Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25093
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉秀慧
dc.contributor.authorWan-Jen Yangen
dc.contributor.author楊婉楨zh_TW
dc.date.accessioned2021-06-08T06:02:07Z-
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citation[1] C. M. Lee, S. N. Lu, C. S. Changchien, C. T. Yeh, T. T. Hsu, J. H. Tang, J. H. Wang, D. Y. Lin, C. L. Chen, and W. J. Chen, 'Age, gender, and local geographic variations of viral etiology of hepatocellular carcinoma in a hyperendemic area for hepatitis B virus infection,' Cancer, vol. 86, pp. 1143-50, Oct 1 1999.
[2] M. W. Yu, Y. C. Yang, S. Y. Yang, S. W. Cheng, Y. F. Liaw, S. M. Lin, and C. J. Chen, 'Hormonal markers and hepatitis B virus-related hepatocellular carcinoma risk: a nested case-control study among men,' J Natl Cancer Inst, vol. 93, pp. 1644-51, Nov 7 2001.
[3] M. W. Yu, S. W. Cheng, M. W. Lin, S. Y. Yang, Y. F. Liaw, H. C. Chang, T. J. Hsiao, S. M. Lin, S. D. Lee, P. J. Chen, C. J. Liu, and C. J. Chen, 'Androgen-receptor gene CAG repeats, plasma testosterone levels, and risk of hepatitis B-related hepatocellular carcinoma,' J Natl Cancer Inst, vol. 92, pp. 2023-8, Dec 20 2000.
[4] F. Henkler, J. Hoare, N. Waseem, R. D. Goldin, M. J. McGarvey, R. Koshy, and I. A. King, 'Intracellular localization of the hepatitis B virus HBx protein,' J Gen Virol, vol. 82, pp. 871-82, Apr 2001.
[5] H. J. Han, E. Y. Jung, W. J. Lee, and K. L. Jang, 'Cooperative repression of cyclin-dependent kinase inhibitor p21 gene expression by hepatitis B virus X protein and hepatitis C virus core protein,' FEBS Lett, vol. 518, pp. 169-72, May 8 2002.
[6] A. Siddiqui, S. Jameel, and J. Mapoles, 'Expression of the hepatitis B virus X gene in mammalian cells,' Proc Natl Acad Sci U S A, vol. 84, pp. 2513-7, Apr 1987.
[7] N. Schek, R. Bartenschlager, C. Kuhn, and H. Schaller, 'Phosphorylation and rapid turnover of hepatitis B virus X-protein expressed in HepG2 cells from a recombinant vaccinia virus,' Oncogene, vol. 6, pp. 1735-44, Oct 1991.
[8] M. Forgues, A. J. Marrogi, E. A. Spillare, C. G. Wu, Q. Yang, M. Yoshida, and X. W. Wang, 'Interaction of the hepatitis B virus X protein with the Crm1-dependent nuclear export pathway,' J Biol Chem, vol. 276, pp. 22797-803, Jun 22 2001.
[9] H. S. Chen, S. Kaneko, R. Girones, R. W. Anderson, W. E. Hornbuckle, B. C. Tennant, P. J. Cote, J. L. Gerin, R. H. Purcell, and R. H. Miller, 'The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks,' J Virol, vol. 67, pp. 1218-26, Mar 1993.
[10] J. A. Kemppainen, M. V. Lane, M. Sar, and E. M. Wilson, 'Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones,' J Biol Chem, vol. 267, pp. 968-74, Jan 15 1992.
[11] J. Benn, F. Su, M. Doria, and R. J. Schneider, 'Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-regulated and c-Jun N-terminal mitogen-activated protein kinases,' J Virol, vol. 70, pp. 4978-85, Aug 1996.
[12] H. F. Maguire, J. P. Hoeffler, and A. Siddiqui, 'HBV X protein alters the DNA binding specificity of CREB and ATF-2 by protein-protein interactions,' Science, vol. 252, pp. 842-4, May 10 1991.
[13] I. Haviv, M. Shamay, G. Doitsh, and Y. Shaul, 'Hepatitis B virus pX targets TFIIB in transcription coactivation,' Mol Cell Biol, vol. 18, pp. 1562-9, Mar 1998.
[14] M. J. Bouchard, L. H. Wang, and R. J. Schneider, 'Calcium signaling by HBx protein in hepatitis B virus DNA replication,' Science, vol. 294, pp. 2376-8, Dec 14 2001.
[15] D. J. Barton and J. B. Flanegan, 'Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C,' J Virol, vol. 71, pp. 8482-9, Nov 1997.
[16] C. Tarn, S. Lee, Y. Hu, C. Ashendel, and O. M. Andrisani, 'Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes,' J Biol Chem, vol. 276, pp. 34671-80, Sep 14 2001.
[17] E. Lara-Pezzi, S. Roche, O. M. Andrisani, F. Sanchez-Madrid, and M. Lopez-Cabrera, 'The hepatitis B virus HBx protein induces adherens junction disruption in a src-dependent manner,' Oncogene, vol. 20, pp. 3323-31, Jun 7 2001.
[18] D. Y. Yu, H. B. Moon, J. K. Son, S. Jeong, S. L. Yu, H. Yoon, Y. M. Han, C. S. Lee, J. S. Park, C. H. Lee, B. H. Hyun, S. Murakami, and K. K. Lee, 'Incidence of hepatocellular carcinoma in transgenic mice expressing the hepatitis B virus X-protein,' J Hepatol, vol. 31, pp. 123-32, Jul 1999.
[19] C. M. Kim, K. Koike, I. Saito, T. Miyamura, and G. Jay, 'HBx gene of hepatitis B virus induces liver cancer in transgenic mice,' Nature, vol. 351, pp. 317-20, May 23 1991.
[20] B. K. Wu, C. C. Li, H. J. Chen, J. L. Chang, K. S. Jeng, C. K. Chou, M. T. Hsu, and T. F. Tsai, 'Blocking of G1/S transition and cell death in the regenerating liver of Hepatitis B virus X protein transgenic mice,' Biochem Biophys Res Commun, vol. 340, pp. 916-28, Feb 17 2006.
[21] H. Faus and B. Haendler, 'Post-translational modifications of steroid receptors,' Biomed Pharmacother, vol. 60, pp. 520-8, Nov 2006.
[22] J. Prescott and G. A. Coetzee, 'Molecular chaperones throughout the life cycle of the androgen receptor,' Cancer Lett, vol. 231, pp. 12-9, Jan 8 2006.
[23] S. Kousteni, T. Bellido, L. I. Plotkin, C. A. O'Brien, D. L. Bodenner, L. Han, K. Han, G. B. DiGregorio, J. A. Katzenellenbogen, B. S. Katzenellenbogen, P. K. Roberson, R. S. Weinstein, R. L. Jilka, and S. C. Manolagas, 'Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity,' Cell, vol. 104, pp. 719-30, Mar 9 2001.
[24] P. Chieffi, A. Kisslinger, A. A. Sinisi, C. Abbondanza, and D. Tramontano, '17beta-estradiol-induced activation of ERK1/2 through endogenous androgen receptor-estradiol receptor alpha-Src complex in human prostate cells,' Int J Oncol, vol. 23, pp. 797-801, Sep 2003.
[25] Y. C. Toh, 'Effect of neonatal castration on liver tumor induction by N-2-fluorenylacetamide in suckling BALB/c mice,' Carcinogenesis, vol. 2, pp. 1219-21, 1981.
[26] S. D. Vesselinovitch, L. Itze, N. Mihailovich, and K. V. Rao, 'Modifying role of partial hepatectomy and gonadectomy in ethylnitrosourea-induced hepatocarcinogenesis,' Cancer Res, vol. 40, pp. 1538-42, May 1980.
[27] B. J. Long, D. N. Grigoryev, I. P. Nnane, Y. Liu, Y. Z. Ling, and A. M. Brodie, 'Antiandrogenic effects of novel androgen synthesis inhibitors on hormone-dependent prostate cancer,' Cancer Res, vol. 60, pp. 6630-40, Dec 1 2000.
[28] J. T. Isaacs, 'Relationship between tumor size and curability of prostatic cancer by combined chemo-hormonal therapy in rats,' Cancer Res, vol. 49, pp. 6290-4, Nov 15 1989.
[29] D. Chen, P. E. Pace, R. C. Coombes, and S. Ali, 'Phosphorylation of human estrogen receptor alpha by protein kinase A regulates dimerization,' Mol Cell Biol, vol. 19, pp. 1002-15, Feb 1999.
[30] D. Y. Lin, H. I. Fang, A. H. Ma, Y. S. Huang, Y. S. Pu, G. Jenster, H. J. Kung, and H. M. Shih, 'Negative modulation of androgen receptor transcriptional activity by Daxx,' Mol Cell Biol, vol. 24, pp. 10529-41, Dec 2004.
[31] H. K. Lin, L. Wang, Y. C. Hu, S. Altuwaijri, and C. Chang, 'Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase,' Embo J, vol. 21, pp. 4037-48, Aug 1 2002.
[32] L. J. Blok, P. E. de Ruiter, and A. O. Brinkmann, 'Androgen receptor phosphorylation,' Endocr Res, vol. 22, pp. 197-219, Aug 1996.
[33] Z. X. Zhou, J. A. Kemppainen, and E. M. Wilson, 'Identification of three proline-directed phosphorylation sites in the human androgen receptor,' Mol Endocrinol, vol. 9, pp. 605-15, May 1995.
[34] V. Georget, B. Terouanne, S. Lumbroso, J. C. Nicolas, and C. Sultan, 'Trafficking of androgen receptor mutants fused to green fluorescent protein: a new investigation of partial androgen insensitivity syndrome,' J Clin Endocrinol Metab, vol. 83, pp. 3597-603, Oct 1998.
[35] Z. Guo, B. Dai, T. Jiang, K. Xu, Y. Xie, O. Kim, I. Nesheiwat, X. Kong, J. Melamed, V. D. Handratta, V. C. Njar, A. M. Brodie, L. R. Yu, T. D. Veenstra, H. Chen, and Y. Qiu, 'Regulation of androgen receptor activity by tyrosine phosphorylation,' Cancer Cell, vol. 10, pp. 309-19, Oct 2006.
[36] M. Vojtechova, F. Senigl, E. Sloncova, and Z. Tuhackova, 'Regulation of c-Src activity by the expression of wild-type v-Src and its kinase-dead double Y416F-K295N mutant,' Arch Biochem Biophys, vol. 455, pp. 136-43, Nov 15 2006.
[37] S. Chen, Y. Xu, X. Yuan, G. J. Bubley, and S. P. Balk, 'Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1,' Proc Natl Acad Sci U S A, vol. 103, pp. 15969-74, Oct 24 2006.
[38] T. J. Yeatman, 'A renaissance for SRC,' Nat Rev Cancer, vol. 4, pp. 470-80, Jun 2004.
[39] M. A. Snyder, J. M. Bishop, J. P. McGrath, and A. D. Levinson, 'A mutation at the ATP-binding site of pp60v-src abolishes kinase activity, transformation, and tumorigenicity,' Mol Cell Biol, vol. 5, pp. 1772-9, Jul 1985.
[40] P. L. Schwartzberg, 'The many faces of Src: multiple functions of a prototypical tyrosine kinase,' Oncogene, vol. 17, pp. 1463-8, Sep 17 1998.
[41] R. Roskoski, Jr., 'Src kinase regulation by phosphorylation and dephosphorylation,' Biochem Biophys Res Commun, vol. 331, pp. 1-14, May 27 2005.
[42] Y. Fukami, T. Nagao, T. Iwasaki, and K. Sato, 'Inhibition and activation of c-Src: the head and tail of a coin,' Pharmacol Ther, vol. 93, pp. 263-70, Feb-Mar 2002.
[43] M. C. Frame, 'Newest findings on the oldest oncogene; how activated src does it,' J Cell Sci, vol. 117, pp. 989-98, Mar 1 2004.
[44] T. Masaki, M. Okada, Y. Shiratori, W. Rengifo, K. Matsumoto, S. Maeda, N. Kato, F. Kanai, Y. Komatsu, M. Nishioka, and M. Omata, 'pp60c-src activation in hepatocellular carcinoma of humans and LEC rats,' Hepatology, vol. 27, pp. 1257-64, May 1998.
[45] T. Masaki, M. Okada, M. Tokuda, Y. Shiratori, O. Hatase, M. Shirai, M. Nishioka, and M. Omata, 'Reduced C-terminal Src kinase (Csk) activities in hepatocellular carcinoma,' Hepatology, vol. 29, pp. 379-84, Feb 1999.
[46] Y. Ito, H. Kawakatsu, T. Takeda, M. Sakon, H. Nagano, T. Sakai, E. Miyoshi, K. Noda, M. Tsujimoto, K. Wakasa, M. Monden, and N. Matsuura, 'Activation of c-Src gene product in hepatocellular carcinoma is highly correlated with the indices of early stage phenotype,' J Hepatol, vol. 35, pp. 68-73, Jul 2001.
[47] T. Masaki, M. Tokuda, Y. Shiratori, M. Shirai, K. Matsumoto, M. Nishioka, and M. Omata, 'A possible novel src-related tyrosine kinase in cancer cells of LEC rats that develop hepatocellular carcinoma,' J Hepatol, vol. 32, pp. 92-9, Jan 2000.
[48] C. M. Chiu, S. H. Yeh, P. J. Chen, T. J. Kuo, C. J. Chang, P. J. Chen, W. J. Yang, and D. S. Chen, 'Hepatitis B virus X protein enhances androgen receptor-responsive gene expression depending on androgen level,' Proc Natl Acad Sci U S A, vol. 104, pp. 2571-8, Feb 20 2007.
[49] T. Schindler, F. Sicheri, A. Pico, A. Gazit, A. Levitzki, and J. Kuriyan, 'Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor,' Mol Cell, vol. 3, pp. 639-48, May 1999.
[50] K. Parang, J. H. Till, A. J. Ablooglu, R. A. Kohanski, S. R. Hubbard, and P. A. Cole, 'Mechanism-based design of a protein kinase inhibitor,' Nat Struct Biol, vol. 8, pp. 37-41, Jan 2001.
[51] T. Maruyama, Y. Yamamoto, A. Shimizu, H. Masuda, N. Sakai, R. Sakurai, H. Asada, and Y. Yoshimura, 'Pyrazolo pyrimidine-type inhibitors of SRC family tyrosine kinases promote ovarian steroid-induced differentiation of human endometrial stromal cells in vitro,' Biol Reprod, vol. 70, pp. 214-21, Jan 2004.
[52] J. L. Shenk, C. J. Fisher, S. Y. Chen, X. F. Zhou, K. Tillman, and L. Shemshedini, 'p53 represses androgen-induced transactivation of prostate-specific antigen by disrupting hAR amino- to carboxyl-terminal interaction,' J Biol Chem, vol. 276, pp. 38472-9, Oct 19 2001.
[53] Y. Qiao, H. Molina, A. Pandey, J. Zhang, and P. A. Cole, 'Chemical rescue of a mutant enzyme in living cells,' Science, vol. 311, pp. 1293-7, Mar 3 2006.
[54] L. Shatkina, S. Mink, H. Rogatsch, H. Klocker, G. Langer, A. Nestl, and A. C. Cato, 'The cochaperone Bag-1L enhances androgen receptor action via interaction with the NH2-terminal region of the receptor,' Mol Cell Biol, vol. 23, pp. 7189-97, Oct 2003.
[55] P. A. Cole, A. D. Courtney, K. Shen, Z. Zhang, Y. Qiao, W. Lu, and D. M. Williams, 'Chemical approaches to reversible protein phosphorylation,' Acc Chem Res, vol. 36, pp. 444-52, Jun 2003.
[56] H. C. Shen and G. A. Coetzee, 'The androgen receptor: unlocking the secrets of its unique transactivation domain,' Vitam Horm, vol. 71, pp. 301-19, 2005.
[57] Z. Zhu, R. R. Becklin, D. M. Desiderio, and J. T. Dalton, 'Identification of a novel phosphorylation site in human androgen receptor by mass spectrometry,' Biochem Biophys Res Commun, vol. 284, pp. 836-44, Jun 15 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25093-
dc.description.abstract台灣為 B型肝炎病毒感染高流行地區, B型肝炎病毒感染並且被視為在台灣引起肝癌 (Hepatocellular carcinoma, HCC) 的主要危險因子。此類由B型肝炎病毒造成的 HCC 有好發於男性之特徵,依據流行病學及動物肝癌模式指出男性荷爾蒙訊息傳導路徑活性的上升,可能為造成肝癌好發於男性的主要宿主因子 (host factor) 之一。由本實驗室先前研究得知 HBV所表現的病毒蛋白 HBx具有扮演男性荷爾蒙受體正向轉錄調控因子的能力,能夠在男性荷爾蒙 ligand存在下,促進於 promoter帶有 androgen-response element (ARE) 的基因轉錄活性。
為了進一步研究 HBx促進男性荷爾蒙受體轉錄活化的分子機制,論文著重在探討是否有重要的磷酸激酶參與在此調控路徑當中,依據下列幾點論述,本論文將著重在 c-Src kinase 活性相關之訊息傳遞路徑。首先,已知 HBx會藉由提升細胞內鈣離子濃度,活化 Pyk2 kinase而間接活化 c-Src kinase;第二,已知c-Src kinase的活性在許多肝癌組織中有活化情形;第三, c-Src kinase 扮演細胞質中許多訊息傳導路徑重要的開關,包括Ras/MEK/MAPK、JNK/JAK/STAT及PI3K/Akt等路徑,這些路徑有可能參與調控男性荷爾蒙受體的活性;最後,在近年來於 androgen-independent之前列腺癌的研究指出,活化的 c-Src kinase可透過刺激 AR特定位點的磷酸化程度,促使男性荷爾蒙受體的活化,進一步引起前列腺癌產生。
因此本論文主要研究的問題包括 (1) c-Src kinase 在 HBx 所促進的男性荷爾蒙受體轉錄活化中是否扮演重要角色﹔(2) c-Src kinase 的活性如何影響男性荷爾蒙受體的轉錄活性,包括 c-Src kinase 是否影響男性荷爾蒙受體進入細胞核內所必須的 dimerization 以及是否影響受體的 N-terminal transactivation domain (NTD) 之 transactivation 能力﹔(3)另外也將探討 c-Src kinase是否可能經由影響男性荷爾蒙受體的磷酸化修飾進而調控 AR 的轉錄活性之可能。
我們選用Huh-7及Hep3B 肝癌細胞株作為研究的實驗材料,結果分述如下。首先, HBx所促使之 AR的轉錄活化,在使用特定 c-Src kinase抑制劑 PP2以及利用 c-Src si-RNA技術降低 c-Src表現時均有顯著下降情形,此結果支持c-Src kinase參與在 HBx促進 AR轉錄活化當中,並且扮演重要的角色;然而活化態的 c-Src kinase似乎並不足夠提升 AR的活性。接著我們利用 mammalian two hybrid assay及 mammalian one hybrid assay分別研究 c-Src對於 AR進行轉錄活化的兩個重要步驟之影響,分別探討 c-Src於 AR N端及 C端的相互作用以及 AR NTD的轉錄活化過程中所扮演的角色。結果顯示雖然 HBx可提高 AR N端及 C端的相互作用以及 N端的轉錄的活性,但 c-Src kinase的活性主要貢獻於 AR N端的轉錄活化,而非 N端及 C端的相互作用。最後為了進一步研究c-Src kinase的活性如何影響 AR N端的轉錄活性,著重於其是否透過對 AR磷酸化修飾影響其活性。首先利用特定磷酸化抗體測定 AR Ser81磷酸化程度,結果指出HBx的存在會提高此位點的磷酸化,並且此位點磷酸化會受到c-Src kinase抑制劑 PP2所抑制。為了進一步研究 Ser81位點的磷酸化對於 HBx促進AR轉錄活性有何影響,我們將此位點進行點突變變成 alanine,發現相較於wild-type的 AR,此 mutant AR的轉錄活性下降約 30至 50%;有趣的是,我們發現相較於 wild type AR, AR S81A mutant在 HBx存在及有荷爾蒙刺激之下,蛋白質表現量明顯減少。
以上研究提供證據支持 c-Src kinase在 HBx促進 AR轉錄活性上扮演重要角色,並提出一些 c-Src參與此過程中可能涉及的分子機制,可支持未來將 c-Src kinase 列為預防和治療此類 HCC 之標靶基因之一的可能性。
zh_TW
dc.description.abstractTaiwan is a hyperendemic area for hepatitis B virus (HBV) infection, which is the major risk factor for HCC in Taiwan. HBV-related HCC has a higher prevalence in men than in women. Both the epidemiological study and the animal liver cancer models suggested that elevated activity of androgen signaling pathway is one of the major host factors attributing to such male gender preference. In our study the role of viral infection in the process, our lab has previously identified that the viral protein HBx can function as a positive transcriptional regulator of AR in activating the androgen response element (ARE)-containing target genes, in a ligand dependent manner.
To further investigate the molecular mechanisms underlying HBx enhanced AR activation, the specific aim of this study is to search for the critical kinase involved in the HBx-mediated AR transcriptional activation. In the current study we have focused on the c-Src kinase based on the reasons as followed. First, it was demonstrated that HBx can activate c-Src indirectly through the activation of calcium-dependent tyrosine kinase Pyk2. Secondly, c-Src activity was reported to be elevated in many primary HCC tissues. Thirdly, the c-Src kinase functions as a key switch turning on many cytoplasmic signaling cascades, including Ras/MEK/MAPK, JNK/JAK/STAT, and PI3K/Akt pathways. Some of them might regulate the AR activity. Finally, a recent study in androgen independent prostate cancers indicated that c-Src activation contributes to AR activation through stimulating specific AR phosphorylation.
The specific objectives we want to address in the current study are (1) the critical role of c-Src kinase in HBx-enhanced AR transcriptional activation; (2) the effects of c-Src kinase on two critical steps of ligand stimulated AR transactivation, including its N-C dimerization and the activation of its N-termial transcriptional domain (NTD); (3) the possible role of c-Src kinase in regulating AR transcriptional activation through modifying its phosphorylation.
Huh-7 and Hep3B hepatoma cell lines are used as assay system in this study and the results are summarized as followed. First, the HBx-enhanced AR transcriptional activation is significantly decreased both by specific c-Src kinase inhibitor PP2 and by the c-Src siRNA. The results support the critical role of c-Src in HBx enhanced AR transactivation. However, the active form of c-Src seems not sufficient to activate AR activity. Secondly, we have investigated the effect of c-Src both on the AR N/C interaction by mammalian two hybrid assay system, and on the transcriptional activity of AR NTD by mammalian one hybrid assay system. The results indicated that although HBx can enhance both AR N-C interaction and AR NTD activity, c-Src activity is mainly contributing to enhance the transcriptional activity of AR NTD rather than the AR N-C interaction. Finally, to study the effect of c-Src in regulating AR phosphorylation, we first used the antibody specifically against the AR phosphorylation site at Ser 81 and found HBx can increase AR phosphorylation at least for this site, which can be inhibited by the c-Src inhibitor PP2. To address the effect of this phosphorylation on HBx enhanced AR activation, we have mutated this residue to alanine as S81A AR and found that the AR reporter activity decrease in this construct (30~50%) compared to wild type AR. Interestingly, we found that the protein level of AR S81A mutant is lower than wild type AR in the presence of HBx and under ligand stimulation.
The results of current study support the critical role of c-Src kinase activity in HBx-enhanced AR transcriptional activation and delineate some possible molecular mechanisms underlying such effect. Prospectively, we propose the possibility that c-Src kinase could be a potential target for HCC prevention and therapy in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:02:07Z (GMT). No. of bitstreams: 1
ntu-96-R94445120-1.pdf: 1528953 bytes, checksum: 50399b25fd95476763365f74afdf4f38 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書.......................................ii
致謝................................................... iii
中文摘要..............................................iv
英文摘要.............................................. vii
序論....................................................1
B型肝炎病毒…………………………………………………………1
B型肝炎病毒相關肝癌好發於男性病患.........................1
B型肝炎病毒X蛋白質(HBx)的功能..............................2
HBx引起肝癌的動物模式研究.................................3
男性荷爾蒙受體(androgen receptor)之構造及功能...............3
男性荷爾蒙受體於HCC及前列腺癌的研究........................4
男性荷爾蒙受體之磷酸化修飾及功能............................5
c-Src kinase之構造及活性調控..............................7
c-Src kinase與HCC的關係.....................................8
研究目的.................................................... 9
材料方法..................................................... 11
結果......................................................... 19
I. 利用降低 c-Src kinase 活性的方式探討c-Src kinase是否參與調控HBx所促進的AR轉錄活化過程
I-1. c-Src kinase抑制劑PP2有效抑制HBx所提升的AR轉錄活性........... 19
I-2. 利用si-RNA降低c-Src kinase表現量可降低HBx所提升的AR轉錄活性.......................................................20
II. 利用強化c-Src kinase的活性方式探討其對於AR本身以及HBx增加的AR轉錄活性的影響......................21
II-1. 利用wild type c-Src construct強化細胞中c-Src kinase 活性探討其對於AR以及HBx增加的AR轉錄活性的影響...........................22
II-2. 利用incucible c-Src construct強化細胞中c-Src kinase 活性探討其對於AR以及HBx增加的AR轉錄活性的影響.....................................23
III. 探討c-Src kinase 的活性對於 HBx 提升 AR 轉錄活化之分子機制.......24
III-1. 利用mammalian two-hybrid system 評估 c-Src kinase活性對ARN端與C端相互作用形成dimer之影響.............................................25
III-2. 利用mammalian one-hybrid system 評估 c-Src kinase活性對AR N terminal transaction domain (NTD) 之轉錄活性之影響.......................26
IV. 探討c-Src 是否可能經由影響AR 磷酸化修飾進而調控 AR 的轉錄活性之可能..................................................27
IV-1. 分析AR S81磷酸化修飾受到 c-Src kinase 活性之影響..................28
IV-2. 探討AR S81磷酸化修飾對HBx所提升AR轉錄功能之影響........ 29
V. 探討c-Src kinase在HBx所促進AR轉錄活性過程中是否有被活化的現象.........................................................29
討論....................................................31
參考文獻................................................36
圖表.....................................................42
dc.language.isozh-TW
dc.subjectB型肝炎病毒X蛋白質zh_TW
dc.subject男性荷爾蒙受體zh_TW
dc.subjectc-Src 磷酸激&#37238zh_TW
dc.subjectHBxen
dc.subjectc-Src kinaseen
dc.subjectandrogen receptoren
dc.title探討 c-Src 磷酸激酶於B型肝炎病毒 X 蛋白質
活化男性荷爾蒙受體轉錄活性過程中之角色
zh_TW
dc.titleInvestigation of the role of c-Src kinase in HBx-mediated transcriptional activation of androgen receptoren
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳培哲,陳青周
dc.subject.keywordB型肝炎病毒X蛋白質,男性荷爾蒙受體,c-Src 磷酸激&#37238,zh_TW
dc.subject.keywordHBx,androgen receptor,c-Src kinase,en
dc.relation.page54
dc.rights.note未授權
dc.date.accepted2007-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved