Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25165
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor范文祥
dc.contributor.authorZhan-Wei Changen
dc.contributor.author張展瑋zh_TW
dc.date.accessioned2021-06-08T06:04:03Z-
dc.date.copyright2007-07-28
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation[1] C. E. S. M. Pope, Electronic Processes in Organic Crystals and Polymers, second ed (Oxford U. Press, New York, 1999).
[2] G. Malliaras, and R. Friend, Physics Today 58, 53 (2005).
[3] G. Tourillon, and F. Garnier, Journal of Electroanalytical Chemistry 161, 51 (1984).
[4] G. Tourillon, and F. Garnier, Journal of the Electrochemical Society 130, 2042 (1983).
[5] S. Glenis, G. Tourillon, and F. Garnier, Thin Solid Films 122, 9 (1984).
[6] D. S. W. P. M. Borsenberger, Organic Photoreceptors for Imaging Systems (M. Dekker, New York, 1993).
[7] N. Karl, R. Farchioni, G. Grosso, in Organic Electronic Materials (Springer, New York 2001).
[8] H. Bassler, Physica Status Solidi B-Basic Research 175, 15 (1993).
[9] D. M. Pai, Journal of Chemical Physics 52, 2285 (1970).
[10] N. Karl, Synthetic Met 133, 649 (2003).
[11] E. H. M. P.M. Borsenberger, M. van der Auweraer, F.C. de Svhryver, Phys. Status Solidi A 140, 9 (1993).
[12] J. Frenkel, Physical Review 54, 647 (1938).
[13] A. J. Heeger et al., Reviews of Modern Physics 60, 781 (1988).
[14] J. H. Burroughes et al., Nature 347, 539 (1990).
[15] J. A. Rogers, Z. N. Bao, and V. R. Raju, Applied Physics Letters 72, 2716 (1998).
[16] H. Sirringhaus et al., Science 290, 2123 (2000).
[17] J. Zaumseil et al., Applied Physics Letters 82, 793 (2003).
[18] X. Gong et al., Advanced Materials 17, 2053 (2005).
[19] S. R. Tseng et al., Applied Physics Letters 88 (2006).
[20] P. F. Baude et al., Applied Physics Letters 82, 3964 (2003).
[21] I. McCulloch, in 229th ACS Natl. MeetingSan Diego, CA, 2005).
[22] J. Bardeen, and W. H. Brattain, Physical Review 74, 230 (1948).
[23] W. SHOCKLEY, Bell Sys. tech. J 28, 435 (1949).
[24] V. C. Sundar et al., Science 303, 1644 (2004).
[25] M. Muccini, Nature Materials 5, 605 (2006).
[26] G. H. Gelinck, T. C. T. Geuns, and D. M. de Leeuw, Applied Physics Letters 77, 1487 (2000).
[27] C. D. Dimitrakopoulos, and D. J. Mascaro, Ibm Journal of Research and Development 45, 11 (2001).
[28] G. H. Hadziioannou, P. F. v., Semiconducting Polymers (chemistry, physics, and engineering) (Wiley-Vch, Chichester, 1999).
[29] G. Horowitz, Advanced Materials 8, 177 (1996).
[30] G. Horowitz et al., Solid State Communications 72, 381 (1989).
[31] D. M. Taylor et al., Journal of Physics D-Applied Physics 24, 2032 (1991).
[32] M. Gailberger, and H. Bassler, Physical Review B 44, 8643 (1991).
[33] M.Shur, physics of semiconductors devices (Prentice-Hall, Eaglewood Cliffs, 1990).
[34] M. Shur, M. Hack, and J. G. Shaw, Journal of Applied Physics 66, 3371 (1989).
[35] G. Horowitz, and P. Delannoy, Journal of Applied Physics 70, 469 (1991).
[36] R. H. G. Horowitz, P. Delannoy, J. Phys. III France 5 (1995).
[37] G. Horowitz, Advanced Materials 10, 365 (1998).
[38] Y.-Y. G. Lin, D.J.; Nelson, S.F.; Jackson, T.N., Electron Device Letters, IEEE 18, 606 (1997).
[39] C. D. Sheraw et al., Applied Physics Letters 80, 1088 (2002).
[40] A. R. Brown et al., Synthetic Met 88, 37 (1997).
[41] F. Hide et al., Science 273, 1833 (1996).
[42] A. Dodabalapur, Materials Today 9, 24 (2006).
[43] C. D. Dimitrakopoulos, and P. R. L. Malenfant, Advanced Materials 14, 99 (2002).
[44] A. J. Heeger, and M. A. Diaz-Garcia, Current Opinion in Solid State & Materials Science 3, 16 (1998).
[45] M. M. Ling, and Z. N. Bao, Chemistry of Materials 16, 4824 (2004).
[46] B. W. D'Andrade, and S. R. Forrest, Advanced Materials 16, 1585 (2004).
[47] P. E. Burrows et al., Ieee Transactions on Electron Devices 44, 1188 (1997).
[48] I. H. Campbell et al., Applied Physics Letters 74, 2809 (1999).
[49] S. V. Rakhmanova, and E. M. Conwell, Applied Physics Letters 76, 3822 (2000).
[50] I. H. C. a. D. L. Smith, in Solid State Physic (Academic, London, 2001), Vol. 55.
[51] K. L. Tzeng et al., Applied Physics Letters 84, 619 (2004).
[52] R. W. I. de Boer et al., Phys Status Solidi A 201, 1302 (2004).
[53] H. Sirringhaus et al., Nature 401, 685 (1999).
[54] C. Tanase et al., Journal of Applied Physics 97 (2005).
[55] H. F. Meng et al., Applied Physics Letters 88 (2006).
[56] W. Geens et al., Organic Electronics 3, 105 (2002).
[57] S. G. P. Ostoja, S. Rossini, M. Servidori, C. Taliani and R. Zamboni, Synthetic Met 54, 447 (1993).
[58] C. W. Tang, and S. A. Vanslyke, Applied Physics Letters 51, 913 (1987).
[59] N. S. Sariciftci et al., Science 258, 1474 (1992).
[60] T. Q. Nguyen, R. Y. Yee, and B. J. Schwartz, J Photoch Photobio A 144, 21 (2001).
[61] T. Q. Nguyen et al., Journal of Physical Chemistry B 105, 5153 (2001).
[62] Y. Shi, J. Liu, and Y. Yang, Journal of Applied Physics 87, 4254 (2000).
[63] T. Huser, and M. Yan, Synthetic Met 116, 333 (2001).
[64] R. F. Cossiello, L. Akcelrud, and D. Z. Atvars, Journal of the Brazilian Chemical Society 16, 74 (2005).
[65] S. Y. Quan et al., European Polymer Journal 42, 228 (2006).
[66] C. Tanase et al., Physical Review Letters 91 (2003).
[67] C. Tanase et al., Phys Status Solidi A 201, 1236 (2004).
[68] A. R. Inigo et al., Advanced Materials 17, 1835 (2005).
[69] Y. F. I. Huang, A. R.; Chang, C. C.; Li, K. C.; Liang, C. F.; Chang, C. W.; Lim, T. S.; Chen, S. H.; White, J. D.; Jeng, U. S.; Su, A. C.; Huang, Y. S.; Peng, K. Y.; Chen, S. A.; Pai, W. W.; Lin, C. H.; Tameev, A. R.; Novikov, S. V.; Vannikov, A. V.; Fann, W, Advanced Functional Materials (2007).
[70] S. H. Chen et al., Macromolecules 37, 167 (2004).
[71] K. R. Amundson et al., Thin Solid Films 414, 143 (2002).
[72] M. W. Hamersky, M. Tirrell, and T. P. Lodge, Langmuir 14, 6974 (1998).
[73] T. Sato et al., Physical Review B 4, 1950 (1971).
[74] H. E. Tseng, C. Y. Liu, and S. A. Chen, Applied Physics Letters 88 (2006).
[75] C. Tanase et al., Organic Electronics 4, 33 (2003).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25165-
dc.description.abstract以時間解析電激發光和場效應電晶體方法可分別量測得MEHPPV的垂直方向與平行方向之電洞載子遷移率。高分子薄膜之光學性質與型態的研究則可了解光學性質與型態上的效應對於電荷傳導的影響。在本研究中,MEHPPV 高分子分別以氯苯、甲苯當作溶劑配製成導電高分子溶液並且製成薄膜與元件。實驗結果顯示高分子薄膜的光學性質相似但卻有不同的電洞遷移率。此外,垂直方向與平行方向的載子遷移率明顯地有著差異。更近一步地實驗結果又發現使用不同的溶劑會對共軛高分子產生型態上的影響。經由光散射可知,以氯苯高分子溶液旋轉塗布所製成之薄膜比以甲苯溶液旋轉塗布製成之薄膜有較明顯的層狀結構。將型態效應與垂直、水平方向的電洞遷移率做比較後可知,電荷傳導異向性是因來自不同溶劑對MEHPPV高分子薄膜形成了不同程度的層狀結構所導致。令人驚訝的是如此結構上的異向性與載子遷移率的異向性竟然不謀而合。這樣的結果應起因於電洞載子在水平方向上的高密度電子層狀區域具有較佳的載子遷移率。zh_TW
dc.description.abstractThe hole mobility in vertical and horizontal directions were measured by means of time-resolved or transient electroluminescence (TrEL) and field-effect transistor (FET) methods for poly(2-methoxy-5-(2’-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV). The optical properties and morphology were studied for understanding the optical and morphological effects on charge transport properties. MEH-PPV films prepared from chlorobenzene (CB) and toluene (TL) were used and fabricated into devices in this work. The results indicted the optical properties are identical but different in hole mobility. In addition, the charge mobility shows obvious difference in vertical and horizontal direction. Further, the morphological effect in conjugated polymer films was induced by using different solvents. Through scattering measurements, the solvent induced layered structure within polymer films spun from chlorobenzene (CB) solution is more predominant, however, the films spun from toluene (TL) solution show weak layered feature. Comparing morphological effects with the hole transporting results measured by thin film transistor device (horizontal direction) and polymer light emitting diode (PLED) based time resolved electroluminescence method (vertical direction), charge transport anisotropy was observed as a result of the layered structure in the conjugated polymer. Amazingly, this structural anisotropy corresponds with the mobility anisotropy and it is believed to be consistent with hole carriers owning greater mobility in the regions of high electron density which is parallel to the substrate.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:04:03Z (GMT). No. of bitstreams: 1
ntu-96-R94549027-1.pdf: 2583000 bytes, checksum: c398afe979737992a4cff950020d67bf (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員審定書…………………………………………………………………………i
誌謝…………………………………………………………………………………...…ii
中文摘要………………………………………………………………………………..iii
英文摘要………………………………………………………………………………v
Chapter 1 Introduction………………………………………………………………1
1.1 Fundamental Review……………1
1.2 Charge Transport…………………………………………………3
1.3 Organic semi-conducting device………7
1.4 Measurements of charge transport……15
1.5 Motivation……………………………………………………………………22
Chapter 2 Experiments……………………………………………………………….25
2.1 Sample preparation.................25
2.2 Field effect transistors……………………………………………………….26
2.3 Transient electroluminescence (TrEL) device...............................................27
2.4 Time of fight measurement……………………….…………………………28
2.5 Optical measurements……………………………………………………….29
2.6 X-ray scattering and reflectivity.....................................................................30
2.7 Film thickness………………………………………......................................31
Chapter 3 Results and Discussion……………………………………………………32
3.1 Absorption and Photoluminescence…………………………………32
3.2 Near field Properties and Topography...........................................................34
3.3 Horizontal transport…………………………37
3.4 Vertical transport………………………………43
3.5 X-ray reflectivity for thin films (Taiwan)………………………………51
3.6 GI-WAXS for films on ITO (Cornell)..................53
Chapter 4 Conclusions…………………………………………62
Reference…………………………………………………………………64
dc.language.isoen
dc.subject時間暫態電激發光。zh_TW
dc.subjectMEHPPVzh_TW
dc.subject載子遷移率zh_TW
dc.subject型態zh_TW
dc.subject光學性質zh_TW
dc.subjectX光反射zh_TW
dc.subject場效應電晶體zh_TW
dc.subjectMEH-PPVen
dc.subjectTrELen
dc.subjectFETen
dc.subjectX-ray reflectivityen
dc.subjectOptical propertiesen
dc.subjectMorphologyen
dc.subjectMobilityen
dc.titleMEHPPV元件中之電荷傳導異向性zh_TW
dc.titleThe Charge Transport Anisotropy in MEHPPV (poly(2-methoxy-5-(2’-ethylhexykoxy)-1,4-phenylene vinylene) Devicesen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曹培熙,白小明
dc.subject.keywordMEHPPV,載子遷移率,型態,光學性質,X光反射,場效應電晶體,時間暫態電激發光。,zh_TW
dc.subject.keywordMEH-PPV,Mobility,Morphology,Optical properties,X-ray reflectivity,FET,TrEL,en
dc.relation.page66
dc.rights.note未授權
dc.date.accepted2007-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved