Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25134
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃坤祥(Kuen-Shyang Hwang)
dc.contributor.authorLi-Hui Chengen
dc.contributor.author鄭禮輝zh_TW
dc.date.accessioned2021-06-08T06:03:12Z-
dc.date.copyright2007-08-02
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation[1] 黃坤祥,粉末冶金學,中華民國粉末冶金協會,第二版,2003。
[2] R. M. German, “Powder Injection Molding, Metal Powder Industries Federation”, Princeton, NJ, 1990.
[3] R. M. German and A. Bose, Injection Molding of Metals and Ceramics, “Metal Powder Industries Federation”, Princeton, NJ, 1997.
[4] Anonymous, “PM Automotive Parts Earn Design Excellence Awards”, Machine Design, 2006, pp. 52-53.
[5] G. F. Bocchini, “The New Iron Base Powders for Advanced Automotive PM Applications”, International Journal of Materials & Product Technology, 2000, pp. 172-192.
[6] R. Wick, “Injecting More METTLE Into P/M Designs”, Machine Design, 2003, pp. 43-50.
[7] J. Hoffman, “Injection Molding Simplifies Complex Metal Components”, Machine Design, 1999, pp. 52-55.
[8] K. M. Kulkarni and J. B. Kolts, “Recyclability of a Commerical MIM Feedstock”, The International Journal of Powder Metallurgy, 2002, Vol. 38, No. 6, pp. 43-48.
[9] L. H. Cheng and K. S. Hwang, “Molding Properties and Causes of Deterioration of Recycled MIM Feedstock”, 2006 Powder Metallurgy World Congress, 2006, pp. 215-216.
[10] R. M. German, “Wear Applications Offer Further Growth for PIM”, Metal Powder Report, 1999, Vol. 54, No. 6, pp. 24-28.
[11] K. M. Kulkarni, “Dimensional Precision of MIM Parts Under Production Conditions”, International Journal Powder Metallurgy, 1997, Vol. 33, No. 4, pp. 29-41.
[12] L. Kren, “NET-SHAPE metal parts in the shot”, Machine Design, 2006, pp. 48-50.
[13] D. Deming, ”Metal Injection Molding”, Advanced Materials & Processes, 2003, pp. 30-31.
[14] W. F. Smith, “Structure and Properties of Engineering Alloys”, 2nd edition, 1994, pp. 136.
[15] G. Krauss, “Principles of Heat Treatment of Steel”, 1979, pp. 150-154.
[16] H. Miura, T. H. Lim, and R. M. German, “Mechanical Properties of Injection Molded 4600 Steels”, Journal of the Japan Society of Powder and Powder Metallurgy, 1992, Vol. 39, No. 4, pp. 254-259.
[17] H. Miura, K.Urakami, S. Ando, and T. Honda, “Metal Injecton Molding of Prealloyed 4600 Fine Powder”, Journal of the Japan Society of Powder and Powder Metallurgy, 1993, Vol. 40, No. 4, pp. 388-392.
[18] E. A. Brandes and G. B. Brook, “Smithells Metals Reforence Book”, Butterworth Heinemann, Seventh edition, 1992, pp. 149, 264, 210, 262.
[19]謝宗宏,MIM-4650低合金鋼之機械性質,碩士論文,國立台灣大學材料科學與工程學研究所,1995。
[20] S. C. Yoo, J. Choi, and I. H. Moon, “Sintering and Properties of High Carbon and Mo-alloyed P/M Steel”, Powder Metallurgy International, 1991, Vol. 23, No. 4, pp. 216-220.
[21] K. S. Hwang and M. Y. Shiau, “Effect of Nickel on the Sintering Behavior of Fe-Ni Compacts Made From Composite and Elemental Powders”, Metallurgical and Materials Transactions B, 1996, Vol. 22, No. 6, pp. 203-211.
[22] 殳國俊,粉末射出成形高度合金鋼之研究,碩士論文,國立台灣大學材料科學與工程研究所,2001。
[23] T. Marcu, A. Molonari, G. Straffeloni, and S. Berg, “Tensile Properties of Vacuum Sintered Dual Phase Steels”, International Journal of Powder Metallurgy, 2004, Vol. 40, pp. 57-64.
[24] Anonymous, “New Focus on Chromium may Sidestep Alloy Cost Increases”, Metal-Powder Net, 2004, pp. 16-19.
[25] Mollinari, T. Bacci, P. Campestrini, M. Pellizzari, and B. Tesi, “Plasma Nitriding of Fe-Cr-Mo Sintered Steels”, Powder Metallurgy, 1999, Vol. 42, No. 3, pp. 119-125.
[26] H. Danninger, “Sinrering of Mo Alloyed P/M Steels Prepared from Elemental Powders (I. Sintering Temperature and Mechanical Properties)”, Powder Metallurgy International., 1992, Vol. 24, No. 2, pp. 73-79.
[27] H. Danninger, “Sinrering of Mo Alloyed P/M Steels Prepared from Elemental Powders (II. Mo Homogenization and Dimensional Behavior)”, Powder Metallurgy International, 1992, Vol. 24, No. 3, pp. 163-168.
[28] V. G. Rivlin, “Critical Review of Contitution of Carbon-Iron-Molybdenum system”, International Metals Reviews 30, 1985, pp. 109-124.
[29] R. E. Reed-Hill, Physcial Metallurgy Perinciple 3rd edition, PWS Pubikshing Company, Boston, 1994, pp. 679.
[30] D. A. Porter and K. E. Easterling, “Phase Transformations in Metals and Alloys”, CRC Press, Second Edition, 2004, pp. 382-436.
[31] G. Krauss and A. R. Marder, “The Morphology of Martensite in Iron Alloys”, Metallurgical Transactions, 1971, Vol. 2, pp. 2343.
[32] K. Mills, “Metallography and Microstructures”, Metals Handbook, American Society for Metals, 1985, Vol. 9, pp. 670-671.
[33] C. Lindberg, U. Engstrom, and P. Engdahl, “Sintered High Strength Materials”, Advances in Powder Metallurgy, 1992, Vol. 5, pp. 107-114.
[34] P. King and B. Lindsley, “Capabilities of Two Chromium Powder Metallurgy Steels or High Performance Applications at Conventional Sintering Temperatures”, Materials Science Forum, 2007, Vol. 534-536, pp. 653-656.
[35] M. Sulowski, A. Cias, H. Frydrych, J. Frydrych, I. Olszewska, R. Golen, and M. Sowa, “The Effect of Cooling Rate on the Structure and Mechanical Properties of Fe-3%Mn-(Cr)-(Mo)-C PM Steels”, Materials Science Forum, 2007, Vol. 534-536, pp. 757-760.
[36] M. Youseffim, C.S. Wright and F. M. Jeyacheya, “Effect of Content, Sintering Temperature, Density and Cooling Rate upon Properties of Prealloyed Fe-1.5Mo Powder”, Powder Metallurgy, 2000, Vol. 43, No. 3, pp. 270-274.
[37] J. Jang, Y. M. Jang, and Y.Z. Shen, “A Preliminary Study of the Development of 9Cr Fe-base ODS Alloys: The Effects of Minor Elements and Cooling Rate”, Materials Science Forum, 2007, Vol. 534-536, pp. 617-620.
[38] S. Anand, N. Verma, and A. Upadhyaya, “Effect of Sintering Temperature, Heat Treatment and Tempering on Hardness of SH737-2Cu-0.9C Sintered Samples”, 2006 Powder Metallurgy World Congress, 2006, pp. 555-556.
[39] V. Fedchun, M. Razdolsky, and M. Dilmore, ”Steel with High Strength and Toughness”, Advanced Materials & Processes, 2006, pp. 33-36.
[40] W. M. Carrison, “Ultrahigh-Strength Steels for Aerospace Applications”, Journal of Materials, 1990, pp. 20-23.
[41] J. M. Capus, “Sinter hardening looks ahead, Metal Powder Report”, 2000, Vol. 55, No. 3, pp. 19-21.
[42] W. B. James, “What is Sinter-Hardening?”, International Conference on Powder Metallurgy & Particulate Materials, 1998.
[43] B. Maroli, B. Sigurd, T. Peter, and U. Engstrom, “Sinter-Hardening and Heat Treatment of Materials Based on Astaloy CrM”, Höganäs AB, Sweden.
[44] E. Duchesne, G, L’esperance, and A. D. Rege, “Sinter Hardening and Hardenability”, International Journal Powder Metallurgy, 2000, Vol. 36, No. 1, pp. 49-60.
[45] H. G. Rutz, A. H. Graham, and A. B. Davala, “Sinter-Hardening P/M Steels”, International Conference on Powder Metallurgy & Particulate Materials, 1997.
[46] J. S. Artalejo, M. Campos, T. Marcu, and J.Torralba, “Modification of Low Alloyed Steels by Manganese Additions”, Materials Science Forum, 2007, Vol. 534-536, pp. 697-700.
[47] E. Gordo, B. Gomez, R. Gonzalez, and E. M. Ruiz-Navas, “Study for the Development of Fe-NbC Composites by Advanced PM Techniques”, Materials Science Forum, 2007, Vol. 534-536, pp. 637-640.
[48] M. Orban and R. L. Orban, “ Sintered Structural Cu-Ni-Mo-C Low Alloyed Steels with Small Niobium Additions”, Materials Science Forum, 2007, Vol. 534-536, pp. 725-728.
[49] B. Lindsley and T. Murphy, “Dimensional Precision in Sinter-Hardening PM Steels”, Materials Science Forum, 2007, Vol. 534-536, pp. 665-668.
[50] K. S. Hwang, M. W. Wu, F. C. Yen, and C. C. Sun, “Improvement in Microstructure Homogeneity of Sintered Compacts Through Powder Treatments and Alloy Designs”, Materials Science Forum, 2007, Vol. 534-536, pp. 537-540.
[51] M. W. Wu, K. S. Hwang, and K. S. Narasimhan, “Improvements in Microstructure Homogenization and Mechanical Properties of Diffusion-Alloyed Steel Compact by the Addition of Cr-Containing Powders”, Metallurgical and Materials Transactions A, 2006, Vol. 37A, pp. 2559-2567.
[52] 山中久彥,網澤榮二,橋本正明與明石恆和,應用液化氮氣之深冷處理,大阪府立工業技術研究所。
[53] T. Sourmail and C. Garcia-Mateo, “Critical assessment of models for predicting the Ms temperature of steels”, Computational Materials Science, 2005, pp. 323-334.
[54] 大和久重雄,S曲線,正言出版社,第210頁。
[55] D. T. Llewellyn and R. C. Hudd, STEELS, Butterworth Heinemann, Third Edition, pp. 12.
[56] J. R. Davis, “Heat Treating”, ASM handbook, 1991, Vol. 4, pp. 76-80.
[57] A. K. De, J. G. Speer, and D. K. Matlock, “Color Tint-Etching for Multiphase Steels”, Advanced Materials and Processes, 2003, pp. 27-30.
[58] K. Mills, “Metallography and Microstructures”, Metals Handbook, American Society for Metals, 1985, Vol. 9, pp. 135-162.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25134-
dc.description.abstract金屬射出成形(Metal Injection Molding, MIM)因適合製作形狀複雜之零件且成本低,故與傳統鋼鐵鑄鍛加工產品相比,有較大的競爭優勢。而其中又以燒結硬化型粉末冶金合金鋼最具有競爭力,此合金鋼不需後續熱處理製程,即可達到高硬度、高強度之機械性質。故本研究希望以燒結硬化型Fe-Ni-Cr-Mo成分為基礎,經過燒結、深冷處理與回火等製程後,獲得最佳的機械性質。
結果顯示,燒結後無深冷及回火的試片,其硬度可達約52HRC,抗拉強度約1900MPa,延展性約3%。經過液態氮深冷處理後,硬度可上升至55HRC,抗拉強度可增加至2000MPa以上,但其延展性下降至約1%。而若施以回火處理,可增加其延展性至約5%,而回火性質以180℃及200℃為回火溫度時,機械性質最佳,標準差亦最小。
本研究發現碳含量介於0.5wt%與0.6wt%之間時,可得最佳之抗拉強度,約2000MPa,密度約7.5g/cm3,過多的碳含量會使晶界析出碳化物,破裂面會轉換成劈裂面,機械性質也因此下降。研究結果亦顯示,冷卻速度較慢時,即使試片碳含量低,其晶界上也會析出碳化物,以3℃/min降溫時,碳含量為0.6wt%時晶界即析出碳化物,而以25℃/min降溫時,碳含量需高於0.8wt%才會析出碳化物。
zh_TW
dc.description.abstractMetal injection molding (MIM) process is superior in making parts with complicated shapes compared to the press-and-sinter process. When sinter-hardening steels, which can attain high hardness and high strength without quenching treatment after sintering, are used along with the MIM process, the process and products will become even more competitive. The objective of this study was thus to find suitable processing parameters and alloy compositions to improve the mechanical properties of the current MIM products.
To optimize the alloying, the effects of adding Ni, Cr and Mo on the mechanical properties were investigated. Different sintering temperatures and different tempering conditions were also studied. The effect of cryogenic treatment was employed to further improve the mechanical properties by transferring the retaining austenite to martensite.
The results show that parts after sintering can attain 52HRC hardness, 1900MPa tensile strength, and 3% elongation. After cryogenic treatment using liquid nitrogen, the hardness and tensile strength were further increased to 55HRC and 2000MPa, but the elongation was decreased to about 1%. After tempering, the elongation was increased to 5% and the standard deviations of mechanical properties were also improved. The optimum tempering conditions were 180℃ or 200℃, for 2 hours.
The results also show that the optiunm carbon content between 0.5 and 0.6wt%. The tensile strength thus attained was about 2000MPa. When the carbon content was excessive, and the cooling rate was slow, such as at a rate of 3℃/min, carbides would precipitate at the grain boundaries and brittle-type of fractures were observed. Thus, the mechanical properties were poor. But when a higher cooling rate of 25℃/min was used, carbide precipitation did not occur unless the carbon content was greater than 0.8wt%.
These results show that using the composition of Fe-8Ni-0.8Cr-0.8Mo-0.5C, good mechanical properties of 2000 MPa, 55HRc and 5 % elongation, can be attained using a cooling rate of 25℃/min and tempering at 180℃ for 2 Hrs. No need of quenching is required.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:03:12Z (GMT). No. of bitstreams: 1
ntu-96-R94527019-1.pdf: 32835677 bytes, checksum: 3534a7048b41dd6cb52bc405cfa6dd73 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
誌謝 I
Abstract II
摘要 IV
圖目錄 VIII
表目錄 XIV
第一章 文獻回顧 1
1.1碳的影響 3
1.2鎳的影響 4
1.3鉻的影響 6
1.4鉬的影響 7
1.5 麻田散鐵結構 9
1.6冷卻速率的影響 11
1.7燒結硬化合金鋼(Sinter-Hardening Steel) 12
1.8深冷處理的影響 13
第二章 實驗 14
2.1 實驗流程 14
2.2 原料 15
2.2.1 基礎粉 15
2.2.2 黏結劑 24
2.3 混合方式及混煉 25
2.4 成形 26
2.5 脫脂 28
2.5.1 溶劑脫脂 28
2.5.2 熱脫脂 29
2.6 燒結 29
2.7 成分分析 30
2.8 燒結密度的測量 30
2.9 機械性質的測試 30
2.10 金相製備 30
2.11 XRD分析 31
2.12 熱力學計算 32
2.13 測試儀器 32
第三章 實驗結果與討論 33
3.1 球磨影響 33
3.2各元素的影響 39
3.2.1鎳的影響 39
3.2.2 鉬的影響 47
3.2.3 鉻的影響 54
3.3製程參數的影響 61
3.3.1 燒結溫度的影響 61
3.3.2 不同回火溫度的影響 65
3.3.3 深冷處理的影響 67
3.3.4 試片深冷處理及回火對機械性質的影響 69
3.3.4.1 拉伸性質 69
3.3.4.2 衝擊性質 74
3.3.4.3 XRD分析 79
3.4 不同鐵粉的影響 82
3.5 不同碳含量的影響 88
3.6 冷卻速率的影響 90
3.7 冷卻速率對碳化物析出的影響 93
3.7.1 淬火 95
3.7.2 冷卻速率=25℃/min 100
3.7.3冷卻速率=9℃/min 105
3.7.4 冷卻速率=3℃/min 110
3.8 不同合金元素的影響 118
3.8.1 銅元素及不同不銹鋼粉與鎳粉的影響 118
3.8.2 M2高速鋼粉影響 120
3.8.3 Co影響 122
3.9 沃斯回火的影響 127
3.9.1 沃斯回火24小時 127
3.9.2 沃斯回火80小時 131
3.10 CCT曲線 135
第四章 結論 138
第五章 未來工作 140
參考文獻 141
dc.language.isozh-TW
dc.subject深冷處理zh_TW
dc.subject粉末冶金zh_TW
dc.subject碳化物zh_TW
dc.subject燒結硬化zh_TW
dc.subject金屬粉末射出成形zh_TW
dc.subjectpowder metallurgyen
dc.subjectcarbideen
dc.subjectMetal injection moldingen
dc.subjectsinter-hardening steelen
dc.subjectcryogenic treatmenten
dc.titleFe-Ni-Cr-Mo 燒結硬化型合金鋼製程及機械性質之改善zh_TW
dc.titleThe Improvement on Processes and Mechanical Properties of Fe-Ni-Cr-Mo Sinter-Hardening Steelsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee薛人愷(Ren-Kae Shiue),林招松(Chao-Sung Lin)
dc.subject.keyword金屬粉末射出成形,燒結硬化,深冷處理,碳化物,粉末冶金,zh_TW
dc.subject.keywordMetal injection molding,sinter-hardening steel,cryogenic treatment,carbide,powder metallurgy,en
dc.relation.page146
dc.rights.note未授權
dc.date.accepted2007-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
32.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved