請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25144
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李敏雄 | |
dc.contributor.author | Yen-Chih Chen | en |
dc.contributor.author | 陳彥志 | zh_TW |
dc.date.accessioned | 2021-06-08T06:03:28Z | - |
dc.date.copyright | 2007-07-30 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-26 | |
dc.identifier.citation | 1. 小松龍史,(1993),月刊フードケミヵル,6, 45–50。
2. 中台忠信,(1987),醬油の最新技術について(I)。釀協,82(2);95-98。 3. 元木五郎、川原俊久、內田一生、千葉秀雄、吉野宏,(1976),特願,昭50-56195。 4. 石坂真,(1977),特願,昭55-11800。 5. 西脇正,(1973),特願,昭38-42970。 6. 村本光二、陳華敏,(1997),大豆ぺプチドの抗酸化性。食品工業,3, 69–79。 7. 李敏雄、郭錦富,(1987),醬油香味成分之研究。中國農業化學會誌,25:100-111。 8. 郭錦富,(1991),原料比例對醬油品質之影響。國立台灣大學農業化學所博士論文。 9. 岩崎榮作,(1995),日本小兒アレルギー學會誌,9(1):23-31。 10. 河村幸雄,(1997),大豆タンパク質のアンギオテンシン變換酵素阻害ぺプチドと血壓效果作用。食品工業,6 (30):73 – 82。 11. 青山敏明,(1996),日本營養•食糧學會誌,49, 46。 12. 松本伊左尾、今井誠一,(1983),酵母利用によゐ低食鹽醬油の製造。釀協18(5):398-401。 13. 宮崎桂一,(1960),特願,昭35-38709。 14. 森本茂美、板口八代子、村上充代,(1967),速釀醬油に關すゐ研究(第7報)アルコール濃度變化、有機酸組成。發酵工程45(1):17-21。 15. 高殿純雄、弘一,(1978),特願,昭53-19522。 16. 周秀琴,(1989),中國におけゐ最近の新型醬油の開發。醬研15(3):15-18。 17. 奧原章、中島隆、齊藤伸生,(1975),特願,昭40-427061。 18. 奧原章,(1987),減鹽醬油の開發について。釀協82(3):149-152。 19. 陳俊榮、游怡祥、陳金發、張慧文、楊素卿,(2000),蛋白質之胃蛋白酶水解物對脂質氧化的影響。Nutr. Sci. J. 25 (4):226-231。 20. 陳勝和,(1975),醬油。天然出版社。 21. 橫塚保、岩淺孝、膝井三治,(1987),醬油麴高溫分解に關おけゐグルタミナーゼの役割。醬研13(1):18-25。 22. 新浦勇次郎ら,(1993),藥學雜誌,113 (4):334-342。 23. 齊藤昌之,(1992),大豆たん白質營養研究會會誌,13 (1):50–52。 24. 齊藤昌之,(1991),大豆たん白質營養研究會會誌,12 (1):91–94。 25. 續光清,(1991),食品工業(增訂本)。徐氏基金會。 26. Adler-Nissen, J. (1986) Enzymic hydrolysis of food proteins. pp. 19-20. 27. Aiba, T. (1982) Modernized heat treatment of wheat kernels used for brewing. Proc. 14th. Symp. Brew. Soc. Japa. pp20. 28. Anderson, J. W.; Allgood, L. D.; Turner, J.; Oeltgen, P. R.; Daggy, B. P. (1999) Effect of psylluim on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. Am. J. Clin. Nutr. 70, 466-473. 29. AOAC. (1984) Official method of analysis, 13th ed.; Association of official analytical chemists: Washington, DC. 30. Aonuma, T.; Yasuda, A.; Yuasa, T.; Arai, A.; Mogi., K., and Yokotsuka. T. (1970) Preparing method of shoyu and miso. Japanese patent 794915. KikkomanShoyu Co. Ltd. 31. Ariyoshi, Y. (1993) Angiotensin-converting enzyme inhibitors derived from food proteins. Trends Food Sci. Technol. 4:139-144 32. Asao, Y. and Yokotsuka, T. (1957) Studies on flavorous substances in soy sauce. (2) Acidic compound. Bull Agr. Chem. Soc. Japan 32:617-622. 33. Ashima, T. (1983) Relationships between gas chromatographic profiles of soy sauce volatiles and organoleptic characteristics based on multivariate analysis. Instrumental analysis of food. Vol. 1 pp 37-56. Academic press, Inc. New York. 34. Bauchat, L. R. (1978) Food and beverage mycology. AVI publishing company, Inc. Westport, Connecticut. 35. Brown, N. J., and Vaughan, D. E. (1998) Angiotensin-converting enzyme inhibitors. Circulation 97: 1411-1420. 36. Chau, C. F.; Huang, Y. L. (2004) Characterization of passion fruit seed fibres – a potential fibre source. Food Chem. 85, 189-194. 37. Chinese National Standard. (1976) Methods of Test for Soy Sauce; 995, N6008; Central Standard Bureau, Ministry of Economic Affairs, Executive Yuan: Taipei, Taiwan. 38. Cushman, D. W.; Cheung, H. S. (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20, 1637-1648. 39. D’amico, G., Gentile, M., Manna, G., Fellin, G., Ciceri, R., Cofano, F., Petrini, C., Larvarda, F., Perolini, S., and Porrini, M. (1992) Effect of vegetarian soy diet on hyperlipidaemia in nephritic syndrome. Lancet 339:1131. 40. Deng, G. Y.; Liu, Y. W.; He, G. Z.; Jiang, Z. M. (2000) Dietary fiber protection on intestinal barrier function. Asian J. Surg. 23, 90-96. 41. Frokjaer, S. (1994) Use of hydrolysates for protein supplementation, Food Technol. 48(10):86-88. 42. Fukushima, D. and Mogi, M. (1955) Treating method of soybean protein. Japanese patent 232368, 237805. 43. Fukushima, D. and Mogi, M. (1957) Treating method of soybean protein. Japanese patent 248103. 44. Fukushima, D. (1968) Internal structure of 7S and 11S globulin molecules in soybean proteins. Cereal Chem. 45:203-224. 45. Fukushima, D. (1989) Industrialization for fermented soy sauce production centering around Japanese shoyu. 46. Fumio Yamauchi and Kunio Suetsuna. (1993) Immunological effects of dietary peptide derived from soybean protein. J. Nutr. Biochem., 4, 450-457. 47. Gordon, D. T. (1989) Functional properties vs. physiological action of total dietary fiber. Cereal Foods World 34, 517-525. 48. Green, J. and Kleeman, C.R. (1991) Role of bone in regulation of systemic acid-base balance. Kidney Int. 39:9. 49. Hayashi, K. Terada, M. Mogi, K. and Yokotsuka, T. (1968) Japanese patent. 673114, 687804. 50. Hodges, R.E., Krehl, W.A., Stone, D.B., and Lopez, A. (1967) Dietary carbohydrates and low cholesterol diets; effects on serum lipids of man. Am. J. Clin. Nutr. 20:198. 51. Chen Hua-Ming, Koji Muramoto, and Fumio Yamauchi. (1995) Structural analysis of antioxidative peptides from soybean β–conglycinin. J. Agric. Food Chem. 43, 574-578. 52. Hughes, J. S. (1991) Potential contribution of dry bean dietary fiber to health. Food Technol. 9, 5122-126. 53. Klahr, S. (1990) Rental Disease. Ch. 44. In Present Knowledge in Nutrition, M.L. Brown, L.J.Filer, Jr., H.A. Guthrie, O.A. Levander, D. B. McCormick, R.E. Olson, and R.D. Sttle (Ed.), p.377. International Life Science Institute- Nutrition Foundation, Washington, DC. 54. Law, M.R., Wald, N.J., Wu, T., Hacksaw, A., and Bailey, A. (1994) Systematic underestimation of association between serum cholesterol concentration and ischaemic heart disease in observational studies: data from the BUPA study. Br. Med. J.308: 363. 55. Makio Kobayashi (2005) Immunological functions of soy sauce: Hypoallergenicity and antiallergic activity of soy sauce. Journal of bioscience and bioengineering. Vol. 100, No. 2, 114-151. 56. Martin D. S., N. P. Breitkopf, K. M. Eyster, and J. L. Williams. (2001) Dietary soy exerts an antihypertensive effect in spontaneously hypertensive female rats. Am. J. Physiol. Regulatory Integrative Comp. Physiolo. 281 : R553-R560. 57. Meisel, H. and Schlimme, E. (1989) Milk proteins: precursors of bioactive peptides. Trends Food Sci. Technol. 2:41-43. 58. Meisel, H. (1997) Biochemical properties of regulatory peptides derived from milk proteins. Biopoly. 43: 119-128. 59. Meisil, H. and W. Bockelmann. (1999) Bioactive peptides encrypted on milk proteins: proteolytic activation and thropho-functional properties. Antonie vam Leeuwenhoek 76: 207-215. 60. Meng XJ, Zhang XZ, Wang HY. (1999) Preparation and antioxidative effects of soybean peptides. Chemical research in Chinese universities. 15 (2), 140-145. 61. Noda Shoyu Co. (1955) New Kikkoman method for treatment soybean making. In “The pamphlet for public offering of new technique”, Noda Shoyu, Chiba, Japan. 62. Nunomura, N.; Sasaki M. and Yokotsuka, T. (1979) Isolation of 4-hydroxy-5-methyl-3-furanone, a flavor component in soy sauce. Agri. Biol. Chem. 43:1361. 63. Nunomura, N.; Mori, S.; Sasaki, M. and Motai, H. (1983) Heating effects on flavor components in shoyu(soy sauce), in Abstr. Pap. Annu. Meet Agri. Chem. Soc. Jpn. pp. 237. 64. Potter, S. M. (1995) An overview of proposed mechanisms for the hypocholesterolemic effect of soy. J. Nutr. 125: 06S. 65. Ralet, M. C.; Della Valle, G.; Thibault, J. F. (1993) Raw and extruded fiber from pea hulls. Part I: composition and physicochemical properties. Carbohydrate Polymers 20, 17-23. 66. Rolls, B. J.; Bell, E. A.; Castellanos, V. H.; Chow, M.; Pelkman, C. L.; Thorwart, M. L. (1999) Energy density but not fat content of foods affected energy intake in lean and obese woman. Am. J. Clin. Nutr. 69, 863-871. 67. Slavin, J. L.; Jacobs, D.; Marquart, L.; Wiemer, K. (2001) The role of whole grains in disease prevention. J. Am. Diet. Assoc. 101, 780-785. 68. Smacchi, E. and Gobbetti, M. (2000) Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes. Food Microbiol. 17: 129-141. 69. Su, N. W.; Wang M. L.; Kwok K. F.; & Lee, M. H. (2005) Effects of temperature and sodium chloride concentration on the activities of proteases and amylases in soy sauce koji. J. Agric. Food Chem. 53, 1521-1525. 70. Taira, Ha; Taira, Hi; Sugimura, K., and Sakurai, Y. (1965) Studies on amino acids contents of processed soybean. Part 6. The heat destruction of amino acids on defatted soybean flour. Agri. Biol. Chem. 29:1074-1079. 71. Takamastu, H. Iwasa, T., and Yokotsuka, T. (1980) Production method of liquid seasoning. Japanese patent No.1,120,428. Kikkoman Shoyu Co. Ltd. 72. Verillo, A., Teresa de A., Giarrusso, P.C., and LaRocca, S. (1985) Soybean protein diets in the management of Type II hyperlipoproteinaemia. Atherosclerosis 54: 321. 73. Wolf, W. J. (1970) Soybean proteins: their functional, chemical, and physical properties. J. Agr. Food Chem. 18(6): 969-976. 74. Wu, J. and Ding X. (2001) Hypertensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soy bean protein on spontaneously hypertensive rats. J. Agric. Food Chem. 49 : 501-506. 75. Yamamoto H., Fumiko T., Chika N., Ayako S. And Junji S. (2006) Separation of flavonoids and salt in bean cake disposed from soy sauce manufacturing process. J. Chem. Engi. Japan. Vol. 39, No. 7, pp. 777-782. 76. Yeh H. Y.; Su N. W.; Lee. M. H. (2005) Chemical Compositions and Physicochemical Properties of the Fiber-Rich Materials Prepared from Shoyu Mash Residue. J. Agric. Food Chem. 53, 4361-4366. 77. Yokotsuka, T., Hayashi, K., Sakasai, T. And Mogi, K. (1965) Production method of shoyu-koji. Japanese patent 539235. Kikkoman Shoyu Co., Ltd. 78. Yokotsuka, T.; Mogi, K.; Fukushima, D. And Yasuda, A. (1966) Dealing method of proteinous raw materials for brewing. Japanese patent 929910. Kikkoman Shoyu Co., Ltd. 79. Yokotsuka, T. (1981) Recent advances in shoyu research, in “The quality of foods and beverages” Chemistry and technology Vol. 2. Academic Press. Inc., New York. 80. Yokotsuka, T. (1986) Soy sauce biochemistry. Adv. Food Res. 30:196. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25144 | - |
dc.description.abstract | 本論文針對目前醬油產業之問題及待改進項目進行探討與分析,包括下列三部份:
1. 醬油粕之回收利用 由於科技之進步及生活水準之提高,醬油粕作為飼料用途之比例日漸減少,如將其直接丟棄或焚燒處理,更會對環境造成污染。其實醬油粕中尚含有許多有用之成分如胺基酸、纖維素、異黃酮等,具有回收再利用的價值。在製備脫鹽醬油粕的過程中,所產生之水洗鹽液含有豐富胺基酸等營養成分,若直接排放,亦會造成環境污染。本研究目的之一為探討將此水洗鹽液回收再利用之可行性,進而使醬油粕之回收利用更加完善。本研究利用醬油粕水洗液作為醬油釀造之鹽水來源,經過六個月之釀造,水解率可達59.3 %,較未使用醬油粕水洗液釀造醬油之水解率(56.7 %)高出2.6 %;使用醬油粕水洗液釀造醬油之總氮利用率可達83.6 %,較未使用醬油粕水洗液之總氮利用率(79.7 %)高出約4 %,此增加之4 %總氮利用率根據計算推測係來自醬油粕之水洗液。本研究結果證實利用醬油粕水洗液釀造醬油之可行性,而且可有效利用醬油粕水洗鹽液中之食鹽及胺基酸,除了可降低所需之食鹽成本外,亦能增加醬油之產率。 2. 利用嫌氣發酵方式提升醬油醪之水解效率 醬油所需要之釀造時間極長,通常為六個月至一年,若能有效提高醬油醪發酵水解之效率,則可以減少醬油生產所需要的時間,進而減少成本,同時提高生產效率。過去研究發現蛋白酶活性受溫度以及鹽分含量之影響甚大,因此,本研究擬在無鹽條件下配合嫌氣條件進行醬油醪之發酵,在不同溫度下探討其水解率之經時變化,期望能在無鹽條件下找出短時間內得到高水解率產物的條件。由實驗結果得知,醬油醪之最適水解溫度為45 oC,於此溫度下水解9小時可得水解率為42.6 %之水解產物。利用本研究之方法,在無鹽條件下,短時間可得到高水解率的無鹽醬油醪水解物,未來可提供無鹽及低鹽醬油之開發,亦可縮短醬油所需之釀造時間。本研究同時探討嫌氣發酵所生產之醬油醪水解液對血管收縮素轉化酶(Angiotensin converting enzyme, ACE)抑制能力之經時變化,結果發現以45 oC水解醬油醪9小時為最佳,ACE抑制能力可達55.6 %;然就實際生產具有血管收縮素轉化酶抑制能力之醬油醪水解液產品而言,建議以50 oC較適合,於此溫度下水解6至12小時,其血管收縮素轉化酶抑制能力皆在50 %左右,較有利於控制產品之品質。 3. 利用食品級酵素水解大豆蛋白製備胜肽及胺基酸產品 高血壓以及心血管疾病一直以來都是十大死亡原因之一,而過去研究指出,若能有效抑制血管收縮素轉化酶之活性將可以有效降低血壓,進一步預防心血管疾病的發生。許多研究指出,蛋白質水解所產生之胜肽容易被人體所吸收,因而具有高度營養價值,並且同時具有抑制血管收縮素轉化酶的效果。本研究利用Bromelain、Flavourzyme、Neutrase及Papain等四種食品級蛋白酶水解大豆蛋白,探討其水解率與血管收縮素轉化酶抑制能力之相關性,期望能開發高血管收縮素轉化酶抑制能力之產品。結果發現,在所測試之四種食品級酵素中,以Flavourzyme對大豆蛋白之水解效果最佳,經過10小時即可達水解率45.3 %。由利用不同酵素進行大豆蛋白水解之血管收縮素轉化酶抑制能力之經時變化可知,以Flavourzyme水解大豆蛋白6小時為最佳,可達58.2 %,初步利用HP-20進行純化,可得ACE之IC50為0.24 % 的區分,較原水解液ACE之IC50 (1.44 %) 低了6倍。利用此酵素水解2至10小時,其水解產物之血管收縮素轉化酶抑制能力皆超過50 %。 | zh_TW |
dc.description.abstract | Abstract
This thesis includes three parts, 1) Utilization of recovered shoyu mash residue, 2) Studies on the hydrolysis of soy sauce koji, 3) Studies on the hydrolysis of soy protein. 1. Utilization of recovered shoyu mash residue. The shoyu mash residue (or referred as soy sauce cake) is the main by-product during soy sauce manufacturing. It is mainly used as an ingredient for preparing feeds. Although shoyu mash residue has been used as a digestible protein, it is incinerated due to the declining livestock industry. A shoyu mash residue contains relatively high amount of salt; therefore, incineration results in corrosion of the furnace and environmental problems. The desalted shoyu mash residue has the excellent physical properties for a good dietary fiber. The purpose of this research is to produce good dietary fiber products from the recovered shoyu mash residue and to increase the yield of soy sauce product. Desalted shoyu mash residue fiber was prepared and their composition and physical properties were measured. In the experiments, the aqueous shoyu mash residue infusion was recycled as the saline water for preparing next batch soy sauce and measurements were carried out. The results indicate that the degree of the hydrolysis is 59.3 % and is higher than the control one (56.7 %) about 2.6 %. The total nitrogen utilization rate is 83.6 % and is higher than the control one (79.7 %) about 4 %. This demonstrates that the waste water from washing the shoyu mash residue can be recovered and reused and thereby reduce the cost of salt and increase the productivity of soy sauce. 2. Studies on the hydrolysis of soy sauce koji. The production of soy sauce is time-consuming. To shorten the time needed for its production the rate of soy sauce koji hydrolysis must be increased. In addition, the salt-free and low-salt soy sauce products are also required as health foods by the consumers. The aim of this part of study is to develop an efficient method for the products. The changes of protein hydrolysis rates during the anaerobic fermentation of the koji were studied. The angiotensin converting enzyme inhibition activities of the peptides of various hydrolysis rates were analyzed. The results indicate that the best temperature for soy sauce koji hydrolysis under anaerobic fermentation is 45 oC. Under this temperature, a hydrolysate of 42.6 % degree of hydrolysis with 9 hours hydrolysis can be achieved. The results of angiotensin converting enzyme test show that hydrolysis for 9 hours at 45 oC can reach a 55.6 % inhibition. However, for a better quality control, condition at 50 oC with 6-12 hours hydrolysis is suggested. 3. Studies on the hydrolysis of soy protein. Recently, peptides have elicited great interest for their multiple bio-functionalities. Among them, especially the peptides made from soy protein are the most popular subjects. The purpose of this research is to employ the koji proteases to produce the peptides of desirable degree of hydrolysis. Four kinds of food grade proteases (Bromelain, Flavourzyme, Neutrase and Papain) were used to hydrolyze soy protein. The angiotensin converting enzyme inhibition activities of the peptides of various hydrolysis rates were analyzed. The results indicate that the best protease for hydrolyze soy protein among the four proteases is Flavourzyme. A hydrolysate of 45.3 % degree of hydrolysis with 10 hours hydrolysis can be achieved. The results of angiotensin converting enzyme test show that by using Flavourzyme hydrolysis for 6 hours 58.2 % inhibition can be attained. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:03:28Z (GMT). No. of bitstreams: 1 ntu-96-R94623009-1.pdf: 2336913 bytes, checksum: 3d6a13d0fcbe1eb8925f7e3cc2762659 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目 錄
目 錄 ................................................................................................... Ⅰ 圖 次 ................................................................................................... Ⅳ 表 次 ................................................................................................... Ⅴ 英文縮寫索引 ....................................................................................... Ⅵ 口試委員會審定書 ............................................................................... Ⅶ 中文摘要 ................................................................................................ 1 英文摘要 ................................................................................................ 3 第一章 緒 論 .................................................................................... 6 1.1 前 言 ............................................................................. 6 1.2 文獻整理 ......................................................................... 7 1.2.1 醬油 ...................................................................... 7 1.2.1.1 大 豆 ........................................................ 8 1.2.1.2 小 麥 ...................................................... 10 1.2.1.3 食鹽水 ...................................................... 11 1.2.1.4 我國國家標準之醬油規範 ...................... 12 1.2.1.5 醬油香氣成分 ………………………….. 13 1.2.2 醬油醪 ................................................................... 13 1.2.3 醬油粕 ................................................................... 15 1.2.4 醬油之快速釀造 ................................................... 16 1.2.5 醬油之低鹽化 ....................................................... 16 1.2.6 胜肽及胺基酸產品 ............................................... 19 1.2.6.1 蛋白酶 ...................................................... 19 1.2.6.2 大豆蛋白 .................................................. 19 1.2.6.3 血管收縮素轉化酶抑制胜肽 ………….. 25 1.3 研究目的 .......................................................................... 26 1.4 實驗架構 .......................................................................... 28 第二章 材料與方法 .............................................................................. 30 2.1 實驗材料 ........................................................................... 30 2.2 實驗方法 ........................................................................... 30 2.2.1 醬油粕之回收利用 ………………........................ 30 2.2.2 醬油醪水解液之製備 ............................................ 31 2.2.3 大豆蛋白水解液之製備 ........................................ 31 2.2.4 ㄧ般成分分析 ........................................................ 32 2.2.5 氯化鈉之定量 ........................................................ 33 2.2.6 脫鹽醬油粕之物性分析 ........................................ 34 2.2.7 醬油及水解液之相關參數測定 ............................ 35 2.2.8 醬油香氣成分分析 ……………………………… 37 2.2.9 血管收縮素轉化酶抑制活性測定 ........................ 37 第三章 結果與討論 .............................................................................. 38 3.1 醬油粕之一般成分及鹽分測定 ....................................... 38 3.2 脫鹽醬油粕之ㄧ般成分及鹽分測定 ............................... 39 3.3 脫鹽醬油粕之物性分析 ................................................... 41 3.4 利用醬油粕水洗後回收鹽水釀造醬油之經時變化 ....... 43 3.5 利用嫌氣發酵方式於不同溫度進行醬油醪水解 ........... 53 3.5.1 醬油醪水解液之相關參數經時變化 .................... 53 3.5.2 醬油醪水解液對ACE之抑制能力 ...................... 56 3.6 利用不同酵素進行大豆蛋白水解 ................................... 60 3.6.1 大豆蛋白水解液之相關參數經時變化 ................ 60 3.6.2 大豆蛋白水解液對ACE之抑制能力 .................. 64 第四章 結論及建議 .............................................................................. 67 參考文獻 .................................................................................................. 69 | |
dc.language.iso | zh-TW | |
dc.title | 醬油粕之回收利用及醬油醪和大豆蛋白水解之探討 | zh_TW |
dc.title | Utilization of recovered shoyu mash residue and studies on the hydrolysis of soy sauce koji and soy protein | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林子清,鐘玉明,黃健雄,蘇南維 | |
dc.subject.keyword | 醬油粕,醬油醪,大豆蛋白, | zh_TW |
dc.subject.keyword | shoyu mash residue,soy sauce koji,soy protein, | en |
dc.relation.page | 75 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-07-26 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。