnas in the rat ovary. Mol Endocrinol 5: 1405-1417.
Chaudhary, L. R., and D. M. Stocco. 1991. Effect of different steroidogenic stimuli on protein phosphorylation and steroidogenesis in MA-10 mouse Leydig tumor cells. Biochim Biophys Acta 1094: 175-184.
Chen, C., N. Pore, A. Behrooz, F. Ismail-Beigi, and A. Maity. 2001. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 276: 9519-9525.
Chilov, D., G. Camenisch, I. Kvietikova, U. Ziegler, M. Gassmann, and R.H. Wenger. 1999. Induction and nuclear translocation of hypoxia-inducible factor-1 (HIF-1): Heterodimerization with ARNT is not necessary for nuclear accumulation of HIF-1a. J Cell Sci 112 8: 1203-1212.
Clark, B. J., and D. M. Stocco. 1995. Expression of the steroidogenic acute regulatory (StAR) protein: A novel LH-induced mitochondrial protein required for the acute regulation of steroidogenesis in mouse Leydig tumor cells. Endocr Res 21: 243-257.
Cockman, M. E., N. Masson, D. R. Mole, P. Jaakkola, G. Chang, S. C. Clifford, E. R. Maher, C. W. Pugh, P. J. Ratcliffe, and P. H. Maxwell. 2000. Hypoxia inducible factor-a binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275: 25733-25741.
Conrad, P. W., T. L. Freeman, D. Beitner-Johnson, and D. E. Millhorn. 1999. EPAS1 trans-activation during hypoxia requires p42/p44 MAPK. J Biol Chem 274: 33709-33713.
Crews, S. T. 1998. Control of cell lineage-specific development and transcription by bHLH-PAS proteins. Genes Dev 12: 607-620.
Dang, C. V., and G. L. Semenza. 1999. Oncogenic alterations of metabolism. Trends Biochem Sci 24: 68-72.
Dhanasekaran, N., L. E. Heasley, and G. L. Johnson. 1995. G protein-coupled receptor systems involved in cell growth and oncogenesis. Endocr Rev 16: 259-270.
Ema, M., S. Taya, N. Yokotani, K. Sogawa, Y. Matsuda, and Y. Fujii-Kuriyama. 1997. A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1a regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A 94: 4273-4278.
Fei, C.Y., C.H. Chiu, C. Chen, L.S. Wu and I.C. Guo. 2001. Production of polyclonal antibodies against 3b-hydroxysteroid dehydrogenase of cattle, pig and goat. J Chin Soc Anim Sci (supply) 30 (4): 198.
Feldser, D., F. Agani, N. V. Iyer, B. Pak, G. Ferreira, and G. L. Semenza. 1999. Reciprocal positive regulation of hypoxia-inducible factor 1a and insulin-like growth factor 2. Cancer Res 59: 3915-3918.
Fields, M. J., and P. A. Fields. 1996. Morphological characteristics of the bovine corpus luteum during the estrous cycle and pregnancy. Theriogenology 45: 1295-1325.
Flores, J. A., J. C. Garmey, J. E. Nestler, and J. D. Veldhuis. 1993. Sites of inhibition of steroidogenesis by activation of protein kinase-C in swine ovarian (granulosa) cells. Endocrinology 132: 1983-1990.
Fukuda, R., K. Hirota, F. Fan, Y. D. Jung, L. M. Ellis, and G. L. Semenza. 2002. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem 277: 38205-38211.
Gale, N. W., and G. D. Yancopoulos. 1999. Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13: 1055-1066.
Gradin, K., C. Takasaki, Y. Fujii-Kuriyama, and K. Sogawa. 2002. The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J Biol Chem 277: 23508-23514.
Green, C., R. Chatterjee, H. H. McGarrigle, F. Ahmed, and N. S. Thomas. 2000. p107 is active in the nucleolus in non-dividing human granulosa lutein cells. J Mol Endocrinol 25: 275-286.
Grummer, R. R., and D. J. Carroll. 1988. A review of lipoprotein cholesterol metabolism: Importance to ovarian function. J Anim Sci 66: 3160-3173.
Grunewald, T. G., U. Kammerer, E. Schulze, D. Schindler, A. Honig, M. Zimmer, and E. Butt. 2006. Silencing of LASP-1 influences zyxin localization, inhibits proliferation and reduces migration in breast cancer cells. Exp Cell Res 312: 974-982.
Gu, Y. Z., S. M. Moran, J. B. Hogenesch, L. Wartman, and C. A. Bradfield. 1998. Molecular characterization and chromosomal localization of a third a-class hypoxia inducible factor subunit, HIF3a. Gene Expr 7: 205-213.
Hafez, E. S. E. And I. Gordon. 1962. Female reproductive organs of farm mammals. Reproduction of farm animals 79.
Hampl, A., J. Pachernik, and P. Dvorak. 2000. Levels and interactions of p27, cyclin D3, and CDK4 during the formation and maintenance of the corpus luteum in mice. Biol Reprod 62: 1393-1401.
Hanukoglu, I., and C. R. Jefcoate. 1980. Mitochondrial cytochrome P-450sec. Mechanism of electron transport by adrenodoxin. J Biol Chem 255: 3057-3061.
Hanukoglu, I., V. Spitsberg, J. A. Bumpus, K. M. Dus, and C. R. Jefcoate. 1981. Adrenal mitochondrial cytochrome P-450scc. Cholesterol and adrenodoxin interactions at equilibrium and during turnover. J Biol Chem 256: 4321-4328.
Hewitson, K. S., L. A. McNeill, M. V. Riordan, Y. Tian, A. N. Bullock, R. W. Welford, J. M. Elkins, N. J. Oldham, S. Bhattacharya, J. M. Gleadle, P. J. Ratcliffe, C. W. Pugh, and C. J. Schofield. 2002. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting hif (FIH) and is related to the cupin structural family. J Biol Chem 277: 26351-26355.
Hogenesch, J. B., W. K. Chan, V. H. Jackiw, R. C. Brown, Y. Gu, M. Pray-Grant, G. H. Perdew, and C. A. Bradfield. 1997. Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272: 8581-8593.
Houck, K. A., D. W. Leung, A. M. Rowland, J. Winer, and N. Ferrara. 1992. Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms. J Biol Chem 267: 26031-26037.
Hunzicker-Dunn, M., V. V. Gurevich, J. E. Casanova, and S. Mukherjee. 2002. ARF6: A newly appreciated player in G protein-coupled receptor desensitization. FEBS Lett 521: 3-8.
Hur, E., K. Y. Chang, E. Lee, S. K. Lee, and H. Park. 2001. Mitogen-activated protein kinase kinase inhibitor PD98059 blocks the trans-activation but not the stabilization or DNA binding ability of hypoxia-inducible factor-1a. Mol Pharmacol 59: 1216-1224.
Ivan, M., K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. Lane, and W. G. K. Jr. 2001. HIFa targeted for VHL-mediated destruction by proline hydroxylation: Implications for O2 sensing. Science 292: 464-468.
Jablonka-Shariff, A., A. T. Grazul-Bilska, D. A. Redmer, and L. P. Reynolds. 1993. Growth and cellular proliferation of ovine corpora lutea throughout the estrous cycle. Endocrinology 133: 1871-1879.
Jeong, J. W., M. K. Bae, M. Y. Ahn, S. H. Kim, T. K. Sohn, M. H. Bae, M. A. Yoo, E. J. Song, K. J. Lee, and K. W. Kim. 2002. Regulation and destabilization of HIF-1a by ARD1-mediated acetylation. Cell 111: 709-720.
Jiang, B. H., G. L. Semenza, C. Bauer, and H. H. Marti. 1996. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 271: C1172-1180.
Jirawatnotai, S., D. S. Moons, C. O. Stocco, R. Franks, D. B. Hales, G. Gibori, and H. Kiyokawa. 2003. The cyclin-dependent kinase inhibitors p27kip1 and p21cip1 cooperate to restrict proliferative life span in differentiating ovarian cells. J Biol Chem 278: 17021-17027.
Karin, M., and T. Hunter. 1995. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol 5: 747-757.
Kawabe, J., G. Iwami, T. Ebina, S. Ohno, T. Katada, Y. Ueda, C. J. Homcy, and Y. Ishikawa. 1994. Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J Biol Chem 269: 16554-16558.
Ke, Q., T. Kluz, and M. Costa. 2005. Down-regulation of the expression of the FIH-1 and ARD-1 genes at the transcriptional level by nickel and cobalt in the human lung adenocarcinoma A549 cell line. Int J Environ Res Public Health 2: 10-13.
Ke, Q., and M. Costa. 2006. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70: 1469-1480.
Klagsbrun, M., and P. A. D'Amore. 1991. Regulators of angiogenesis. Annu Rev Physiol 53: 217-239.
Klagsbrun, M., and P. A. D'Amore. 1996. Vascular endothelial growth factor and its receptors. Cytokine Growth Factor Rev 7: 259-270.
Kotch, L. E., N. V. Iyer, E. Laughner, and G. L. Semenza. 1999. Defective vascularization of HIF-1a-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev Biol 209: 254-267.
Koundrioukoff, S., Z. O. Jónsson, S. Hasan, R. N. d. Jong, P. C. v. d. Vliet, M. O. Hottiger, and U. Hübscher. 2000. A direct interaction between proliferating cell nuclear antigen (PCNA) and Cdk2 targets PCNA-interacting proteins for phosphorylation. J Biol Chem 275: 22882-22887.
Krueger, R. J., and N. R. Orme-Johnson. 1983. Acute adrenocorticotropic hormone stimulation of adrenal corticosteroidogenesis. Discovery of a rapidly induced protein. J Biol Chem 258: 10159-10167.
Lambeth, J. D., D. W. Seybert, and H. Kamin. 1979. Ionic effects on adrenal steroidogenic electron transport. The role of adrenodoxin as an electron shuttle. J Biol Chem 254: 7255-7264.
Lambeth, J. D., and S. Kriengsiri. 1985. Cytochrome P-450scc-adrenodoxin interactions. Ionic effects on binding, and regulation of cytochrome reduction by bound steroid substrates. J Biol Chem 260: 8810-8816.
Lestavel, S., and J. C. Fruchart. 1994. Lipoprotein receptors. Cell Mol Biol (Noisy-le-grand) 40: 461-481.
Liao, C.H., C.H.Chiu, C.Y. Fei, I.C. Guo and L.S. Wu. 2002. Preparation of antiserum against steroidogenic acute regulatory protein (StAR). J Chin Soc Anim Sci (supply) 31 (4): 220.
Lim, H., B. C. Paria, S. K. Das, J. E. Dinchuk, R. Langenbach, J. M. Trzaskos, and S. K. Dey. 1997. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell 91: 197-208.
Lu, H., R. A. Forbes, and A. Verma. 2002. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the warburg effect in carcinogenesis. J Biol Chem 277: 23111-23115.
Mahon, P. C., K. Hirota, and G. L. Semenza. 2001. FIH-1: A novel protein that interacts with HIF-1a and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15: 2675-2686.
Makino, Y., R. Cao, K. Svensson, G. Bertilsson, M. Asman, H. Tanaka, Y. Cao, A. Berkenstam, and L. Poellinger. 2001. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414: 550-554.
Manalo, D. J., A. Rowan, T. Lavoie, L. Natarajan, B. D. Kelly, S. Q. Ye, J. G. N. Garcia, and G. L. Semenza. 2005. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood 105: 659-669.
Miyamoto Y., D. J. Skarzynski, and K. Okuda. 2000. Is tumor necrosis factor a a trigger for the initiation of endometrial prostaglandin F2a release at luteolysis in cattle? Biol Reprod 62: 1109–1115
Mukhopadhyay, C. K., B. Mazumder, and P. L. Fox. 2000. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J Biol Chem 275: 21048-21054.
Murakami, T., Y. Ikebuchi , A. Kikuta , T. Taguchi, and O. Ohtani. 1988. The blood vascular wreath of rat ovarian follicle, with special reference to its changes in ovulation and luteinization: A scanning electron microscopic study of corrosion casts. Arch Histol Cytol 51: 299-313.
Nakamura, K., T. Minegishi, Y. Takakura, K. Miyamoto, Y. Hasegawa, Y. Ibuki, and M. Igarashi. 1991. Hormonal regulation of gonadotropin receptor mRNA in rat ovary during follicular growth and luteinization. Mol Cell Endocrinol 82: 259-263.
Natraj, U., and J. S. Richards. 1993. Hormonal regulation, localization, and functional activity of the progesterone receptor in granulosa cells of rat preovulatory follicles. Endocrinology 133: 761-769.
Nebert, D. W., and F. J. Gonzalez. 1987. P450 genes: Structure, evolution, and regulation. Annu Rev Biochem 56: 945-993.
Neufeld, G., T. Cohen, H. Gitay-Goren, Z. Poltorak, S. Tessler, R. Sharon, S. Gengrinovitch, and B. Levi. 1996. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants. Cancer Metastasis Rev 15: 153-158.
Neufeld, G., T. Cohen, S. Gengrinovitch, and Z. Poltorak. 1999. Vascular endothelial growth factor (VEGF) and its receptors. Faseb J 13: 9-22.
Niswender, G. D., J. L. Juengel, W. J. McGuire, C. J. Belfiore, and M. C. Wiltbank. 1994. Luteal function: The estrous cycle and early pregnancy. Biol Reprod 50: 239-247.
Nishimura, R., R. Sakumoto, Y. Tatsukawa, T. J. Acosta, and K. Okuda. 2006. Oxygen concentration is an important factor for modulating progesterone synthesis in bovine corpus luteum. Endocrinology 147: 4273-4280.
Norman, A.W. and G. Litwack. 1997. Hormone. 2nd edition 497-501.
Otani, N., S. Minami, M. Yamoto, T. Shikone, H. Otani, R. Nishiyama, T. Otani and R. Nakano. 1999. The vascular endothelial growth factor/fms-like tyrosine kinase system in human ovary during the menstrual cycle and early pregnancy. J Clin Endocrinol Metab 84: 3845-3851.
Orme-Johnson, N. R. 1990. Distinctive properties of adrenal cortex mitochondria. Biochim Biophys Acta 1020: 213-231.
Phillips, H. S., J. Hains, D. W. Leung, and N. Ferrara. 1990. Vascular endothelial growth factor is expressed in rat corpus luteum. Endocrinology 127: 965-967.
Pon, L. A., and N. R. Orme-Johnson. 1986. Acute stimulation of steroidogenesis in corpus luteum and adrenal cortex by peptide hormones. Rapid induction of a similar protein in both tissues. J Biol Chem 261: 6594-6599.
Pugh, C. W., C. C. Tan, R. W. Jones, and P. J. Ratcliffe. 1991. Functional analysis of an oxygen-regulated transcriptional enhancer lying 3' to the mouse erythropoietin gene. Proc Natl Acad Sci U S A 88: 10553-10557.
Ravindranath, N., L. Little-Ihrig, H. S. Phillips, N. Ferrara, and A. J. Zeleznik. 1992. Vascular endothelial growth factor messenger ribonucleic acid expression in the primate ovary. Endocrinology 131: 254-260.
Redmer, D. A., Y. Dai, J. Li, D.S. Charnock-Jones, S.K. Smith, L.P. Reynolds, and R.M. Moor. 1996. Characterization and expression of vascular endothelial growth factor (VEGF) in the ovine corpus luteum. J Reprod Fertil 108: 157-165.
Richards, J. S. 1994. Hormonal control of gene expression in the ovary. Endocr Rev 15: 725-751.
Richards, J. S., D. L. Russell, R. L. Robker, M. Dajee, and T. N. Alliston. 1998. Molecular mechanisms of ovulation and luteinization. Mol Cell Endocrinol 145: 47-54.
Richard, D. E., E. Berra, E. Gothie, D. Roux, and J. Pouyssegur. 1999. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1a (HIF-1a) and enhance the transcriptional activity of HIF-1. J Biol Chem 274: 32631-32637.
Richards, J. S., D. L. Russell, S. Ochsner, and L. L. Espey. 2002. Ovulation: New dimensions and new regulators of the inflammatory-like response. Annu Rev Physiol 64: 69-92.
Salceda, S., and J. Caro. 1997. Hypoxia-inducible factor 1a (HIF-1a) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272: 22642-22647.
Schagger, H., and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kda. Anal Biochem 166: 368-379.
Schofield, C. J., and Z. Zhang. 1999. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 9: 722-731.
Scott, J. D., and S. McCartney. 1994. Localization of a-kinase through anchoring proteins. Mol Endocrinol 8: 5-11.
Semenza, G. L., M. K. Nejfelt, S. M. Chi, and S. E. Antonarakis. 1991. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A 88: 5680-5684.
Semenza, G. L. 1998. Hypoxia-inducible factor 1 and the molecular physiology of oxygen homeostasis. J Lab Clin Med 131: 207-214.
Semenza, G. L. 2001. Hypoxia-inducible factor 1: Control of oxygen homeostasis in health and disease. Pediatr Res 49: 614-617.
Semenza, G. L. 2003. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721-732.
Sherr, C. J., and J. M. Roberts. 1999. Cdk inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 13: 1501-1512.
Spaulding, S. W. 1993. The ways in which hormones change cyclic adenosine 3',5'-monophosphate-dependent protein kinase subunits, and how such changes affect cell behavior. Endocr Rev 14: 632-650.
Sterneck, E., L. Tessarollo, and P. F. Johnson. 1997. An essential role for C/EBPb in female reproduction. Genes Dev 11: 2153-2162.
Stocco, D. M., and B. J. Clark. 1996. Role of the steroidogenic acute regulatory protein (StAR) in steroidogenesis. Biochem Pharmacol 51: 197-205.
Sugino, N., S. Kashida, S. Takiguchi, A. Karube, and H. Kato. 2000. Expression of vascular endothelial growth factor and its receptors in the human corpus luteum during the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab 85: 3919-3924.
Suzuki, H., A. Tomida, and T. Tsuruo. 2001. Dephosphorylated hypoxia-inducible factor 1a as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 20: 5779-5788.
Tacchini, L., L. Bianchi, A. Bernelli-Zazzera, and G. Cairo. 1999. Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem 274: 24142-24146.
Taussig, R., and A. G. Gilman. 1995. Mammalian membrane-bound adenylyl cyclases. J Biol Chem 270: 1-4.
Tesone, M., R. L. Stouffer, S. M. Borman, J. D. Hennebold, and T. A. Molskness. 2005. Vascular endothelial growth factor (VEGF) production by the monkey corpus luteum during the menstrual cycle: Isoform-selective messenger RNA expression in vivo and hypoxia-regulated protein secretion in vitro. Biol Reprod 73: 927-934.
Thomson, M. 1998. Molecular and cellular mechanisms used in the acute phase of stimulated steroidogenesis. Horm Metab Res 30: 16-28.
Wang, G. L., B. H. Jiang, E. A. Rue, and G. L. Semenza. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92: 5510-5514.
Wang, N., W. Weng, J. L. Breslow, and A. R. Tall. 1996. Scavenger receptor BI (SR-BI) is up-regulated in adrenal gland in apolipoprotein A-I and hepatic lipase knock-out mice as a response to depletion of cholesterol stores. In vivo evidence that SR-BI is a functional high density lipoprotein receptor under feedback control. J Biol Chem 271: 21001-21004.
Waseem, N. H., and D. P. Lane. 1990. Monoclonal antibody analysis of the proliferating cell nuclear antigen (PCNA). Structural conservation and the detection of a nucleolar form. J Cell Sci 96 (Pt 1): 121-129.
Watson, A. J., A. Katz, and M. I. Simon. 1994. A fifth member of the mammalian G-protein beta-subunit family. Expression in brain and activation of the beta 2 isotype of phospholipase C. J Biol Chem 269: 22150-22156.
Watters, J. W., A. Kraja, M. A. Meucci, M. A. Province, and H. L. McLeod. 2004. Genome-wide discovery of loci influencing chemotherapy cytotoxicity. Proc Natl Acad Sci U S A 101: 11809-11814.
Wenger, R. H. 2002. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. Faseb J 16: 1151-1162.
Winklhofer, M., K. Matthias, G. Seifert, M. Stocker, S. Sewing, T. Herget, C. Steinhäuser, and S. Saaler-Reinhardt. 2003. Analysis of phosphorylation-dependent modulation of Kv1.1 potassium channels. Neuropharmacology 44: 829-842.
Wu, L.S., J.R. Yang, J.C. Huang and J.H. Lin. 1997. Effects of luteotropic substances on progesterone secretion by caprine luteal cells in vitro. J Chin Soc Anim Sci 26 (3): 313-326.
Wyman, C., and M. Botchan. 1995. DNA replication. A familiar ring to DNA polymerase processivity. Curr Biol 5: 334-337.
Xing, W., and M. R. Sairam. 2002. Retinoic acid mediates transcriptional repression of ovine follicle-stimulating hormone receptor gene via a pleiotropic nuclear receptor response element. Biol Reprod 67: 204-211.
Yuan, Y., G. Hilliard, T. Ferguson, and D. E. Millhorn. 2003. Cobalt inhibits the interaction between hypoxia-inducible factor-a and von hippel-lindau protein by direct binding to hypoxia-inducible factor-a. J Biol Chem 278: 15911-15916.
Zachary, I., and G. Gliki. 2001. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res 49: 568-581.
Zheng, W. L., R. A. Bucco, E. Sierra-Rievera, K. G. Osteen, M. H. Melner, and D. E. Ong. 1999. Synthesis of retinoic acid by rat ovarian cells that express cellular retinoic acid-binding protein-II. Biol Reprod 60: 110-114.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25180-
dc.description.abstract雌性哺乳動物卵巢內濾泡排卵後,濾泡細胞隨即轉型成為黃體細胞而進入黃體期,隨著黃體的發育,黃體期可概分為前期(第0-6天)、中期(第8-12天)與後期(第15-17天);黃體是雌性哺乳動物調控動情周期與維持懷孕之重要組織,主要功能為分泌孕酮,孕酮之生成需要類固醇生成急性調控蛋白(steroidogenic acute regulatory protein, StAR)、細胞色素P450膽固醇側鏈截切酶(P450 cholesterol side-chain cleavage enzyme, P450scc)及3b-羥化類固醇去氫酶(3b-hydroxysteroid dehydrogenase, 3b-HSD)等一連串類固醇生成相關蛋白及酵素的參與。現今已知黃體發育與實質性腫瘤(solidtumor)生長類似,而近年的研究發現實質性腫瘤生長過程中伴隨著缺氧狀況的發生,且已知細胞在缺氧的環境下將啟動相關轉錄因子;缺氧誘導因子-1(hypoxia inducible factor-1, HIF-1)是由缺氧誘導因子-1a(HIF-1a)與缺氧誘導因子-1a(HIF-1a)兩個次單元所組成,藉由調控其下游基因如血管內皮生長因子(vascular endothelial growth factor, VEGF)等,使細胞適應低氧環境。因此本試驗設計之目的在探討黃體發育過程中缺氧對黃體細胞生長與類固醇生成之影響。
本試驗利用取自屠宰場之牛黃體組織,應用免疫組織染色、西方墨染法及孕酮酵素免疫分析等技術,探討不同時期黃體之孕酮、類固醇生成相關蛋白及酵素、缺氧誘導因子、血管內皮生長因子及細胞核增生抗原蛋白(proliferating cell nuclear antigen, PCNA)等蛋白質表現變化。結果發現,HIF-1a、HIF-1b、VEGF與PCNA蛋白質表現量皆以前期較中期與後期高,顯示黃體發育初期細胞處於缺氧環境,且細胞增生快速,並促使血管新生成。同時,StAR與P450scc蛋白質表現於前期相對於中期低,顯示StAR與P450scc基因表現在缺氧條件下可能受到抑制,導致孕酮分泌量較低。
此外,以體外(in vitro)培養系統,將中期黃體細胞培養於正常氧(20 % 氧氣濃度)或缺氧(1 % 氧氣濃度)條件下,並添加PKA(protein kinase A)訊息傳遞路徑活化劑(oLH或8-bromo-cAMP)或孕酮生成前驅物(22R-羥化膽固醇或孕烯醇酮),測定其基礎與受激後孕酮分泌及類固醇生成相關蛋白及酵素之差異,結果顯示,黃體細胞於缺氧條件下StAR及3b-HSD蛋白質表現量較正常氧低,而P450scc蛋白質表現量雖無明顯變化,但其酵素活性卻受到抑制,致使黃體細胞孕酮分泌減少。除此之外,PCNA蛋白質於缺氧條件下表現量下降,顯示中期黃體細胞發育已臻成熟,缺氧將可能引導黃體走向解體的命運。
另一方面,由於中期黃體細胞發育已臻成熟,其細胞生理與黃體發育初期已然有所差異,因此本研究亦應用黃體化粒性細胞(luteinized granulosa cells)模擬發育初期之黃體細胞,並培養於正常氧(添加氯化鈷)或缺氧(未添加氯化鈷)條件下,添加PKA訊息傳遞路徑活化劑(oLH或8-bromo-cAMP)測定孕酮生成與相關蛋白質之表現差異。結果發現,黃體化粒性細胞於缺氧條件下其HIF-1a、HIF-1b與VEGF蛋白質表現量皆較正常氧高;同時,StAR及P450scc蛋白質表現量則降低,但3b-HSD不受缺氧影響;此外,藉由特異性抗體檢測PKA訊息傳遞路徑發現,PKA訊息傳遞路經於缺氧條件下磷酸化PKA(phospho-protein kinase A)蛋白質表現量下降,可能經此路徑的調控造成StAR及P450scc蛋白質表現量下降,導致黃體化粒性細胞孕酮分泌量減少。然而,意外地發現缺氧條件下黃體化粒性細胞之PCNA蛋白質表現量反而增加,此結果與中期黃體細胞之結果恰好相反,顯示此時之細胞分裂旺盛而快速增生,與黃體發育初期之細胞生理相似,且缺氧條件可能扮演著重要的調控角色。
本試驗初步發現缺氧條件下類固醇生成相關蛋白及酵素可能受到HIF-1直接或間接的影響,終使孕酮分泌量下降;而細胞增生指標的PCNA於不同時期黃體細胞對缺氧條件有截然不同的反應,是否亦受HIF-1所調控,尚待進一步實驗設計以證實之。
zh_TW
dc.description.abstractDifferent from other mammal reproduction researches, mostly which focus on the relation between a development of corpus luteum and the secretion of progesterone, this study specifically investigates the development of corpus luteum under the influence of hypoxia, which has not been paid much attention to in the field of reproduction. Results showed that hypoxia actively affected corpus luteum, particularly the growth of luteal cell and the secretion of steroid hormones. Hopefully, the result of my research will serve as a pathway to further exploration, like how hypoxia functionally affects corpus luteum during the process of luteal phase when the formation of corpus luteum is unavoidably accompanied by inadequate amounts of available oxygen.
Corpus luteum is similar to solid tumorgenesis, which is a fast-growing tissue and its formation is always associated with hypoxic condition in which cells will automatically turn on the transcription factor -hypoxia inducible factor-1 (HIF-1) and leads to the enhancement of vascular endothelial growth factor (VEGF) expression to adapt cells to hypoxic condition.
In this study, bovine corpus luteum was obtained in the slaughter house of Ya-Sheng frozen foods CO., LTD and immunohistochemistry, Western Blot and progesterone enzyme-linked immunoassay were used to exam the morphological and the functional changes of corpus luteum.
Experiment was divided into three stages sequentially in coordination with three different developments of luteal phase: early (0-6 days), middle (8-12 days) and late (15-17 days). As to the objects, not only progesterone but also steroidogenic acute regulatory protein (StAR), P450 cholesterol side-chain cleavage enzyme (P450scc), 3b-hydroxysteroid dehydrogenase (3b-HSD), HIF-1a, HIF-1b, VEGF and proliferating cell nuclear antigen (PCNA) were under investigation.
Briefly speaking, initial samples from abattoir were analyzed, comparing the difference in cell proliferation and progesterone between in early stage and in middle stage. Furthermore, luteal cells, in vitro, were put under investigation, proving how hypoxia literally affected the performance of luteal cell and the secretion of progesterone as a result.
There were more protein expression of HIF-1a, HIF-1b, VEGF and PCNA in early stage than in middle or late stage. Regardless of the condition of hypoxia, luteal cells instead performed a fast-growing proliferation in early stage and angiogenesis as a result. But less progestrone was secreted in early stage due to less expression of StAR and P450scc, both of which might be inhibited in the hypoxic condition.
Some middle-aged luteal cells were cultured, developed in vitro, in hypoxic condition (1 % oxygen) while others in normoxic condition (20 % oxygen). The purpose of adding protein kinase A (PKA) signal transduction pathway activator (oLH or 8-bromo-cAMP) and progesterone precursor (22R-OHC or pregnenolone) were to have a clear picture of the changing secretion of progesterone in response to the different performance of related protein. The results in this case was literally meaningful, that luteal cells secreted relatively less progesterone in hypoxia than in normoxia, with decreasing protein expression of StAR and 3b-HSD. To some extent, the phenomenon that P450scc enzyme activity was inhibited also said something about less progesterone secretion. Besides, it is speculated that luteolysis could be inspired under the condition of hypoxia due to the observed decrease in PCNA caused by hypoxia.
Likewise, there was a significant result in the case of investigating whether luteal cells in early stage was affected by hypoxia similarly to those in middle stage, given big difference in the development of cell physiology. In this experiment, luteinized granulosa cells were used to mimic the early stage luteal cells. And luteinized granulosa cells were also cultured under the normoxic conditon (without cobalt chloride) and the hypoxic condition (with cobalt chloride) individually. oLH or 8-bromo-cAMP were added to luteinized granulosa cells. Results indicated that, protein expression of HIF-1a, HIF-1b and VEGF had a better performance in hypoxia than in normoxic condition, but phospho-PKA, StAR and P450scc protein expression had weaker expression in the former condition than in the later one. As a result of decreasing secretion of progesterone the decreasing of phospho-PKA was suspected to have a role in the reduction of StAR and P450scc in the condition of hypoxia. Compared by middle-stage luteal cell, luteinized granulosa cells responded an increasion in PCNA even under hypoxic condition, which spoke for an important role of hypoxia in controlling the performance of cell proliferation. Similarity was proved between luteal cell and luteinized granulosa cells when it came to the performance of cell proliferation under a condition of hypoxia.
In summary, we found HIF-1 indeed affected steroidogenic protein and enzyme in a direct or indirect way, leading to the changes of progesterone secretion. However, it will need more and further study to providing enough evidence to prove PCNA is also affected by HIF-1 when it comes to cell proliferation in normoxic conditon or in hypoxic condition.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:04:28Z (GMT). No. of bitstreams: 1
ntu-96-R94626013-1.pdf: 2579821 bytes, checksum: 0d24639bd13958fbe91c38a1d4036470 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄.....................................................I
圖次....................................................II
中文摘要................................................IV
壹、前言.................................................1
貳、文獻檢討
一、缺氧誘導因子(hypoxia inducible factor)...........3
二、非氣氣依賴性之缺氣誘導因子-la (HIF-la)調控.......7
三、缺氣誘導因子-1 (HIF-1)的功能.....................7
四、細胞核增生抗原蛋白(PCNA)的功能與細胞內調控機制..10
五、卯巢發育與細胞功能..............................11
六、黃體化過程細胞內分子機制的改變..................12
七、類固醇生成與分子調控機制........................15
八、調控卯巢細胞分化、增生等相關內泌素的分子作用機制.. 19
九、缺氣誘導因子-la (HIF-la)在卯巢發育所扮演的角色..22
參、材料與方法......................................24
肆、結果與討論......................................31
伍、結論............................................43
參考文獻............................................62
英文摘要............................................72
附錄................................................75
dc.language.isozh-TW
dc.subject類固醇生成zh_TW
dc.subject缺氧zh_TW
dc.subject缺氧誘導因子-1 alphazh_TW
dc.subject黃體zh_TW
dc.subject牛zh_TW
dc.subject細胞增生zh_TW
dc.subjecthypoxiaen
dc.subjectsteroidogenesisen
dc.subjectcell proliferationen
dc.subjectbovineen
dc.subjectcorpus luteumen
dc.subjectHIF-1 alphaen
dc.title缺氧對牛黃體細胞增生與類固醇生成之影響zh_TW
dc.titleThe Effect of Hypoxia on Cell Proliferation and Steroidogenesis in Bovine Luteal Cellen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王淑音,王翰聰,鍾德憲
dc.subject.keyword缺氧,缺氧誘導因子-1 alpha,黃體,牛,細胞增生,類固醇生成,zh_TW
dc.subject.keywordhypoxia,HIF-1 alpha,corpus luteum,bovine,cell proliferation,steroidogenesis,en
dc.relation.page75
dc.rights.note未授權
dc.date.accepted2007-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved