請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25085
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭淑芬 | |
dc.contributor.author | Yang-Chuan Lee | en |
dc.contributor.author | 李仰川 | zh_TW |
dc.date.accessioned | 2021-06-08T06:01:55Z | - |
dc.date.copyright | 2007-07-29 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-27 | |
dc.identifier.citation | 參考文獻
[1] Fujishma, A.;Honda, A. Nature. 1972, 238, 37. [2] Hoffmann, M.R. ;Martin, S.T.;Choi, W;Bahnemannt, D.W. Chem. Rev. 1995, 95. 69. [3] Serpone, N.; Lawless, D.; Khairtudinov, R.; Pelizzetti, E.J. Phys. Chem. 1995, 99, 16655. [4] O’Regan, B.; Gratzel, M. Nature. 1991, 353, 737. [5] Linsebigler , A.L.;Lu, G..; Tates Jr, J.T. Chem. Rev. 1995, 95, 735. [6] Wells, A. F. Structural Inorganic Chemistry, 4th ed.; Clarendon Press: Oxford, 1975, 200, 143. [7]Burdett, J.K.; Hughbands, T.;Gordon, J.M. J. Am. Chem. Soc. 1987, 109, 3639. [8] Cheng, H.; Ma, J.; Zhao, Z.;Qi, L. Chem. Mater. 1995, 7, 663. [9] Zheng, Y.;Shi, E.;Chen, Z.; Li, W. J. Mater. Chem. 2001, 11, 1547. [10] Yanagisawa, K.;Ovenstone, J. J. Phys. Chem. B 1999, 103, 7781. [11] Wang, C.C.;Ying, J.Y. Chem. Mater. 1999, 11, 3113. [12] Yoldas, B.E., J. Mater. Sci. 1986, 21, 1087. [13] Terabe, K.;Kato, K.;Miyazaki, H.;Yamaguchi, S. J. Mater. Sci. 1994, 29, 1617. [14] Kumar, K.P.; Kumar, J.; Keizer, K. J. Am. Ceram. Soc. 1994, 77, 1396. [15] Cot, F. ;Larbot, A. ; Nabias, G.. J. Eur. Ceram. Soc. 1998, 18, 2875. [16] 曹茂盛、關長斌、徐甲強 編著, 奈米材料導論 [17] Choy, K.L. Mater Sci . 2003, 48 , 157. [18] Rubio, J.; Villegas, M. J. Mater. Sci.1997, 32, 643 [19] Kim, E.J.; Hahn, S.H. Materials Letters, 2001, 49, 244. [20] Pal, T.; Sau. T.; K.; Jana, N.R. Langmuir, 1997, 13, 1481. [21] N. R. Jana, L. Gearheart, S. O. Obare, and C. J. Murphy, Langmuir, 2002, 18, 922. [22] N. R. Jana, T. K. Sau, and T. Pal, J. Phys. Chem. B, 1999, 103, 115. [23] Tanorl, J.; Pileni, M.P. Langmuir, 1997, 13, 639. [24] Cheng, H. ; Ma, J.; Zhao, Z.; Qi, L.Chem. Mater. 1995, 7, 663 . [25]Zheng,Y.; Shi, E.; Chen,Z.; Li,W.;Hu, X. J. Mater. Chem. 2001, 11, 1547. [26] Comba, P.; Merbach, A.Inorg. Chem.1987, 26, 1315. [27] Ellis, J.D.; Sykes, A.G. Inorg. Chem. 1976, 15, 3172. [28] Kim, S.J. ; Park, S.D. ; Jeong, Y. H. J. Am. Ceram. Soc. 1999, 82, 927. [29]Yang, S. and Gao, L., Chem Lets. 2005, 34, 1044. [30] Yan, M. ; Chen, F. ; Zhang, J.; Anpo, M. J. Phys. Chem. B 2005, 109, 8673 . [31] Zhao, D.; Feng, J.; Huo, Q.;Melosh, N.;Fredirickson, G. H.; Chmelka, B.F.; Stucky, G.D. Science. 1998, 23, 279. [32].Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Nature.1992, 359, 710. [33].Beck, J. S.; Vartuil, J. C.; Roth, W.J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.; Olson, D, H.; Sheppard, E. W.; Higgins, S. B.; Schlenker, J, L. J. Am. Chem. Soc. 1992, 114, 10834. [34] Huang, M. H.; Choudrey , A.;Yang , P. Chem. Commun. 2000 ,1063 [35] Han, Y.; Kim , J. M.; Stucky ,G.D.Chem. Mater. 2000, 12, 2068. [36] Han , Y.J.; Stucky, G.D ; Butter , A. J.Am.Chem.Soc, 1999 , 121 ,9897. [37] Gallis, K.W.; Eklund, A.G.; Jull, S.T. Sci. Catal. 2000 , 129 , 747 [38]Liang , L.; Wang , J.L. Chin. J. Anal. Chem. 1999 , 27 , 271. [39] Humphrey H. P.; Paul. A. J. Mole. Catal B: Enzy.2001, 15, 81. [40] Herrmann, J. M.; Mansot, J.L. J. Catal. 1990, 121, 340. [41] Augugliaro, V.;Loddo,V. J. Catal. 1997, 166, 272. [42] Herrmann, J.M.;Tahiri, H.; Guillard, C. Catal. Today .1999, 54, 131. [43] Romeas, V. ;Pichat, P.;Guillard, C. Ind. Eng. Chem. Res. 1999, 38, 3878. [44] Lassaleta,G.; Espinos, J.P. J. Phys. Chem. 1995, 99, 1848. [45] Ding, Z.; Hu, X.; Yue, P. L.; Lu, G.Q. Catal. Today ,2001, 68, 173. [46] Davis, R. J.Chem. Mater.1992, 4, 1410. [47] Xu, Y.; Langford, C. H. J. Phys. Chem. B .1997, 101, 3115. [48] Yamashita, H.;Fujii,Y.;Ichihashi, Y.;Zhang, S. G.;Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. Catal. Today.1998, 45, 221. [49] Aronson, B.J.; Blanford, C.F.; Stein, A. Chem. Mater. 1997, 9, 2842. [50] Dai, Q.; He, N.; Weng, K.; Lin, B.; Lu, Z.; Yuan, C. J. Inclusion Phenom. Macroc. Chem. 1999, 35, 11. [51] Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem. Commun. 1999, 201. [52] Morey, M. S.; O’Brien, S.; Schwarz, S.; Stucky, G. D. Chem. Mater. 2000, 12, 898. [53] Sinha, A. K.; Seelan, S.; Akita, T.; Tsubota, S.; Haruta, M. Appl. Catal., A. 2003, 240, 243. [54] Ichinose, I.; Senzu, H.; Kunitake, T. Chem. Lett. 1996, 831. [55] Steven H. Overbury, and Sheng Dai* Chem. Mater. 2005, 17, 1923. [56] Corriu, R. J. P.; Leclercq, D.; Lefevre, P.; Hubert Mutin, P.; Vioux, A. J. Mater. Chem. 1992, 2, 673. [57]Corriu, R. J. P.; Leclercq, D. Angew. Chem., Int. Ed. Engl. 1996, 35, 1420. [58] Andrianainarivelo, M.; Corriu, R. J. P.; Leclercq, D.; Hubert Mutin, P.; Vioux, A. J. Mater. Chem. 1996, 6, 1665. [59] Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Hubert Mutin, P.; Vioux, A. J. Mater. Chem. 1996, 6, 1925. [60] Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Hubert Mutin, P.; Vioux, A. Chem. Mater. 1997, 9, 694. [61] Luan, Z. ; Kevan, L. Micropo. Mesopor. Mater. 2001, 44, 337. [62] Hsien, Y.H.; Chang, C.F. ; Chen, Y.H.; Cheng, S. Appl. Catal. B: Environ. 2001, 31, 241. [63] Belhekar, A.A. ; Awate, S.V.; Anand, R. Catal. Commun. 2003, 3, 453. [64] Grieken, R.V.; Aguado, J. Photochem. Photobiol. A: Chem. 2002, 148, 315. [65] Aguado, J.; Grieken, R.V M. Catal. Today .2002, 75, 95. [66] Ding, H.; Sun, H.; Shan, Y.J. Photochem. Photobiol. A: Chem. 2005, 169, 101. [67] Wittmann G. Appl. Catal. B: Environ 2005, 6, 47. [68] Tanev, P.T.; Chibwe, M.; Pinnavala, T.J. Nature. 1994, 368, 321. [69] Corma, A. ; Navarro, M.T.; Pariente, J.P.J. Chem. Soc., Chem. Com. 1994,147. [70] Koyano, K.A.; Tatsumi, T. Micropor. Mater. 1997,10, 259. [71] Grieken, R.V.; Sotelo, J.L.; Martos, C. Catal. Today.2000, 61, 49. [72] Chen, Y.; Huang, Y.; Xiu, J. ; Han, X.; Bao, X. Appl. Catal. A: Gen. 2004, 273 ,185. [73] Kang, M.;Hong, W.J.; Park, M.S.Appl. Catal. B: Environ. 2004, 53, 195. [74]Yamashita,H.; Nishiguchi, H.; Anpo, M. “Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts”, Research on Chemical Intermediates, 1994 , 20. 815. [75] Hoffmann, M.R.; Martin, S.T.; Choi, W. Chemical Reviews,1995, 95, 69. [76] Aegerter, M.A. Sol-gel: science and technology, New Jersey, World Scientific(1989) [77] Xu, N .; Shi, Z. Ind. Eng. Chem. Res. 1999, 38, 373. [78] Lassaletta, G.; Fernfindez, A. J. Phys. Chem. 1995, 99, 1484. [70] Anpo, M.; Shima, T.; Kidama, S. .J. Phys. Chem. 1987, 91,4305. [80] Zhang, Z.; Wang, C.C.;Ying, J. J. Phys. Chem. B 1998,102,10871. [81] Blanford, C.F.;Stein, A.Chem. Mater. 1997, 9, 2842. [82] Marıa, J.;Grieken, R.V.Catal Today.2005, 101, 307. [83] Nicolae, B.;Vansant, F. Applied Catalysis A: General .2006, 312, 153. [84] Xu, Y.; Langford, C.H.J. Phys. Chem. B 1997, 101, 3115. [85] Lepore,G.P.; Persaud, L.; Langford, C.H. J. Photochem. Photobiol. A: Chem. 1996, 98, 103. [86] Wu, C.; Yue, Y.; Deng, X.; Hua, W.; Gao, Z. Catal Today, 2004, 93-95, 863. [87] Sun, B.; Smirniotis, P.G., Catal. Today. 2003, 88, 49. [88] Hurum, C. ; Gray, A.G., A .J. Phys. Chem. B. 2003, 107, 4545. [89]Anpo, M . Pure &Applied Chem. 200l, 72 ,1265. [90] Jacoby, A. W., Blake, D. M., Fennell, J. A. The 88th Air&Waste Management Association. 1996, 46, 891. [91]Boujdaya, S.; Wunschb, F. Sol. En. Mater. & So. Cel..2004, 83, 421. [92] Bard, A. J . J . Phys. Chem. 1979 , 83, 3146 . [93] Zhang, Q .;Gao, L.; Guo, J. Appl. Catal. B : Environ. 2000 , 26, 207. [94]Sobczynski, A. et al. J.Mol. Catal. A: Chem. 2004, 213, 225. [95] Turchi, C. S.;Ollis, D. F. J. Catal. 1989, 119, 483. [96] Okamoto, K. I.;Yamamoto, Y.;Hanaka, H.;Tanaka, M. Bull. Chem. Soc. Jpn., 1985, 58, 2015. [97] Luan, Z; Kevan, L. J. Phys. Chem. B .1997, 101, 2020. [98] Newalkar, B. L.; Olanrewaju, J. ; Komarneni, S. Chem. Mater.2000, 13, 552. [99] Chen, Y.; Huang, Y.; Bao, X. Appl. Catal. A: Gen. 2004, 273, 185. [100] Barett, E. P.; Joyner, L.G.; Halenda, P. P. J. Am. Chem. Soc. 1951, 73, 373. [101] Brunauer, S.; Emmett, P.; Teller, E. J. Am. Chem. Soc. 1938, 60, 309. [102] Nooney, R.I.; Thirunavukkarasu, D.; Chen, Y.M.; Josephs, R.; Ostafin, A.E. Chem. Mater. 2002, 14, 4721. [103] Fowler, C. E.; Khushalani, D.; Lebeau, B.; Mann, S. Adv. Mater. 2001, 13, 649. [104] Cheng, C.F.; Cheng, H.H.; Wu, L.L.; Cheng, B.W. Stud. Surf. Sci. Catal.: Nanoporous Mater. 2005, 156, 113. [105] Lu, Y.; Fan, H.; Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Nature 1999, 398, 223. [106] Fowler, C. E.; Khushalani, D.; Lebeau, B.; Mann, S. Adv. Mater. 2001, 13, 649. [107] Cai, Q.;Luo, Z.S.; Pang, W.Q.; Fan, Y.W.; Chen, X.H.; Chem. Mater. 2001, 13, 258. [108] Lin, H. P.; Tsai, C. P. Chem. Lett. 2003, 32, 1092. [109 ] Aronson, B. J.;Blanford, C. F.; Stein , A.Chem. Mater. 1997 , 9 , 2842. [110] Kormann, C.; Bahnemann, D. W.; Hoffman, M. R. J. Phys. Chem. 1988, 92, 5196. [111] Hu, Q.Y.; Hampsey, J. E. Chem. Maters. 2005, 17, 1561. [112] Koffyberg, F.P.; Dwight, K.Solid State Commun. 1979, 30, 433. [113] Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E. J. Phys. Chem. 1993, 97, 11802. [114] Kein, S.;Thorimbert, S. J. Catal. 1996, 163, 476. [115] Lee, D.W.; Ihm, S.K. Chem. Mater. 2005, 17, 4461. [116] Groen, J.C.; Peffer, L.A.A. Micropor. Mesopor. Mater. 2003, 60, 1. [117] Schuth, F.;Wingen, A. Micropor. Mesopor. Mater. 2001,44–45, 465. [118] Vradman, L. Landau, ;M.V. ; Kantorovich, D.Y.; Gedanken, A. Micropor. Mesopor. Mater. 2005, 79, 307. [119] Perathoner S. Micropor. Mesopor.Mater.2006, 90, 347. [120] Yi, K.C.;Fendler, J. H. Langmuir .1999, 6 ,1519. [121] Youn, H. C.;Baral, S.;Fendler, J. H. J. Phys. Chem. 1988, 92, 6320. [122] Leung, R.;Hou, M. J. Shah (Eds.), Surfactant Science Series, vol.28, Marcel Dekker, NewYork, 1988315. [123] Pillai, V.; Shah, D. O.; Soalns, C.; Kunieda, H. (Eds.), Industrial Application of Microemulsion, Marcel Dekker, New York, 1997, 227. [124] Chen, S.Y.; Cheng , S. Chem. Mater. 2004, 16, 4174. [125] Hong, S. S.; Lee, M. S. Catal. Today. 2003, 87, 99. [126] Leung, R.; Hou, M.J.; Shah, D.O. Surfactant Science Series, vol. 28, Marcel Dekker: New York, 1988, pp315. [127] Pillai, V.; Shah, D. O. Industrial Application of Microemulsion; Marcel Dekker: New York, 1997, pp227. [128] Tanev, P. T.; Pinnavaia, T. J. Science. 1995, 267, 865. [129]Wittmann, G. Appl. Catal. B: Envir. 2005, 61, 47. [130] Overbury, S. H.; Dai, S. J. Phys. Chem. B 2004, 108, 20038. [131] Hotsenpiller, P.A.M.; Bolt, J.D. ; Farneth, W.E.; Lowekamp, J.B., J. Phys. Chem. B 1998, 102, 3216. [132] Porter, J. F.; Li, Y.G.; Chan, C. K. J. Mater. Sci. 1999, 34, 1523. [133] Bacsa, R. R.; Kiwi, J.Appl. Catal. B: Environ. 1998, 16, 19. [134] Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Appl. Catal. A Gen. 2003, 244, 383. [135] Hurum, D.C.; Agrios, A.G. ; Gray, K.A.; Thurnauer, M.C.J. Phys. Chem. B 2003, 107, 4545. [136] Wu, J. M.; Satoshi, H.; Tsuru, K.; Osaka, A. J. Am. Ceram. Soc. 2004, 87, 1635. [137] Cullity, B. D. Elements of X-Ray Diffarction, Addison–Wesley, Reading, MA, 1978. [138] Zhong, W. Z.;Liu, G. Z.; Shi, E. W. Sci. China, B, 1994, 37, 1288. [139] Nicholls, D. Complexes and First-Row Transition Elements; The Macmillan Press Ltd.: New York, 1974; Chapter 11. [140]Cheng, H.; Ma, J. Chem. Mater. 1995, 7, 663. [141] Lee, M. S. Sol. Ene. Mater.Sol. Cells. 2005, 88, 389. [142] Lopez, T.; Moreno, J. A.; Wang, J. A.; Pecchi, G..; Reyes, P. J. Mater. Chem. 2003, 12, 714. [143] Yu, X.; Zhao, J. ; Du, J.;Chen, W. J. Sol Gel Sci. Technol. 2000, 17, 163. [144] Kumar, P. M.; Badrinarayanan, S.; Sastry, M..Thin Solid Films.2000, 358 [145] Devlin, H. R.; Harris, I. J. Ind. Eng. Chem. Fundam. 1984, 23, 387. [146] Eberlein, L.;Langford, C.H. J. Photochem. Photobiol. A: Chem. 2002, 148, 183. [147]Andersson, M.; Osterlund, L. J. Phys. Chem. B. 2002, 106, 10674. [148] Nosaka, Y.; Hirakawa, T. Langmuir.2002, 18, 3247 [149]Anderson, C.; Bard, A. J. J. Phys. Chem. 1995, 99, 9882. [150]Al-Ekabi, H.;Serpone , N. Lamngmuir. 1989 ,5 , 250. [151] Pignol, D.; Chapus, J.C. Chem. Phys. Lipids. 1998, 93, 123 [152] Muszkat , L. Feigelson, L; J. Photochem. Photobiol. B: Biolog. 2001, 60, 32. [153]Uchida, K.; Kato, Y.; Kawakishi, S. Biochem. Biophys. Res. Commun. 1990, 169 , 265. [154]Smith, G. J. J. Photochem. Photobiol. B: Biology.1995, 27, 187 [155]Serpone, N.; Lawless, D.; Khairutdinov, R.; Pelizzetti, E. J. Phys. Chem. 1995, 99, 16655. [156] Lawless, D.; Serpone, N.; Meisel, D. J. Phys. Chem. 1991, 95, 5166. [157] Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M. Appl. Catal., A. 2003, 244, 383. [158]洪楨琳 “溫度與濕度對光催化分解苯蒸氣之影響研究” 國立中山大學環境工程研究所碩士論文 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25085 | - |
dc.description.abstract | 摘要
本篇論文的研究重點可分為兩個部分:第一部份是製備負載型二氧化鈦光觸媒,尤其是可應用在紡織纖維的光觸媒,第二部份是開發使用可見光光源的二氧化鈦光觸媒。二氧化鈦被紫外光激發時,能產生電子-電洞對,對表面吸附物進行氧化還原反應,應用在空氣污染的問題上,可發揮除臭ヽ抗菌和去污等功效。但是,負載二氧化鈦在有機纖維材料上時,卻因為其受光激發所產生的強氧化力而破壞纖維材料。有鑑於此,本研究製備出介孔氧化矽材料,並在孔道內負載奈米粒徑的二氧化鈦,除了使孔道內二氧化鈦仍保有光催化降解能力外,光惰性氧化矽材質也可發揮阻隔二氧化鈦與有機纖維材料的直接接觸。負載型觸媒的合成方法包括共沉澱法及介孔氧化矽的後嫁接法,並試著利用微乳化法結合改良的介孔氧化矽合成法,成功的將二氧化鈦負載在介孔氧化矽的孔道內,解決共沉澱法造成二氧化鈦堆積在載體外表面的缺點。 另一個研究重點則是開發可見光光觸媒,使用四氯化鈦稀鹽酸溶液,經迴流法合成出有高表面積,具銳鈦礦晶相與金紅石晶相混合晶相的奈米顆粒二氧化鈦。藉由苯酚溶液在可見光 (419 nm)激發下的光降解反應,評估觸媒的光催化活性,結果證實所合成的含75%金紅石晶相 的混晶相二氧化鈦在419 nm可見光源激發下有很好的光催化活性,且優於商業化光觸媒Degussa P25。最後,並製備混合晶相的負載型二氧化鈦光觸媒,結果也證實混合晶相的二氧化鈦負載在介孔材料SBA-15的載體上仍然保有很好的可見光光催化活性。 | zh_TW |
dc.description.abstract | Abstract
This dissertatin studies the preparation and characterization of the photocatalyst in textile application and visible light photocatalyst. Heterogeneous photocatalysts have shown high efficiencies in the removal of pollutants including odors, micro- organisms, viruses, and volatile organic contaminants, commonly present in air and can resolve environment pollution problem. The photocatalyst was mixed into the textile fiber by either direct mixing or coating. However, the textile fiber itself was photo-degraded after exposure to sunlight because of the strong oxidizing power of the photocatalyst. In the present work, we attempt to prepare TiO2 particles encapsulated inside the pores of mesoporous silica materials by some preparation methods. The TiO2 supported catalysts were prepared by coprecipitation and on nano mesoporous silica(NMS) by consecutive grafting methods. Finally, we found the more useful method for TiO2 particles encapsulated inside the pores of mesoporous silica materials by one pot synthesis with the introduction of titania via the reverse microemulison and be incorporated into the final mesoporus silica product. In contrast to the coprecipitation method, which is quite facile the large TiO2 particles on the external surface of mesoporous SiO2 . Moreover, we attempt to convert the TiO2 absorption onset from the ultraviolet to the visible region using mixed phase titania. The sun can provide an abundant source of photons; however, UV light accounts for only a small fraction (~5%) of the sun’s energy compared to the visible region (45%). Nanocrystalline TiO2 of high surface area (100-230 m2/g) and with various anatase/ rutile ratios was prepared by refluxing TiCl4 acid diluted solutions. The photodegradation of phenol in water was investigated using these mixed anatase/rutile phases TiO2 as the catalysts. When using 419 nm visible light as the light source, the mixed phase TiO2 revealed higher photocatalytic activities in phenol decomposition than that of Degussa P25. When TiO2 nanoparticles with mixed phases were supported on mesoporous silica material. Under 419 nm irradiation, the SBA-15 supported mixed phase TiO2 showed better photocatalytic activities than Degussa P25,too. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:01:55Z (GMT). No. of bitstreams: 1 ntu-96-D91223003-1.pdf: 18999673 bytes, checksum: dda05d1ea7f55d1e0ce40171f7e7aef0 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 目錄
第一章 序論 1 1.1 前言 1 1.2 二氧化鈦的性質:金紅石晶相與銳鈦礦晶相 2 1.3 二氧化鈦製備方法 4 1.3.1 水熱法(Hydrothermal method) 4 1.3.2 溶膠凝膠法(Sol-Gel method) 5 1.3.2-1 金屬烷氧化物(Metal alkoxides) 5 1.3.2-2 金屬鹽類(Metal salts) 6 1.3.3 化學氣相沉積法(Chemical Vapor Deposition,CVD) 8 1.3.4 微乳化法(microemulsion) 10 1.4 影響二氧化鈦晶相的因素 11 1.4.1 pH值對TiO2晶相的影響 11 1.4.2 溫度對TiO2結晶相態的影響 14 1.4.3 溶液陰離子對TiO2結晶相態的影響 14 1.5 介孔材料負載二氧化鈦 15 1.5.1 介孔材料SBA-15的合成原理 15 1.5.2 介孔材料SBA-15的應用 16 1.5.3 負載型二氧化鈦的製備 17 1.5.3-1 嫁接法(Grafting method) 17 1.5.3-2 含浸法(Impregnation method) 18 1.5.3-3 沉澱法(Coprecipitation method) 19 1.6 影響光催化活性的因素 20 1.6.1 光催化的反應原理 20 1.6.2 量子尺寸效應 22 1.6.3 觸媒載體的效應 23 1.6.4 二氧化鈦晶型的影響 24 1.7 光催化反應產物分析 27 第二章 實驗部分 30 2.1 試劑 30 2.2 觸媒的合成 32 2.2.1 SBA-15 的合成 32 2.2.2 NMS(nano mesoporous silica)的合成 32 2.2.3 IM-T(X%)/SBA-15及IM-T(X%)-NMS負載型催化劑的製備 32 2.2.4 CP-TX- SBA-15 負載型催化劑的製備 33 2.2.5 GRNy-TiO2(X%)-NMS 負載型催化劑的製備 33 2.2.5-1 合成(CH3)3Si-NMS 33 2.2.5-2 合成GRNy- TiO2(X%)-NMS 33 2.2.6 M-TiO2-MS負載型觸媒的製備 34 2.2.7 M-TiO2-MS-A負載型觸媒的製備 35 2.2.8 5.0 N TiOCl2溶液的製備 35 2.2.9 混相二氧化鈦的製備 36 2.2.10 物理混合混相二氧化鈦的製備 36 2.2.11 SBA-15負載混相二氧化鈦的製備 36 2.3 異相光催化分解反應 37 2.4 介孔材料之鑑定 41 2.4.1 X光粉末光繞射(Powder X-ray Diffraction ; XRD) 41 2.4.2 熱重/熱差分析(DSC & TGA) 41 2.4.3 誘導偶電漿質譜 (Inductively Coupled PIasma/Mass spectroscopy ; ICP-MS) 41 2.4.4 掃描式電子顯微鏡 (Scanning Electron Microscopy ; SEM) 41 2.4.5 穿透式電子顯徵鏡(Transmission Electron Microscopy ; TEM) 42 2.4.6 氮氣吸附-脫附等溫曲線(N2 Adsorption-Desorption Isotherm ; BET) 42 2.4.7 傅立葉轉換紅外線光譜(FIuorier Transform Infrared Spectroscopy; FTIR) 44 2.4.8 紫外光-可見光譜 (UV-VIS Refnectance Spectroscopy) 44 2.4.9 螢光生命期光譜儀(Fluorescence Lifetime Spectromer) 45 2.4.10 氣相層析儀(GC) 45 第三章 結果與討論 46 3.1 觸媒的性質與鑑定 46 3.1.1 共沉澱法製備負載型觸媒 47 3.1.2 含浸法製備負載型觸媒 60 3.1.3 製備紡織用負載型觸媒 83 3.1.3-1 嫁接法製備負載型觸媒 85 3.1.3-2 利用微乳化-共沉澱法製備負載型觸媒 111 3.1.4 可見光光觸媒的製備 126 3.1.4-1 混相二氧化鈦觸媒的製備 126 3.1.4-2 混相二氧化鈦負載型觸媒的製備 142 3.1.5 激發態電子的生命期 155 3.2 觸媒的催化活性 158 3.2.1 光催化降解苯酚的機制 158 3.2.2 CP-TX-SBA-15負載型觸媒的催化活性 161 3.2.3 IM-TX–NMS與 IM-TX-SBA-15負載型觸媒的催化活性 168 3.2.4 GRNy-TiO2(X%)-NMS負載型觸媒的活性 172 3.2.5 M-TiO2-MS負載型觸媒的催化活性 181 3.2.6 M-TiO2-MS-A負載型觸媒的催化活性 186 3.2.7 混相二氧化鈦觸媒的催化活性 188 3.2.8 混相二氧化鈦負載型觸媒的催化活性 197 3.2.9 觸媒對苯的氣相光催化反應 201 第四章 結論 204 參考文獻 206 | |
dc.language.iso | zh-TW | |
dc.title | 介孔二氧化矽負載二氧化鈦光觸媒之製備與研究 | zh_TW |
dc.title | Studies and Preparation of TiO2 Photocatalysts Supported on Mesoporous Silica | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 牟中原,簡淑華,萬本儒,吳紀聖 | |
dc.subject.keyword | 介孔材料,二氧化矽,二氧化鈦,光觸媒, | zh_TW |
dc.subject.keyword | Mesoporous Silica,TiO2,Photocatalysts, | en |
dc.relation.page | 216 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-07-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 18.55 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。