Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25062
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 郭彥彬 | |
dc.contributor.author | Chih-Wei Chang | en |
dc.contributor.author | 張智為 | zh_TW |
dc.date.accessioned | 2021-06-08T06:01:22Z | - |
dc.date.copyright | 2007-08-16 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-27 | |
dc.identifier.citation | Abraham, N. G., Lutton, J. D., and Levere, R. D. (1985). Heme metabolism and erythropoiesis in abnormal iron states: role of delta-aminolevulinic acid synthase and heme oxygenase. Exp Hematol 13, 838-843.
Adams, C. S., and Horton, W. E., Jr. (1998). Chondrocyte apoptosis increases with age in the articular cartilage of adult animals. Anat Rec 250, 418-425. Allison, R. R., Mang, T. S., and Wilson, B. D. (1998). Photodynamic therapy for the treatment of nonmelanomatous cutaneous malignancies. Semin Cutan Med Surg 17, 153-163. Anatelli, F., Mroz, P., Liu, Q., Yang, C., Castano, A. P., Swietlik, E., and Hamblin, M. R. (2006). Macrophage-targeted photosensitizer conjugate delivered by intratumoral injection. Mol Pharm 3, 654-664. Ashkenazi, A., and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308. Balchum, O. J., Doiron, D. R., and Huth, G. C. (1984). Photoradiation therapy of endobronchial lung cancers employing the photodynamic action of hematoporphyrin derivative. Lasers Surg Med 4, 13-30. Barr, H., Krasner, N., Boulos, P. B., Chatlani, P., and Bown, S. G. (1990). Photodynamic therapy for colorectal cancer: a quantitative pilot study. Br J Surg 77, 93-96. Baskin-Bey, E. S., and Gores, G. J. (2005). Caspase-8, death-receptor signaling, and hepatocarcinogenesis: the Fas and the furious. Gastroenterology 129, 1790-1792. Bebenek, M., Dus, D., and Kozlak, J. (2007). Fas/Fas-ligand expressions in primary breast cancer are significant predictors of its skeletal spread. Anticancer Res 27, 215-218. Bellnier, D. A., Young, D. N., Detty, M. R., Camacho, S. H., and Oseroff, A. R. (1999). pH-dependent chalcogenopyrylium dyes as potential sensitizers for photodynamic therapy: selective retention in tumors by exploiting pH differences between tumor and normal tissue. Photochem Photobiol 70, 630-636. Bhasin, G., Kausar, H., and Athar, M. (2002). Protoporphyrin-IX accumulation and cutaneous tumor regression in mice using a ferrochelatase inhibitor. Cancer Lett 187, 9-16. Bidere, N., Snow, A. L., Sakai, K., Zheng, L., and Lenardo, M. J. (2006). Caspase-8 regulation by direct interaction with TRAF6 in T cell receptor-induced NF-kappaB activation. Curr Biol 16, 1666-1671. Biel, M. A. (1998). Photodynamic therapy and the treatment of head and neck neoplasia. Laryngoscope 108, 1259-1268. Bown, S. G., Rogowska, A. Z., Whitelaw, D. E., Lees, W. R., Lovat, L. B., Ripley, P., Jones, L., Wyld, P., Gillams, A., and Hatfield, A. W. (2002). Photodynamic therapy for cancer of the pancreas. Gut 50, 549-557. Cabrera, J., Quintana, J., Reiter, R. J., Loro, J., Cabrera, F., and Estevez, F. (2003). Melatonin prevents apoptosis and enhances HSP27 mRNA expression induced by heat shock in HL-60 cells: possible involvement of the MT2 receptor. J Pineal Res 35, 231-238. Calleros, L., Lasa, M., Rodriguez-Alvarez, F. J., Toro, M. J., and Chiloeches, A. (2006). RhoA and p38 MAPK mediate apoptosis induced by cellular cholesterol depletion. Apoptosis 11, 1161-1173. Carimalo, J., Cronier, S., Petit, G., Peyrin, J. M., Boukhtouche, F., Arbez, N., Lemaigre-Dubreuil, Y., Brugg, B., and Miquel, M. C. (2005). Activation of the JNK-c-Jun pathway during the early phase of neuronal apoptosis induced by PrP106-126 and prion infection. Eur J Neurosci 21, 2311-2319. Cepero, E., King, A. M., Coffey, L. M., Perez, R. G., and Boise, L. H. (2005). Caspase-9 and effector caspases have sequential and distinct effects on mitochondria. Oncogene 24, 6354-6366. Chai, J., Du, C., Wu, J. W., Kyin, S., Wang, X., and Shi, Y. (2000). Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406, 855-862. Chang, L., Kamata, H., Solinas, G., Luo, J. L., Maeda, S., Venuprasad, K., Liu, Y. C., and Karin, M. (2006). The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 124, 601-613. Chao, J. I., and Yang, J. L. (2001). Opposite roles of ERK and p38 mitogen-activated protein kinases in cadmium-induced genotoxicity and mitotic arrest. Chem Res Toxicol 14, 1193-1202. Chinnaiyan, A. M., O'Rourke, K., Tewari, M., and Dixit, V. M. (1995). FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81, 505-512. Clarke, N., Jimenez-Lara, A. M., Voltz, E., and Gronemeyer, H. (2004). Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. Embo J 23, 3051-3060. Cook, J. S., and Blum, H. F. (1959). Dose relationships and oxygen dependence in ultraviolet and photodynamic hemolysis. J Cell Comp Physiol 53, 41-60. Davidson, B., Konstantinovsky, S., Kleinberg, L., Nguyen, M. T., Bassarova, A., Kvalheim, G., Nesland, J. M., and Reich, R. (2006). The mitogen-activated protein kinases (MAPK) p38 and JNK are markers of tumor progression in breast carcinoma. Gynecol Oncol 102, 453-461. de Vries, J. F., Wammes, L. J., Jedema, I., van Dreunen, L., Nijmeijer, B. A., Heemskerk, M. H., Willemze, R., Falkenburg, J. H., and Barge, R. M. (2007). Involvement of caspase-8 in chemotherapy-induced apoptosis of patient derived leukemia cell lines independent of the death receptor pathway and downstream from mitochondria. Apoptosis 12, 181-193. Deng, Y., Ren, X., Yang, L., Lin, Y., and Wu, X. (2003). A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115, 61-70. Derijard, B., Hibi, M., Wu, I. H., Barrett, T., Su, B., Deng, T., Karin, M., and Davis, R. J. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76, 1025-1037. Dimofte, A., Zhu, T. C., Hahn, S. M., and Lustig, R. A. (2002). In vivo light dosimetry for motexafin lutetium-mediated PDT of recurrent breast cancer. Lasers Surg Med 31, 305-312. Dolmans, D. E., Fukumura, D., and Jain, R. K. (2003). Photodynamic therapy for cancer. Nat Rev Cancer 3, 380-387. Dong, Z., Huang, C., Ma, W. Y., Malewicz, B., Baumann, W. J., and Kiss, Z. (1998). Increased synthesis of phosphocholine is required for UV-induced AP-1 activation. Oncogene 17, 1845-1853. Dougherty, T. J. (1984). Photodynamic therapy (PDT) of malignant tumors. Crit Rev Oncol Hematol 2, 83-116. Dougherty, T. J., Gomer, C. J., Henderson, B. W., Jori, G., Kessel, D., Korbelik, M., Moan, J., and Peng, Q. (1998). Photodynamic therapy. J Natl Cancer Inst 90, 889-905. Dougherty, T. J., Lawrence, G., Kaufman, J. H., Boyle, D., Weishaupt, K. R., and Goldfarb, A. (1979). Photoradiation in the treatment of recurrent breast carcinoma. J Natl Cancer Inst 62, 231-237. Erdogan, M., Karadeniz, M., Berdeli, A., Tamsel, S., Ertan, Y., Uluer, H., Yilmaz, C., Tuzun, M., Kabalak, T., and Ozgen, A. G. (2007). Fas/Fas ligand gene polymorphism in patients with papillary thyroid cancer in the Turkish population. J Endocrinol Invest 30, 411-416. Favilla, I., Favilla, M. L., Gosbell, A. D., Barry, W. R., Ellims, P., Hill, J. S., and Byrne, J. R. (1995). Photodynamic therapy: a 5-year study of its effectiveness in the treatment of posterior uveal melanoma, and evaluation of haematoporphyrin uptake and photocytotoxicity of melanoma cells in tissue culture. Melanoma Res 5, 355-364. Fritz, G., and Kaina, B. (1999). Activation of c-Jun N-terminal kinase 1 by UV irradiation is inhibited by wortmannin without affecting c-iun expression. Mol Cell Biol 19, 1768-1774. Fromm, D., Kessel, D., and Webber, J. (1996). Feasibility of photodynamic therapy using endogenous photosensitization for colon cancer. Arch Surg 131, 667-669. Gaullier, J. M., Berg, K., Peng, Q., Anholt, H., Selbo, P. K., Ma, L. W., and Moan, J. (1997). Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res 57, 1481-1486. Gibson, S. L., Ceckler, T. L., Bryant, T. G., and Hilf, R. (1989). Effects of laser photodynamic therapy on tumor phosphate levels and pH assessed by 31P-NMR spectroscopy. Cancer Biochem Biophys 10, 319-328. Gomer, C. J., Doiron, D. R., Jester, J. V., Szirth, B. C., and Murphree, A. L. (1983). Hematoporphyrin derivative photoradiation therapy for the treatment of intraocular tumors: examination of acute normal ocular tissue toxicity. Cancer Res 43, 721-727. Gontero, P., Banisadr, S., Frea, B., and Brausi, M. (2004). Metastasis markers in bladder cancer: a review of the literature and clinical considerations. Eur Urol 46, 296-311. Habens, F., Srinivasan, N., Oakley, F., Mann, D. A., Ganesan, A., and Packham, G. (2005). Novel sulfasalazine analogues with enhanced NF-kB inhibitory and apoptosis promoting activity. Apoptosis 10, 481-491. Haddad, R., Blumenfeld, A., Siegal, A., Kaplan, O., Cohen, M., Skornick, Y., and Kashtan, H. (1998). In vitro and in vivo effects of photodynamic therapy on murine malignant melanoma. Ann Surg Oncol 5, 241-247. Harper, N., Hughes, M., MacFarlane, M., and Cohen, G. M. (2003). Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J Biol Chem 278, 25534-25541. Hayata, Y., Kato, H., Konaka, C., Ono, J., and Takizawa, N. (1982). Hematoporphyrin derivative and laser photoradiation in the treatment of lung cancer. Chest 81, 269-277. Hayata, Y., Kato, H., Okitsu, H., Kawaguchi, M., and Konaka, C. (1985). Photodynamic therapy with hematoporphyrin derivative in cancer of the upper gastrointestinal tract. Semin Surg Oncol 1, 1-11. Herold, M. J., Kuss, A. W., Kraus, C., and Berberich, I. (2002). Mitochondria-dependent caspase-9 activation is necessary for antigen receptor-mediated effector caspase activation and apoptosis in WEHI 231 lymphoma cells. J Immunol 168, 3902-3909. Hill, J. S., Kaye, A. H., Sawyer, W. H., Morstyn, G., Megison, P. D., and Stylli, S. S. (1990). Selective uptake of hematoporphyrin derivative into human cerebral glioma. Neurosurgery 26, 248-254. Holasek, S. S., Wengenack, T. M., Kandimalla, K. K., Montano, C., Gregor, D. M., Curran, G. L., and Poduslo, J. F. (2005). Activation of the stress-activated MAP kinase, p38, but not JNK in cortical motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in transgenic mice. Brain Res 1045, 185-198. Hopkins-Donaldson, S., Ziegler, A., Kurtz, S., Bigosch, C., Kandioler, D., Ludwig, C., Zangemeister-Wittke, U., and Stahel, R. (2003). Silencing of death receptor and caspase-8 expression in small cell lung carcinoma cell lines and tumors by DNA methylation. Cell Death Differ 10, 356-364. Hsu, S., Singh, B., and Schuster, G. (2004a). Induction of apoptosis in oral cancer cells: agents and mechanisms for potential therapy and prevention. Oral Oncol 40, 461-473. Hsu, Y. L., Kuo, P. L., Chiang, L. C., and Lin, C. C. (2004b). Involvement of p53, nuclear factor kappaB and Fas/Fas ligand in induction of apoptosis and cell cycle arrest by saikosaponin d in human hepatoma cell lines. Cancer Lett 213, 213-221. Imai, Y., Ohnishi, K., Yasumoto, J., Kajiwara, A., Yamakawa, N., Takahashi, A., Ohnishi, T., and Kirita, T. (2005). Glycerol enhances radiosensitivity in a human oral squamous cell carcinoma cell line (Ca9-22) bearing a mutant p53 gene via Bax-mediated induction of apoptosis. Oral Oncol 41, 631-636. Johnson, N. C., Dan, H. C., Cheng, J. Q., and Kruk, P. A. (2004). BRCA1 185delAG mutation inhibits Akt-dependent, IAP-mediated caspase 3 inactivation in human ovarian surface epithelial cells. Exp Cell Res 298, 9-16. Kariya, K., Nakamura, K., Nomoto, K., Kobayashi, Y., and Namiki, M. (1995). Superoxide dismutase (SOD) activity with Fe-chlorin e6-Na and suppression of malignant tumor growth in rats. Cancer Biother 10, 139-145. Kefaloyianni, E., Gaitanaki, C., and Beis, I. (2006). ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal 18, 2238-2251. Kennedy, J. C., Marcus, S. L., and Pottier, R. H. (1996). Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): mechanisms and clinical results. J Clin Laser Med Surg 14, 289-304. Kluck, R. M., Martin, S. J., Hoffman, B. M., Zhou, J. S., Green, D. R., and Newmeyer, D. D. (1997). Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. Embo J 16, 4639-4649. Ko, Y. C., Huang, Y. L., Lee, C. H., Chen, M. J., Lin, L. M., and Tsai, C. C. (1995). Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med 24, 450-453. Kolarova, H., Macecek, J., Nevrelova, P., Huf, M., Tomecka, M., Bajgar, R., Mosinger, J., and Strnad, M. (2005). Photodynamic therapy with zinc-tetra(p-sulfophenyl)porphyrin bound to cyclodextrin induces single strand breaks of cellular DNA in G361 melanoma cells. Toxicol In Vitro 19, 971-974. Kondo, M., Hirota, N., Takaoka, T., and Kajiwara, M. (1993). Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell lines of rat. Cell Biol Toxicol 9, 95-105. Krilleke, D., Ucur, E., Pulte, D., Schulze-Osthoff, K., Debatin, K. M., and Herr, I. (2003). Inhibition of JNK signaling diminishes early but not late cellular stress-induced apoptosis. Int J Cancer 107, 520-527. Kurokawa, T., Miyamoto, M., Kato, K., Cho, Y., Kawarada, Y., Hida, Y., Shinohara, T., Itoh, T., Okushiba, S., Kondo, S., and Katoh, H. (2003). Overexpression of hypoxia-inducible-factor 1alpha(HIF-1alpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Br J Cancer 89, 1042-1047. Landau, I. M., Steen, B., and Seregard, S. (2002). Photodynamic therapy for circumscribed choroidal haemangioma. Acta Ophthalmol Scand 80, 531-536. Lee, S. J., Sakurai, H., Koizumi, K., Song, G. Y., Bae, Y. S., Kim, H. M., Kang, K. S., Surh, Y. J., Saiki, I., and Kim, S. H. (2006). MAPK regulation and caspase activation are required in DMNQ S-52 induced apoptosis in Lewis lung carcinoma cells. Cancer Lett 233, 57-67. Li, L. Y., Luo, X., and Wang, X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99. Lipson, R. L., and Baldes, E. J. (1960). The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol 82, 508-516. Lipson, R. L., and Baldes, E. J. (1961). Histamine and photodynamic action. Arch Dermatol 83, 417-419. Liu, J., Yang, D., Minemoto, Y., Leitges, M., Rosner, M. R., and Lin, A. (2006). NF-kappaB is required for UV-induced JNK activation via induction of PKCdelta. Mol Cell 21, 467-480. Liu, X., Kim, C. N., Yang, J., Jemmerson, R., and Wang, X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. Lorenzo, H. K., Susin, S. A., Penninger, J., and Kroemer, G. (1999). Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ 6, 516-524. Mang, T. S., Allison, R., Hewson, G., Snider, W., and Moskowitz, R. (1998). A phase II/III clinical study of tin ethyl etiopurpurin (Purlytin)-induced photodynamic therapy for the treatment of recurrent cutaneous metastatic breast cancer. Cancer J Sci Am 4, 378-384. Marcus, S. L., Sobel, R. S., Golub, A. L., Carroll, R. L., Lundahl, S., and Shulman, D. G. (1996). Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): current clinical and development status. J Clin Laser Med Surg 14, 59-66. Martinez-Sanchez, G., and Giuliani, A. (2007). Cellular redox status regulates hypoxia inducible factor-1 activity. Role in tumour development. J Exp Clin Cancer Res 26, 39-50. McCaughan, J. S., Jr., Hicks, W., Laufman, L., May, E., and Roach, R. (1984). Palliation of esophageal malignancy with photoradiation therapy. Cancer 54, 2905-2910. Mishra, O. P., Randis, T., Ashraf, Q. M., and Delivoria-Papadopoulos, M. (2006). Hypoxia-induced Bax and Bcl-2 protein expression, caspase-9 activation, DNA fragmentation, and lipid peroxidation in mitochondria of the cerebral cortex of newborn piglets: the role of nitric oxide. Neuroscience 141, 1339-1349. Mlkvy, P., Messmann, H., Regula, J., Conio, M., Pauer, M., Millson, C. E., MacRobert, A. J., and Bown, S. G. (1998). Photodynamic therapy for gastrointestinal tumors using three photosensitizers--ALA induced PPIX, Photofrin and MTHPC. A pilot study. Neoplasma 45, 157-161. Moon, H. E., Cheon, H., Chun, K. H., Lee, S. K., Kim, Y. S., Jung, B. K., Park, J. A., Kim, S. H., Jeong, J. W., and Lee, M. S. (2006). Metastasis-associated protein 1 enhances angiogenesis by stabilization of HIF-1alpha. Oncol Rep 16, 929-935. Morotti, A., Cilloni, D., Pautasso, M., Messa, F., Arruga, F., Defilippi, I., Carturan, S., Catalano, R., Rosso, V., Chiarenza, A., et al. (2006). NF-kB inhibition as a strategy to enhance etoposide-induced apoptosis in K562 cell line. Am J Hematol 81, 938-945. Navarro, R., Martinez, R., Busnadiego, I., Ruiz-Larrea, M. B., and Ruiz-Sanz, J. I. (2006). Doxorubicin-induced MAPK activation in hepatocyte cultures is independent of oxidant damage. Ann N Y Acad Sci 1090, 408-418. Neuwirt, J., Ponka, P., and Borova, J. (1969). The role of heme in the regulation of delta-aminolevulinic acid and heme synthesis in rabbit reticulocytes. Eur J Biochem 9, 36-41. Nickischer, D., Laethem, C., Trask, O. J., Jr., Williams, R. G., Kandasamy, R., and Johnston, P. A. (2006). Development and implementation of three mitogen-activated protein kinase (MAPK) signaling pathway imaging assays to provide MAPK module selectivity profiling for kinase inhibitors: MK2-EGFP translocation, c-Jun, and ERK activation. Methods Enzymol 414, 389-418. Notarbartolo, M., Poma, P., Perri, D., Dusonchet, L., Cervello, M., and D'Alessandro, N. (2005). Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-kB activation levels and in IAP gene expression. Cancer Lett 224, 53-65. Ohgari, Y., Nakayasu, Y., Kitajima, S., Sawamoto, M., Mori, H., Shimokawa, O., Matsui, H., and Taketani, S. (2005). Mechanisms involved in delta-aminolevulinic acid (ALA)-induced photosensitivity of tumor cells: relation of ferrochelatase and uptake of ALA to the accumulation of protoporphyrin. Biochem Pharmacol 71, 42-49. Ortner, M. A., Dorta, G., Blum, A. L., and Michetti, P. (2002). Endoscopic interventions for preneoplastic and neoplastic lesions: mucosectomy, argon plasma coagulation, and photodynamic therapy. Dig Dis 20, 167-172. Ortner, M. A., Liebetruth, J., Schreiber, S., Hanft, M., Wruck, U., Fusco, V., Muller, J. M., Hortnagl, H., and Lochs, H. (1998). Photodynamic therapy of nonresectable cholangiocarcinoma. Gastroenterology 114, 536-542. Oseroff, A. R., Shieh, S., Frawley, N. P., Cheney, R., Blumenson, L. E., Pivnick, E. K., and Bellnier, D. A. (2005). Treatment of diffuse basal cell carcinomas and basaloid follicular hamartomas in nevoid basal cell carcinoma syndrome by wide-area 5-aminolevulinic acid photodynamic therapy. Arch Dermatol 141, 60-67. Park, J. B., Lee, J. K., Park, E. Y., and Riew, K. D. (2007). Fas/FasL interaction of nucleus pulposus and cancer cells with the activation of caspases. Int Orthop. Peng, Q., Berg, K., Moan, J., Kongshaug, M., and Nesland, J. M. (1997). 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol 65, 235-251. Peng, Q., Moan, J., Warloe, T., Nesland, J. M., and Rimington, C. (1992). Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolevulinic acid in mice bearing mammary carcinoma. Int J Cancer 52, 433-443. Polverini, P. J., and Nor, J. E. (1999). Apoptosis and predisposition to oral cancer. Crit Rev Oral Biol Med 10, 139-152. Popovic, E. A., Kaye, A. H., and Hill, J. S. (1996). Photodynamic therapy of brain tumors. J Clin Laser Med Surg 14, 251-261. Potokar, M., Milisav, I., Kreft, M., Stenovec, M., and Zorec, R. (2003). Apoptosis triggered redistribution of caspase-9 from cytoplasm to mitochondria. FEBS Lett 544, 153-159. Reddi, E., Zhou, C., Biolo, R., Menegaldo, E., and Jori, G. (1990). Liposome- or LDL-administered Zn (II)-phthalocyanine as a photodynamic agent for tumours. I. Pharmacokinetic properties and phototherapeutic efficiency. Br J Cancer 61, 407-411. Robertson, C. (2006). What are the roles of surgery, radiation therapy and chemotherapy in the treatment of oral cancer? J Can Dent Assoc 72, 529-530. Rosenthal, M. A., Kavar, B., Hill, J. S., Morgan, D. J., Nation, R. L., Stylli, S. S., Basser, R. L., Uren, S., Geldard, H., Green, M. D., et al. (2001). Phase I and pharmacokinetic study of photodynamic therapy for high-grade gliomas using a novel boronated porphyrin. J Clin Oncol 19, 519-524. Rossi, D., and Gaidano, G. (2003). Messengers of cell death: apoptotic signaling in health and disease. Haematologica 88, 212-218. Sakai, T., Morita, Y., Araki, T., Kano, M., and Yoshida, T. (2000). Relationship between delta-aminolevulinic acid dehydratase genotypes and heme precursors in lead workers. Am J Ind Med 38, 355-360. Samali, A., Gorman, A. M., and Cotter, T. G. (1996). Apoptosis -- the story so far. Experientia 52, 933-941. Saunders, M. W., and Birchall, M. A. (1998). Apoptosis, matters of life and death. J Laryngol Otol 112, 822-826. Schweitzer, V. G. (1990). Photodynamic therapy for treatment of head and neck cancer. Otolaryngol Head Neck Surg 102, 225-232. Shi, Y. H., and Fang, W. G. (2004). Hypoxia-inducible factor-1 in tumour angiogenesis. World J Gastroenterol 10, 1082-1087. Siegmund, D., Wicovsky, A., Schmitz, I., Schulze-Osthoff, K., Kreuz, S., Leverkus, M., Dittrich-Breiholz, O., Kracht, M., and Wajant, H. (2005). Death receptor-induced signaling pathways are differentially regulated by gamma interferon upstream of caspase 8 processing. Mol Cell Biol 25, 6363-6379. Singh, B., and Paraskeva, C. (1998). Bcl-2 as a possible sensor of nutritional stress inhibiting apoptosis and allowing cell survival during colorectal carcinogenesis. Biochem Soc Trans 26, 236-241. Slater, A. F., Stefan, C., Nobel, I., van den Dobbelsteen, D. J., and Orrenius, S. (1995). Signalling mechanisms and oxidative stress in apoptosis. Toxicol Lett 82-83, 149-153. Steer, S. A., Moran, J. M., Christmann, B. S., Maggi, L. B., Jr., and Corbett, J. A. (2006). Role of MAPK in the regulation of double-stranded RNA- and encephalomyocarditis virus-induced cyclooxygenase-2 expression by macrophages. J Immunol 177, 3413-3420. St-Louis, M. C., and Archambault, D. (2007). The equine arteritis virus induces apoptosis via caspase-8 and mitochondria-dependent caspase-9 activation. Virology. Su, H., Bidere, N., Zheng, L., Cubre, A., Sakai, K., Dale, J., Salmena, L., Hakem, R., Straus, S., and Lenardo, M. (2005). Requirement for caspase-8 in NF-kappaB activation by antigen receptor. Science 307, 1465-1468. Sun, Q. L., and Ran, W. (2004). Review of cytokine profiles in patients with hepatitis. World J Gastroenterol 10, 1709-1715. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., et al. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. Suzuki, A., Tsutomi, Y., Akahane, K., Araki, T., and Miura, M. (1998). Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 17, 931-939. Taber, S. W., Fingar, V. H., Coots, C. T., and Wieman, T. J. (1998). Photodynamic therapy using mono-L-aspartyl chlorin e6 (Npe6) for the treatment of cutaneous disease: a Phase I clinical study. Clin Cancer Res 4, 2741-2746. Thornberry, N. A. (1998). Caspases: key mediators of apoptosis. Chem Biol 5, R97-103. Tournier, C., Hess, P., Yang, D. D., Xu, J., Turner, T. K., Nimnual, A., Bar-Sagi, D., Jones, S. N., Flavell, R. A., and Davis, R. J. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288, 870-874. Uzdensky, A. B., Juzeniene, A., Kolpakova, E., Hjortland, G. O., Juzenas, P., and Moan, J. (2004). Photosensitization with protoporphyrin IX inhibits attachment of cancer cells to a substratum. Biochem Biophys Res Commun 322, 452-457. Vaux, D. L., and Strasser, A. (1996). The molecular biology of apoptosis. Proc Natl Acad Sci U S A 93, 2239-2244. Weinstein, J. D., Howell, R. W., Leverette, R. D., Grooms, S. Y., Brignola, P. S., Mayer, S. M., and Beale, S. I. (1993). Heme Inhibition of [delta]-Aminolevulinic Acid Synthesis Is Enhanced by Glutathione in Cell-Free Extracts of Chlorella. Plant Physiol 101, 657-665. Winther, J. B. (1990). The effect of photodynamic therapy on a retinoblastoma-like tumour. An experimental in vitro and in vivo study on the potential use of photodynamic therapy in the treatment of retinoblastoma. Acta Ophthalmol Suppl, 1-37. Wooten, M. W. (1999). Function for NF-kB in neuronal survival: regulation by atypical protein kinase C. J Neurosci Res 58, 607-611. Wu, G., Chai, J., Suber, T. L., Wu, J. W., Du, C., Wang, X., and Shi, Y. (2000). Structural basis of IAP recognition by Smac/DIABLO. Nature 408, 1008-1012. Wu, M., Xu, L. G., Li, X., Zhai, Z., and Shu, H. B. (2002). AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277, 25617-25623. Wyllie, A. H., Beattie, G. J., and Hargreaves, A. D. (1981). Chromatin changes in apoptosis. Histochem J 13, 681-692. Yao, Y., Xu, Q., Kwon, M. J., Matta, R., Liu, Y., Hong, S. C., and Chang, C. H. (2006). ERK and p38 MAPK signaling pathways negatively regulate CIITA gene expression in dendritic cells and macrophages. J Immunol 177, 70-76. Zhang, B., Sun, T., Xue, L., Han, X., Lu, N., Shi, Y., Tan, W., Zhou, Y., Zhao, D., Zhang, X., et al. (2007). Functional polymorphisms in FAS and FASL contribute to increased apoptosis of tumor infiltration lymphocytes and risk of breast cancer. Carcinogenesis 28, 1067-1073. Zhu, T. C., Finlay, J. C., and Hahn, S. M. (2005). Determination of the distribution of light, optical properties, drug concentration, and tissue oxygenation in-vivo in human prostate during motexafin lutetium-mediated photodynamic therapy. J Photochem Photobiol B 79, 231-241. Zimcik, P., and Miletin, M. (2004). [Photodynamic therapy as a new prospective method for cancer treatment. I. History, basic principles]. Ceska Slov Farm 53, 219-224. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25062 | - |
dc.description.abstract | 光動力治療(photodynamic therapy,PDT)是新興的癌症治療方式,5-氨基酮戊酸(5-aminolevulinic acid,ALA)為新研發的第二代光感藥物(photosensitizer)。先前我們對口腔癌病變所進行的臨床試驗結果,證實ALA的光動力治療( 5-aminilevulinic acid-based photodynamic therapy ,ALA-PDT),可用於口腔癌病變的治療,但是其作用機轉至今尚未明瞭。本研究以人類口腔癌細胞株Ca9-22探討ALA-PDT對口腔癌細胞的影響,並進一步了解其可能的機制。我們發現,以ALA-PDT來處理Ca9-22細胞,可以造成cytochrome C的釋放及PARP的水解等,證實ALA-PDT引起人類口腔癌細胞死亡的方式為細胞凋亡。藉由流式細胞儀分析結果顯示,以4J的ALA-PDT處理Ca9-22細胞,並不能改變細胞週期。將細胞加入單重態氧的抑制劑Imidazole後,再給予ALA-PDT,對於細胞凋亡產生明顯的抑制現象,說明了在口腔癌細胞株Ca9-22中,ALA-PDT是經由產生單重態氧而造成細胞凋亡的。在Ca9-22細胞的培養液中加入caspase-8和caspase-9的抑制劑(Z-LEHD-FMK;Z-IETD-FMK),皆能減低ALA-PDT引起的細胞凋亡。西方墨點分析顯示了ALA-PDT可以同時活化caspase-8和caspase-9,也會引起細胞內phospho-JNK的上升,同時造成FLIPs、XIAP的抑制。其中,caspase-8訊息傳導路徑的引發,主要來自於其上游蛋白FADD磷酸化的增加;而caspase-9的活化,則是藉由cytochrome C的釋放所致。因此ALA-PDT可藉由粒線體及死亡接受器兩條路徑造成口腔癌細胞的凋亡。我們也發現ALA-PDT會造成phospho-JNK的增加,而JNK的抑制劑(SP600125)及NF-κB的抑制劑(Bay)可抑制ALA-PDT所引起的細胞凋亡,且當細胞經過NF-κB抑制劑處理後再進行光動力治療,phospho-JNK會被抑制,說明JNK的磷酸化會經由NF-κB。除此之外,我們更進一步證實了無論是藉由粒線體及死亡接受器兩條路徑所造成的口腔癌細胞凋亡,JNK的活化都是不可或缺的。所以ALA-PDT誘導細胞凋亡的機制,主要是經由NF-κB活化JNK所致。 | zh_TW |
dc.description.abstract | Photodynamic therapy (PDT) is a kind of new developing treatment for cancer. 5-Aminolevulinic acid (ALA) is a novel photosensitizer for photodynamic therapy. We previously showed ALA-PDT can induce cytotoxicity in oral cancer cells, however, the mechanism(s) for the ALA-PDT induced cytotoxicity is still unknown. In this study, we demonstrated that ALA-PDT induces apoptosis in human oral cancer cell lines Ca9-22 as evidenced by release of cytochrome C and cleavage of PARP. Apoptosis induced by ALA-PDT was both time- and dose-dependent. Western blot analysis showed ALA-PDT treatment induced FADD, caspase-8 and -9 activations. In addition, ALA-PDT treatment induced reactive oxygen species (ROS) production as detected by DCF fluorescence. Pretreatment of cells with imidazole (singlet oxygen inhibitor) reduced the ALA-PDT-induced apoptosis. These results indicated that singlet oxygen was an important mechanism for ALA-PDT-induced apoptosis in Ca9-22 cells. ALA-PDT-induced apoptosis was also inhibited in the presence of caspase 8 or caspase 9 inhibitors (Z-LEHD-FMK, Z-IETD-FMK). We also found that ALA-PDT was able to induced JNK activation and pretreatment of cells with SP600125 (JNK inhibitor) inhibited ALA-PDT-induced FADD activation, cytochrome C release and PARP cleavage. Pretreatment of cells with Bay (NF-κB inhibitor) inhibited ALA-PDT-induced JNK activation and apoptosis.Taking together, this study showed that ALA-PDT can induce apoptosis in Ca9-22 cells via activating intrinsic- and extrinsic-apoptosis pathway, and the activating of NF-κB and subsequent JNK activation are critical for the initiation of the apoptotic processes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:01:22Z (GMT). No. of bitstreams: 1 ntu-96-R94450003-1.pdf: 4393015 bytes, checksum: 0a72cdb1c85c0895a1a4235a5de6238c (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書 ………………………………………………………………i
誌謝 ………………………………………………………………………………ii 摘要 ………………………………………………………………………………1 Abstract ………………………………………………………………………………3 目錄 ………………………………………………………………………………5 第一章 導論 ……………………………………………………………………7 第一節 口腔癌與流行病學 ………………………………………………7 第二節 口腔癌的危險因子 ………………………………………………8 第三節 口腔癌的診斷與治療 ………………………………………………9 第四節 細胞凋亡之分子機制 …………………………………………….10 第五節 光動力治療的研究背景 …………………………………….…15 第六節 光動力治療的原理 ………………………………………….…16 第七節 光動力治療之應用 ………………………………………….…18 第八節 5-氨基酮戊酸 ……………………………………………….…20 第二章 實驗材料與方法 ……………………………………………….………23 第一節 細胞株來源與培養 …………………………………………….23 第二節 ALA-光動力治療方法 …………………………………………….23 第三節 西方墨點分析法 ………………………………………………….24 第四節 Cytochrome C分析法 ……………………………………….26 第五節 抑制劑使用方法 ………………………………………………….27 第六節 細胞生長活性分析法 …………………………………………….27 第七節 細胞凋亡之測定 ………………………………………………….28 第八節 細胞周期之測定 ………………………………………………….28 第九節 活性氧自由基之測定 …………………………………………….29 第十節 shRNA 抑制FADD …………………………………………….29 第十一節 統計分析 ……………………………………………………….30 第三章 實驗結果 …………………………………………………………….31 第一節 ALA-PDT 誘導細胞凋亡 ……………………………………….31 第二節 ALA-PDT 影響活性氧自由基產生 …………………………….32 第三節 ALA-PDT 誘發細胞凋亡訊息傳導路徑反應 ………………….33 第四節 ALA-PDT 對於extrinsic apoptosis pathway 之影響 ……….34 第五節 ALA-PDT 對於intrinsic apoptosis pathway之影響 ……….35 第六節 ALA-PDT 經由NF-κB 與JNK 誘導細胞凋亡………………….37 第七節 ALA-PDT 經由phospho-JNK 造成cytochrome C釋放 ….38 第八節 ALA-PDT 經由phospho-JNK 造成FADD活化 …………….39 第九節 抑制FasL 對於ALA-PDT 誘導細胞凋亡的影響 ...................41 圖說 ..................................................................................................56 第四章 討論 ………………………………………………………………….59 第五章 參考文獻 …………………………………………………………….65 | |
dc.language.iso | zh-TW | |
dc.title | 5-氨基酮戊酸光動力治療誘導人類口腔癌細胞凋亡機轉之研究 | zh_TW |
dc.title | Mechanisms of 5-Aminolevulinic Acid Photodynamic
Therapy Induced apoptosis in Oral Carcinoma Cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭宏昇,陳信銘 | |
dc.subject.keyword | 光動力治療,5-氨基酮戊酸,細胞凋亡,口腔癌, | zh_TW |
dc.subject.keyword | photodynamic therapy,5-aminolevulinic acid,apoptosis,oral carcinoma, | en |
dc.relation.page | 76 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-07-30 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
Appears in Collections: | 口腔生物科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-96-1.pdf Restricted Access | 4.29 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.