請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25110完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐陽彥正 | |
| dc.contributor.author | Yhi Shiau | en |
| dc.contributor.author | 蕭毅 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:02:34Z | - |
| dc.date.copyright | 2007-07-30 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-25 | |
| dc.identifier.citation | Abagyan R. A. & Maiorov V. N., J. Biomol. Struct.Dynant. 5, 1267, 1988.
Abagyan R. A. & Maiorov V. N., J. Biomoi. Struct.Dynam. 6, 1045, 1989. Alexandrov N. N. & GIN N., (1994) Prol. Sci., 3, 866, 1994. Alexandrov N. N., Takahashi K. & Go N. (1992) J. Mol. Biol., 225, 5, 1992. Altschul S. F., Gish W., Miller W., Myers E. W., and Lipman D. J., 'Basic local alignment search tool,' J Mol Biol, vol. 215, pp. 403-10, Oct 5 1990. Artymiuk P. J., Rice D. W., Mitchell E. M. & Willett P., Pror. Eng., 4, 39, 1990. Artymiuk P. J., Bath P. A., Grindley H. M., Pepperrell C. A., Poirrette A. R., Rice D. W., Thorner D. A., Wild D. J., Willett P., Allen F. H. & Taylor R., J. Chem. Inf Comput. Sri., 32, 617, 1992a. Artymiuk P. J., Grindley H. M., Park J. E., Rice D. W. & Willett P. (1992b) FEBS Left. 303, 48, 1992b. Bachar O., Fischer D., Nussinov R. & Wolfson H., Prot. Eng. 6, 279, 1993. Bartlett G. J., Todd A. E., and Thornton J. M., 'Inferring protein function from structure', Methods Biochem Anal, vol. 44, pp. 387-407, 2003. Barakat M. T. & Dean P. M., J. Comput.-Aided Mol. Des., 4, 295, 1990. Barton G. J. & Sternberg M. J. E., J. Mol. Graph., 6, 190, 1988. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank, Nucleic Acids Res, 28(1): pp. 235-242, 2000. Bezdek JC, Pal MR, Keller J, Krisnapuram R. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing: Kluwer Academic Publishers, 792 p, 1999. Binkowski T. A., Adamian L., and Liang J., 'Inferring functional relationships of proteins from local sequence and spatial surface patterns', J Mol Biol, vol. 332, pp. 505-26, Sep 12 2003. Binkowski T. A., Freeman P., and Liang J., 'pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins,' Nucleic Acids Res, vol. 32, pp. W555-8, Jul 1 2004. Binkowski T. A., Naghibzadeh S., and Liang J., 'CASTp: Computed Atlas of Surface Topography of proteins,' Nucleic Acids Res, vol. 31, pp. 3352-5, Jul 1 2003. Brändén C-I, Tooze J. Introduction to protein structure. New York: Garland Pub.; xiv, 410 p., 1999. Brint A. T., Davies H. M., Mitchell E. M. & Willett P., J. Mol. Graph., 7, 48, 1989. Brown N. P., In Patterns in Protein Sequence and Structure (Edited by Taylor W. R.), Springer Series in Biophysics, Vol. 7, p. 127. Springer-Verlag, Heidelberg, 1992a. Brown N. P., Ph.D. Thesis, National Institute for Medical Research, Mill Hill, London, U.K., 1992b. Brown NP, Orengo CA, Taylor WR, A protein structure comparison methodology, Comput Chem, 20(3): pp. 359-380, 1996. Bystroff C., Thorsson V., and Baker D., “HMMSTR: a Hidden Markov for Local Sequence-Structure Correlations in Proteins”, J. Mol. Biol, vol. 301, pp. 173-190, 2000. Camoglu O., Kahveci T., and Singh A. K., 'Index-based similarity search for protein structure databases,' J Bioinform Comput Biol, vol. 2, pp. 99-126, Mar 2004. Campbell S. J., Gold N. D., Jackson R. M., and Westhead D. R., 'Ligand binding: functional site location, similarity and docking,' Curr Opin Struct Biol, vol. 13, pp. 389-95, Jun 2003. Campbell S. J. and Jackson R. M., 'Diversity in the SH2 domain family phosphotyrosyl peptide binding site', Protein Eng, vol. 16, pp. 217-27, Mar 2003. Can T, Wang YF. CTSS: A Robust and Efficient Method for Protein Structure Alignment Based on Local Geometrical and Biological Features. Proc IEEE Comput Soc Bioinform Conf, 2:169-179, 2003. Casari G., Sander C., and Valencia A., 'A method to predict functional residues in proteins', Nat Struct Biol, vol. 2, pp. 171-8, Feb 1995. Chang D. T., Weng Y. Z., Lin J. H., Hwang M. J., and Oyang Y. J., 'Protemot: prediction of protein binding sites with automatically extracted geometrical templates', Nucleic Acids Res, vol. 34, pp. W303-9, Jul 1 2006. Chang P-K, Chen C-C, Ouhyoung M., A Tool for Structure Alignment of Molecules, IEEE Sixth International Symposium on Multimedia Software Engineering - Special Session on Bioinformatics, pp. 354-361, 2004. Chen S. C., and Bahar I., 'Mining frequent patterns in protein structures: a study of protease families,' Bioinformatics, vol. 20 Suppl 1, pp. I77-I85, Aug 4 2004. Comin M., Guerra C., and Zanotti G., 'PROuST: a comparison method of three-dimensional structures of proteins using indexing techniques,' J Comput Biol, vol. 11, pp. 1061-72, 2004. Crowley M., Darden T., T. Cheatham, and D. Deerfield, 'Adventures in Improving the Scaling and Accuracy of a Parallel Molecular Dynamics Program', The Journal of Supercomputing, vol. 11, pp. 255-278, 1997. Ding D. F., Qian J. A. & Feng Z. K., Bull. Math. Bial., 56, 923, 1994. Fischer D., Bachar O., Nussinov R. & Wolfson H., J., Biomol. Strucr. D&am. 9, 769, 1992. Fischer D., Norel R., Wolfson H. & Nussinov R., Prot. Struct. Funct. Genet., 16, 218, 1993. Fischer D, Elofsson A, Rice D, Eisenberg D. Assessing the performance of fold recognition methods by means of a comprehensive benchmark. Pac Symp Biocomput, pp. 300-318, 1996. Frigui H, Krishnapuram R. A Robust Competitive Clustering Algorithm with Applications in Computer Vision, IEEE Trans Pattern Anal Mach Intell, 21(5): pp. 450-465, 1999. Gerstein M., Levitt M., Using iterative dynamic programming to obtain accurate pairwise and multiple alignments of protein structures, Proc Int Conf Intell Syst Mol Biol, 4: pp. 59-67, 1996. Gibrat JF, Madej T, Bryant SH., Surprising similarities in structure comparison. Curr Opin Struct Biol, 6(3): pp. 377-385, 1996. Godzik A., 'The structural alignment between two proteins: is there a unique answer?' Protein Sci, vol. 5, pp. 1325-38, Jul 1996. Goldsmith-Fischman S. and Honig B., 'Structural genomics: computational methods for structure analysis,' Protein Sci, vol. 12, pp. 1813-21, Sep 2003. Grindley H. M., Artymiuk P. J., Rice D. W. & Willett P., J. Mol. Biol. 229, 707, 1993. Hadwiger M. A., Prof. Eng. 7, 1283, 1994. Holm L., Ouzounis C., Sander C., Tuparev G. & Vriend G., Prot. Sci. 1, 1691, 1992. Holm L., & Sander C., J. Mol. Biol., 233, 123, 1993. Holm L, Sander C. Dali: a network tool for protein structure comparison. Trends Biochem Sci, 20(11): pp. 478-480, 1995. Holm L, Sander C., Mapping the protein universe, Science, 273(5275): pp. 595-603, 1996. Honzatko R. B., Acta Crystallogr. A42, 172, 1986. Hsu C. M., Chen C. Y., and Liu B. J., 'MAGIIC-PRO: detecting functional signatures by efficient discovery of long patterns in protein sequences,' Nucleic Acids Res, vol. 34, pp. W356-61, Jul 1 2006. Huang E. S., Rock E. P. & Subbiah S., Curr. Biol., 3, 740, 1993. Jain A. K., Murty M. N., and Flynn P. J., 'Data clustering: a review,' ACM Comput. Surv., vol. 31, pp. 264-323, 1999. Jonassen I., Eidhammer I., Conklin D., and Taylor W. R., 'Structure motif discovery and mining the PDB', Bioinformatics, vol. 18, pp. 362-7, Feb 2002. Jonassen I., Eidhammer I., and Taylor W. R., 'Discovery of local packing motifs in protein structures', Proteins, vol. 34, pp. 206-19, Feb 1 1999. Jung J, Lee B: Protein structure alignment using environmental profiles. Protein Eng, 13:535-543, 2000. Kabsch W., Acta Crystallogr. A34, 827, 1978. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers, 22(12): pp. 2577-2637, 1983. Karpen M. E., de Haseth P. L. & Neet K. E., Prof. Struct. Funct. Genet., 6, 155, 1989. KarSky S. K., Acta Crystsrallogr. A45, 208, 1989. Kawabata T, Nishikawa K, Protein structure comparison using the Markov transition model of evolution. Proteins, 41: pp. 108-122, 2000. Koehl P., Protein structure similarities. Curr Opin Struct Biol, 11(3): pp. 348-353, 2001. Lackner P, Koppensteiner WA, Domingues FS, Sippl MJ, Automated large scale evaluation of protein structure predictions, Proteins, Suppl 3: pp. 7-14, 1999. Lackner P, Koppensteiner WA, Sippl MJ, Domingues FS, ProSup: a refined tool for protein structure alignment. Protein Eng, 13(11): pp. 745-752, 2000. Laskowski R. A., Hutchinson E. G., Michie A. D., Wallace A. C., Jones M. L., and Thornton J. M., 'PDBsum: a Web-based database of summaries and analyses of all PDB structures', Trends Biochem Sci, vol. 22, pp. 488-90, Dec 1997. Laskowski R. A., Watson J. D., and J. M. Thornton J. M., 'From protein structure to biochemical function?', J Struct Funct Genomics, vol. 4, pp. 167-77, 2003. Lesk AJM., Comm. ACM 22, 219, 1979. Lesk AM. Protein architectur: a practical approach. Oxford England ; New York: IRL Press, xiv, 287 p., 1991. Lesk AM: Extraction of geometrically similar substructures: leastsquares and Chebyshev fitting and the difference distance matrix. Proteins, 33: pp. 320-328, 1998. Lessel U., & Schomburg D., Prof. Eng., 7, 1175, 1994. Levine M., Stuart D. & Williams J., Aclu Crvstallupr., A40, 600, 1984. Luo Y., Lai L., Xu X. & Tang Y., Prof. Eng. 6, 373, 1993. Ma B., Elkayam T., Wolfson H., and Nussinov R., 'Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces,' Proc Natl Acad Sci U S A, vol. 100, pp. 5772-7, May 13 2003. Matthews B. W. & Rossmann M. G., Methods Enzymol. 115, 397, 1985. Matthews B. W., Remington S. J., Griitter M. G. & Anderson W. F., J. Mol. Biol. 147, 545, 1981. May A. C. W., & Johnson M. S., Prot. Eng., 7, 475, 1994. McLachlan A. D., J. Mol. Biol. 128, 49, 1979. McLachlan A. D., Acfa Crystallogr. AJ, 871, 1982. Madej T, Gibrat JF, Bryant SH. Threading a database of protein cores, Proteins, 23(3): pp. 356-369, 1995. Martin A. C., 'PDBSprotEC: a Web-accessible database linking PDB chains to EC numbers via SwissProt,' Bioinformatics, vol. 20, pp. 986-8, Apr 12 2004. Mitchell E. M., Artymiuk P. J., Rice D. W. & Willett P., J. Mol. Biol. 212, 151, 1989. Muirhead H., Cox J. M., Mazzarella L. & Perutz M. F., J. Mol. Biol. 28, 117, 1967. Murthy M. R. N., FEBS Letf. 168, 97, 1984. Murzin A. G., Brenner S. E., Hubbard T., and Chothia C., 'SCOP: a structural classification of proteins database for the investigation of sequences and structures,' J Mol Biol, vol. 247, pp. 536-40, Apr 7 1995. Najmanovich R. J., Torrance J. W., and Thornton J. M., 'Prediction of protein function from structure: insights from methods for the detection of local structural similarities,' Biotechniques, vol. 38, pp. 847, 849, 851, Jun 2005. Needleman SB, Wunsch CD., A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol, 48(3): pp. 443-453, 1970. Nishikawa K. & Ooi T., J. Theor. Biol., 43, 351, 1974. Nussinov R. & Wolfson H. J., Proc. Natl. Acad. Sci., USA 88, 10495, 1991. Orengo C. A., Brown N. P. & Taylor W. R., Prot.Strucr. Funct. Genet., 14, 139, 1992. Orengo C. A. & Taylor W. R., J. Mol. Biol. 233, 488, 1993. Orengo C., Classification of protein folds, Curr Opin Struct Biol, 4(3): pp. 429-440, 1994. Orengo C. A., Todd A. E., and Thornton J. M., 'From protein structure to function', Curr Opin Struct Biol, vol. 9, pp. 374-82, Jun 1999. Padlan E. A. & Davies D. R., Proc. Nat/. Acad. Sci., USA 72, 819, 1975. Pal D. and Eisenberg D., 'Inference of protein function from protein structure,' Structure, vol. 13, pp. 121-30, Jan 2005. Porter C. T., Bartlett G. J., and Thornton J. M., 'The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data,' Nucleic Acids Res, vol. 32, pp. D129-33, Jan 1 2004. Rackovsky S. & Scheraga H. A., Macromolecules, 11, 1168, 1978. Rackovsky S. & Scheraga H. A., Macromolecules, 13, 1440, 1980. Rackovsky S. & SCheraga H. A., AU. Chem. Res. 17, 209, 1984. Rackovsky R., Prof. Sfruct. Funcr. Gener., 7, 378, 1990. Rao S. T. & Rossmann M. G.., J. Mol. Biol., 76, 241, 1973. Rawlings C. J., Taylor W. R., Nyakairu J., Fox J. & Sternberg M. J. E., J. Mol. Graph., 3, 151, 1985. Reddy B. V., Li W. W., Shindyalov I. N., and Bourne P. E., 'Conserved key amino acid positions (CKAAPs) derived from the analysis of common substructures in proteins,' Proteins, vol. 42, pp. 148-63, Feb 1 2001. Remington S. J. & Matthews B. W., Proc. Narl. Acad. Sci., USA 75, 2180, 1978. Remington S. J. & Matthews B. W., J. Mol. Biol. 140, 77, 1980. Richards F. M. & Kundrot C. E., Pro/. Srruct. Funct. Genet., 3, 71, 1988. Rose J. & Eisenmenger F., J. Mol. Enol. 32, 340, 1991. Rossmann M. G. & Argos P., J., Biol. Chem., 250, 7525, 1975. Rossmann M. G. & Argos P., J., Mol. Biol., 105, 7, 1976. Rufino S. D. & Blundell T. L., J. Comput.-Aided Mol. Design 8, 5, 1994. Russell R. B. & Barton G. J., Prot. Swuct. Funcr. Gener., 14, 309, 1992. Sali A. & Blundell T. L., J. Mol. Biol., 212, 403, 1990. Saqi M. A.and Sternberg M. J., 'Identification of sequence motifs from a set of proteins with related function,' Protein Eng, vol. 7, pp. 165-71, Feb 1994. Schulz G. E., J. Mol. Biol., 138, 335, 1980. Shih ES, Hwang MJ, Protein structure comparison by probability-based matching of secondary structure elements, Bioinformatics, 19(6): pp. 735-741, 2003. Shin J. M.and Cho D. H., 'PDB-Ligand: a ligand database based on PDB for the automated and customized classification of ligand-binding structures,' Nucleic Acids Res, vol. 33, pp. D238-41, Jan 1 2005. Shindyalov IN, Bourne PE, Protein structure alignment by incremental combinatorial extension (CE) of the optimal path, Protein Eng., 11(9): pp. 739-747, 1998. Sitbon E. and Pietrokovski S., 'Occurrence of protein structure elements in conserved sequence regions,' BMC Struct Biol, vol. 7, p. 3, 2007. Smith T. F. &Waterman M. S., J. Mol. Biol., 147, 195, 1981. Subbarao N. & Haneef I.., Prof. Eng. 4, 877, 1991. Subbiah S, Laurents DV, Levitt M. Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core. Curr Biol, 3(3): pp. 141-148, 1993. Sutcliffe M. J.. Haneef I.. Carney D. & Blundell T. L., Prot. Eng. 1, 377, 1987. Suyama M, Matsuo Y, Nishikawa K: Comparison of protein structures using 3D-profile alignment. J Mol Evol, 44:S163-S173, 1997. Szustakowski JD, Weng ZP: Protein structure alignment using a genetic algorithm. Proteins, 38: pp. 428-440, 2000. Taylor W. R., J. Mol. Et, ol., 28, 161, 1988. Tavlor W. R. & Orenao C. A., J. Mol. Biol. 208. I., 1989b. Taylor W. R.. Flores 7. P. & Orengo C. A., Prot. Sci., 3, 1858, 1994. Taylor WR. Protein structure comparison using iterated double dynamic programming, Protein Sci, 8(3): pp. 654-665, 1999. Vriend G, Sander C, Detection of common three-dimensional substructures in proteins, Proteins, 11(1): pp. 52-58, 1991. Whisstock J. C., and Lesk A. M., 'Prediction of protein function from protein sequence and structure,' Q Rev Biophys, vol. 36, pp. 307-40, Aug 2003. Wolfson HJ, Rigoutsos I. Geometric hashing: an overview. IEEE Comput Sci Eng, 4(4):10-21., 1997. Wu TD, Schmidler SC, Hastie T, Brutlag DL: Regression analysis of multiple protein structures. J Comput Biol, 5: pp. 585-595, 1998. Yang AS, Honig B: An integrated approach to the analysis and modeling of protein sequences and structures. I. Protein structural alignment and a quantitative measure for protein structural distance. J Mol Biol, 301: pp. 665-678, 2000. Yee D. P. & Dill K. A., Prof. Sci. 2, 884, 1993. Yuan X., Bystroff C., “Non-sequential structure-based alignments reveal topology-independent core packing arrangements in proteins”, Bioinformatics, vol. 21, pp. 1010-1019, 2005. Zhang Z. Iterative point matching for registration of free-form curves and surfaces, Int J Comput Vision, 13(2): pp. 119-152, 1994. Zhu J, Weng Z. FAST: a novel protein structure alignment algorithm. Proteins, 58(3): pp. 618-627, 2005. Zintzaras E.. Brown N. P. & Kowald A., CABIOS, 10. I263, 1994. Zuker, M., and Somorjai,R.L. : “The alignment of protein structures in three dimensions.” Bull. Math. Biol., 51, pp. 55-78, 1989. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25110 | - |
| dc.description.abstract | 本篇論文是提出以球模型編碼為基礎,快速索引蛋白質結構比對(Protein Structure Comparison)的一個方法論。首先我們會介紹先前之研究:以橢球模型編碼為基礎,進行蛋白質結構比對的一個方法論;EMPSC (Ellipsoidal Model for Protein Structure Comparison)方法論。這是一個兩階層的蛋白質結構比對方法,以二級結構為出發點,嘗試去解決其他方法的缺點並提出蛋白質結構區域比對的能力。進一步地,我們利用EMPSC 的區域比對的能力去嘗試偵測區域結構一致性(Structure Conservation). 在實驗結果中,我們觀察有找出區域對應結構大小不一致且極為分散之問題。後來我們利用NRS (Neighborhood Residues Sphere)的觀念去重新做此偵測區域結構一致性之問題,這獲得了良好的結果且解決結構大小不一致之問題。最後為了增進比對之速度,我們提出了以NRS球模型為基礎,對胺基酸周圍區域結構(10 Å)做編碼,進而快速索引蛋白質結構比對。由實驗觀察得知,我們的方法:ESC (Environmental Signature Cluster),具有大量蛋白質結構資料庫搜尋(Search)之能力與蛋白質區域結構比對之能力,將可進一步快速提供整個蛋白質資料庫之結構挖掘(Structure Mining)的可能性。 | zh_TW |
| dc.description.abstract | This thesis proposes a new method for PSC (Protein Structure Comparison) based on encoding and fast indexing of sphere model. At first, we try to create a fast PSC tool, EMPSC (Ellipsoidal Model for Protein Structure Comparison), hope to solve some drawbacks of other algorithms and provide an abililty of local alignment. Second, we apply the local alignment capability of EMPSC to try to detect structure conservation. We encounter the problem of variable size of finding local alignment region, third, so we apply NRS (Neighborhood Residues Sphere) concept to fix a size (10 Å) of local alignment region. From NRS sequence-structure clustering and comparisons, we also try to detect structure conservation. The applications using these algorithms are proven workable in the same EC class. At last, via the training of NRS related experiments, we propose another new ESC (Environmental Signature Cluster) PSC method. Try to provide an indexing methodology in three-dimensional geometry of protein local structure, let this method process the capability of massive database search and local alignment finding. The ESC method has fast provided the probability of mining structure conservation for whole PDB database.
EMPSC:a fast PSC tool based on ellipsoidal model First, we propose a new method EMPSC for the well-known PSC (Protein Structure Comparison) problems. The proposed method EMPSC is a protein structural alignment algorithm based on ellipsoidal model abstraction. We segment the protein 3D structure into two different kinds of structures, including Secondary Structure Elements recognized by DSSP [Kabsch 1983] and other coil/loop structures. These SSEs (Secondary Structure Elements) will be the initial alignment center for obtaining the transformation coordinate systems. Different heuristic filters and geometric hashing based global alignment estimation are used for quick finding better initial alignments. In the refined alignment stage of analysis, a standard refinement algorithm is invoked to fine-tune the alignment outputted by the first stage. Our experimental results reveal that EMPSC generally achieves comparable accuracy and better performance in comparison with the existing PSC algorithms. Moreover, we analyzed the factors that affect the EMPSC performance and SSE-based PSC algorithms. Further investigation in multiple protein structure comparison and local structure comparison will be continued. ESC:another faster PSC tool based on sphere model Second, in this paper, our proposed method, Environmental Signature Cluster method (ESC), uses residues environmental signature based on Neighborhood Residues Sphere (NRS) concept to index three-dimensional geometry of protein local structure. With NRS local geometry indexing, we digitize protein structure into pieces of environmental signature of NRS which makes our method can process massive database search and local alignment finding, whatever one-against-all protein comparisons. So far, ESC can provide the similarity degree among proteins quickly. However, ESC method currently is very good for constraint local structure alignment and applying this fast method in one-to-all PDB (Protein Data Bank) comparison is workable. In average, we can output alignment result about 15 minutes while randomly selecting 50 protein chains to test one-against-all whole PDB search. The experimental results reveal that our proposed method possesses the capability of massive database search and fits for local structure identification and local structure conservation discovery. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:02:34Z (GMT). No. of bitstreams: 1 ntu-96-D87526004-1.pdf: 3028176 bytes, checksum: 9c635755adf7ba4234897cfcbdef15e9 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Contents
CHAPTER 1 INTRODUCTION 1 CHAPTER 2 SURVEY OF RELATED WORKS 9 2.1 INTRODUCTION OF BACKGROUND KNOWLEDGE 10 2.2 INTRODUCTION OF RELATED WORKS 19 CHAPTER 3 METHODS 29 3.1 EMPSC ALGORITHM 30 3.2 ESC ALGORITHM 39 3.3 AN APPLICATION WITH THE EMPSC ALGORITHM AND BASED ON NRS CONCEPT 48 CHAPTER 4 RESULTS 57 4.1 EXPERIMENTS OF EMPSC 57 4.1.1 One-against-all search for structural neighbors 57 4.1.2 10 difficult cases 59 4.1.3 Special cases in global alignment – dissimilar protein comparisons 60 4.2 EXPERIMENTS OF ESC 61 4.2.1 One-against-all protein structure comparison 62 4.2.2 Functional group proteins 71 4.3 EXPERIMENTS OF DETECTING STRUCTURE CONSERVATION WITH THE EMPSC ALGORITHM AND BASED ON NRS CONCEPT 76 4.3.1 EMPSC Approach 78 4.3.2 Based on NRS Concept 79 CHAPTER 5 DISCUSSION 81 5.1 DISCUSSION OF EMPSC 81 5.2 DISCUSSION OF ESC 85 5.3 DISCUSSION OF DETECTING STRUCTURE CONSERVATION WITH THE EMPSC ALGORITHM AND BASED ON NRS CONCEPT 87 CHAPTER 6 CONCLUSION 91 | |
| dc.language.iso | en | |
| dc.subject | EMPSC (Ellipsoidal Model for Protein Structure Comparison) | zh_TW |
| dc.subject | 蛋白質結構比對(Protein Structure Comparison) | zh_TW |
| dc.subject | 結構一致性(Structure Conservation) | zh_TW |
| dc.subject | NRS (Neighborhood Residues Sphere) | zh_TW |
| dc.subject | ESC (Environmental Signature Cluster) | zh_TW |
| dc.subject | 結構挖掘(Structure Mining) | zh_TW |
| dc.subject | EMPSC (Ellipsoidal Model for Protein Structure Comparison) | en |
| dc.subject | geometric hashing | en |
| dc.subject | ESC (Environmental Signature Cluster) | en |
| dc.subject | NRS (Neighborhood Residues Sphere) | en |
| dc.subject | structure conservation | en |
| dc.subject | PSC (Protein Structure Comparison) | en |
| dc.title | 以球模型編碼快速索引蛋白質結構比對 | zh_TW |
| dc.title | Protein Structure Comparison Based on Encoding and Fast Indexing of Sphere Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 黃乾綱 | |
| dc.contributor.oralexamcommittee | 許聞廉,歐陽明,黃明經,趙坤茂 | |
| dc.subject.keyword | 蛋白質結構比對(Protein Structure Comparison),EMPSC (Ellipsoidal Model for Protein Structure Comparison),結構一致性(Structure Conservation),NRS (Neighborhood Residues Sphere),ESC (Environmental Signature Cluster),結構挖掘(Structure Mining), | zh_TW |
| dc.subject.keyword | PSC (Protein Structure Comparison),EMPSC (Ellipsoidal Model for Protein Structure Comparison),structure conservation,NRS (Neighborhood Residues Sphere),ESC (Environmental Signature Cluster),geometric hashing, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
