Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25049
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖秀娟(Hsiu-Chuan Liao)
dc.contributor.authorChuan Chengen
dc.contributor.author鄭權zh_TW
dc.date.accessioned2021-06-08T06:01:04Z-
dc.date.copyright2007-07-30
dc.date.issued2007
dc.date.submitted2007-07-29
dc.identifier.citationAhsan H, Perrin M, Rahman A, Parvez F, Stute M, Zheng YM, A.H., Brandt-Rauf P, van Geen A, Graziano J (2000) Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh. J Occup Environ Med 42: 1195-1201
An JH, Blackwell TK (2003) SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes & development 17: 1882-1893
Arivazhagan P, Ramanathan K, Panneerselvam C (2001) Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats. Chem Biol Interact 138: 189-198
Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In Photoinhibition. Edited. by Kyle, D.J., Osmond, C.B. and Arntzen, C.J. Elsevier Science Publishers, Amsterdam: 227-2887
Bandyopadhyay D, Chattopadhyay A, Ghosh G, Datta AG (2004) Oxidative Stress-Induced Ischemic Heart Disease: Protection by Antioxidants Current Medicinal Chemistry 11: 369-387
Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE (1996) Arsenic induces oxidant stress and NF-kappa B activation in cultured aortic endothelial cells. Free Radic Biol Med 21: 782-790
Barsyte D, Lovejoy DA, Lithgow GJ (2001) Longevity and heavy metal resistance in daf-2 and age-1 long-lived mutants of Caenorhabditis elegans. Faseb J 15: 627-634
Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272: 19633–19636
Borst P, Evers R, Kool M, Wijnholds (2000) A family of drug transporters : the multidrug resistance-associated proteins. J Natl Cancer Inst 92: 1295-1302
Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71-94
Broeks A, Gerrard B, Allikmets R, Dean M, Plasterk RH (1996) Homologues of the human multidrug resistance genes MRP and MDR contribute to heavy metal resistance in the soil nematode Caenorhabditis elegans. Embo J 15: 6132-6143
Burg D, Mulder GJ (2002 ) Glutathione conjugates and their synthetic derivatives as inhibitors of glutathione-dependent enzymes involved in cancer and drug resistance. Drug Metab Rev 34: 821-863
Cadenas E (1989) Biochemistry of oxygen toxicity. Ann Rev Biochem 58: 79-110
Copley SD, Dhillon JK (2002) Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol 3: research0025
Del Razo LM, Styblo M, Cullen WR, Thomas DJ (2001) Determination of trivalent methylated arsenicals in biological matrices. Toxicol Appl Pharmacol 174: 282-293
DeLeve L, Kaplowitz N (1990) Importance and regulation of hepatic glutathione. Semin Liver Dis 10: 251-266
Dizdaroglu M, Jaruga P, Birincioglu M, H. Rodriguez (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Rad Biol Med 32: 1102-1115
Engel RR, Hopenhayn-Rich C, Receveur O, Smith AH (1994) Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev 16: 184-209
Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad Biol Med 11: 81-128
Fang Y, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18: 872-879
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811
Fridovich I (1998) Oxygen toxicity: a radical explanation. Journal of Experimental Biology 201: 1203-1209
Furukawa T, Meydani SN, Blumberg JB (1987 ) Reversal of age-associated decline in immune responsiveness by dietary glutathione supplementation in mice. Mech Ageing Dev 38: 107-117
Gerschman R, Gilbert D, Nye S, Dwyer P, Fenn W (1954) Oxygen poisoning and x-irradiation: a mechanism in common. Science 119: 4562-4570
Grant CM, MacIver FH, Dawes IW (1997) Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide gamma-glutamylcysteine. Molecular biology of the cell 8: 1699-1707
Halliwell B, Gutteridge JMC (1999) Free Radicals in Biology and Medicine 3rd Ed Clarendon Press Oxford: New York: Oxford Univ. Press
Hsu AL, Murphy CT, Kenyon C (2003) Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300: 1142-1145
IARC. (1993) International Agency for Research on cancer. Beryllium,cadmium,mercury and exposures in the glass manufacturing industry. International Agency for Research on Cancer 58: 119-238
Inoue H, Hisamoto N, An JH, Oliveira RP, Nishida E, Blackwell TK, Matsumoto K (2005) The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response. Genes & development 19: 2278-2283
James D, McGhee JC, Birchall MA, Chung DA, Cottrell LG, Edgar, Svendsen PC, Ferrari DC (1990) Production of Null Mutants in the Major Intestinal Esterase Gene (ges-1 ) of the Nematode Caenorhabditis elegans. Genetics Society of America 3: 505–514
Janowiak B, Hayward M, Peterson F, Volkman B, Griffith O (2006) Gamma-glutamylcysteine synthetase-glutathione synthetase: domain structure and identification of residues important in substrate and glutathione binding. Biochemistry 45: 14671-14673
Jefferies H, Coster J, Khalil A, Bot J, McCauley R, Hall J (2003) Glutathione. ANZ J Surg 73: 517-522
Kamata H, Hirata H (1999) Redox Regulation of Cellular Signalling. Cell Signal 11: 1-14
Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le BN, Moreno S, Sohrmann M, Welchman DP, Ziperlen P, Ahringer J (2003) Systemic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421: 231-237
Koga M, Zwaal R, Guan KL, Avery L, Ohshima Y (2000) A Caenorhabditis elegans MAP kinase kinase, MEK-1, is involved in stress responses. Embo J 19: 5148-5156
Koizumi T, Li ZG (1992) Role of oxidative stress in single-dose, cadmium-induced testicular cancer. J Toxicol Environ Health 37: 25-36
Kumaran S, Savitha S, Devi MA, Panneerselvam C (2004) L-carnitine and DL-alpha-lipoic acid reverse the age-related deficit in glutathione redox state in skeletal muscle and heart tissues. Mechanisms of Ageing and Development 125 507-512
Larsen PL (1993) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc Natl Acad Sci USA 90: 8905-8909
Lee H-C, Wei Y-H (2007) Oxidative Stress, Mitochondrial DNA Mutation, and Apoptosis in Aging. Experimental Biology and Medicine 232: 592-606
Liao V, Dong J, Freedman J (2002) Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity. J Biol Chem 277: 42049-42059
Liao V, Freedman J (1998) Cadmium-regulated genes from the nematode Caenorhabditis elegans. Identification and cloning of new cadmium-responsive genes by differential display. J Biol Chem 273: 31962-31970
Liao VH, Yu CW (2005) Caenorhabditis elegans gcs-1 confers resistance to arsenic-induced oxidative stress. Biometals 18: 519-528
Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative disease. Lancet i 1: 642-645
Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92: 7540-7544
Liu SX, Athar M, Lippai I, Waldren C, T.K.Hei (2001) Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci U S A 98: 1643-1648
Livak K, Schmittgen T (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Method 25: 402-408
Lowenstein CJ, Dinerman JL, Snyder SH (1994) Nitric-oxide— a physiological messenger. Ann Intern Med 120: 227-237
Marnett LJ (1999) Lipid peroxidation — DNA damage by malondialdehyde. Mut Res-Fund Mol Mech Mutagen 424: 83-95
Mates JM (1999) C. Perez-Gomez, I.N. De Castro, Antioxidant enzymes and human diseases. Clin Biochem 32: 595-603
Meierjohann S, Walter RD, Muller S (2002) Glutathione synthetase from Plasmodium falciparum. Biochem J 363: 833-838
Meister A (1984) New developments in glutathione metabolism and their potential application in therapy Hepatology 4: 739-742
Meister A, Anderson M (1983) Glutathione. Annu Rev Biochem 52: 711-760
Mello C, Kramer J, Stinchcomb D, Ambros V (1991) Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J 10: 3959-3970
Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS microbiology reviews 29: 653-671
Milton AH, Hasan Z, Rahman A, Rahman M (2001) Chronic arsenic poisoning and respiratory effects in Bangladesh. J Occup Health 43: 136-140
Misiaszek R, Crean C, Joffe A, Geacintov NE, Shafirovich V (2004) Oxidative DNA Damage Associated with Combination of Guanine and Superoxide Radicals and Repair Mechanisms via Radical Trapping. J Biol Chem 279: 32106-32115
Oh J, Karlmark Raja K, Shin J, Hengstschlager M, Pollak A, Lubec G (2005) The neuronal differentiation process involves a series of antioxidant proteins. Amino Acids 29: 273-282
71
Paasche G, Huster D, Reichenbach A (1998) The Glutathione Content of Retinal Mu?ller
(Glial) Cells: The Effects of Aging and of Application of Free-Radical Scavengers.
Ophthalmic Research 30

Palmer HJ, Paulson KE (1997) Reactive oxygen species and antioxidants in signal
transduction and gene expression. Nutr Rev 55: 353-361

Polekhina G, G.Board P, R.Gali R, Rossjohn J, W.Parker M (1999) Molecular basis of
glutathione synthetase deficiency and a rare gene permutation event
The EMBO Journal 18: 3204-3213

Rawlins MR, Leaver JC, May MJ (1995) Characterization of an Arabidopsis thaliana
cDNA encoding glutathione synthetase. FEBS Lett 376: 81-86

Ristoff E, Mayatepek E, Larsson A (2001) Long-term clinical outcome in patients with
glutathione synthetase deficiency. The Journal of pediatrics 139: 79-84

Rosen BP (2002) Transport and detoxification systems for transition metals, heavy
metals and metalloids in eukaryotic and prokaryotic microbes. Comparative
Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 133:
689-693

Runa NL, Svante N (2005) Physiological and pathological aspects of GSH metabolism.
Acta Paediatrica 94: 132-137

Santra A, Maiti A, Das S, Lahiri S, Charkaborty S, Mazumder D (2000) Hepatic damage
caused by chronic arsenic toxicity in experimental animals. J Toxicol Clin Toxicol 38:
395-405


72
Sasaki T, Senda M, S SK, Kojima S, Kubodera A (2001 ) Sasaki T, Senda M, Kim S,
Kojima S, Kubodera A. . Nucl Med Biol 28: 25-31

Schuliga M, Chouchane S, Snow ET (2002) Upregulation of glutathione-related genes
and enzyme activities in cultured human cells by sublethal concentrations of inorganic
arsenic. Toxicol Sci 70: 183-192

Shi H, Shi X, Liu K (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis.
Mol Cell Biochem 255: 67-78

Stadtman ER (1992) Protein oxidation and aging. Science 257: 1220-1224

Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11: 1105-1112

Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free
Radic Biol Med 18: 321-336

Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:
1881-1896

Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J
Physiol Lung Cell Mol Physiol 279: L1005–L1028

Timmons L, Court D, Fire A (2001) Ingestion of bacterially expressed dsRNAs can
produce specific and potent genetic interference in Caenorhabditis elegans
Genetics 263: 103-112

Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395: 854

Valko M, Morris H, Cronin MTD (2005) Metals, Toxicity and Oxidative Stress. Current
Medicinal Chemistry 12,: 1161-1208

Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J
292(Pt 2): 605-608

Vatamaniuk OK, Bucher EA, Sundaram MV, Rea PA (2005) CeHMT-1, a putative
phytochelatin transporter, is required for cadmium tolerance in Caenorhabditis elegans.
The Journal of biological chemistry 280: 23684-23690


Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal
detoxification in animals. Phytochelatin synthase is required for cadmium tolerance in
Caenorhabditis elegans. J Biol Chem 276: 20817-20820

Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular
mechanisms of cadmium carcinogenesis. Toxicology 192: 95-117

Wang CL, Oliver DJ (1997) Glutathione synthetase: similarities of the proteins from
Schizosaccharomyces pombe and Arabidopsis thaliana. Biochem J 326: 563-566

Wang W, Ballatori N (1998) Endogenous glutathione conjugates: occurrence and
biological functions. Pharmacol Rev 50: 335-356

Watts D, Strogatz S (1998) Collective dynamics of 'small-world' networks. Nature 393:
440-442

Wei YH (1992) Mitochondrial DNA alterations as ageing-associated molecular events.
Mutat Res 275: 145-155

Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the
United States: occurrence and geochemistry. Groundwater 38: 589-604

Yabe T, Suzuki N, Furukawa T, Ishihara T, Katsura I (2005) Multidrug
resistance-associated protein MRP-1 regulates dauer diapause by its export activity in
Caenorhabditis elegans. Development (Cambridge, England) 132: 3197-3207

Zhong W, Sternberg PW (2006) Genome-wide prediction of C. elegans genetic
interactions. Science 311: 1481-1484
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25049-
dc.description.abstractGlutathione synthetase (GS)為催化γ-glutamylcysteine以及glycine兩者生合成為glutathione (GSH)的重要酵素。GS-1是在C. elegans 中被預測出來與GS同源的基因。本篇研究目的旨在探討GS-1於抵抗砷及鎘的暴露所誘發之氧化壓力中所扮演的角色。本研究利用RNA干擾技術、基因轉殖的C. elegans 、以及mRNA表達之分析方法探討GS-1在C. elegans 體內的功能及表現。研究結果顯示,經由GS-1 RNA干擾的C. elegans,即使在正常的生長環境下也會產生許多不同的效應,其中包括其生命週期被大幅的縮短、存活率的降低、成蟲率的降低、以及形體外型的改變,而當此C. elegans生長於含有砷及鎘的環境中時,上述的效應則更加的顯著。這些結果證明了GS-1為C. elegans之生長、存活、及生命週期的必要基因,而且對於抵抗砷及鎘所誘導的氧化壓力為不可或缺的重要角色。本研究結果進一步發現C. elegans於不同的生長階段之GS-1 mRNA會有不同程度的表現,而且在L4- stage具有最高的表現量。另外,於基因轉殖的C. elegans的觀察之中也發現當C. elegans受到熱擊 (heat shock)、 巴拉刈 (paraquat)以及鎘暴露等不同來源的壓力之下,基因轉殖的C. elegans會被激發出明顯的螢光訊號,而對於其他的金屬則闕如。本論文的研究結果證明了GS-1為C. elegans生長發育和生命週期的必須基因,更顯示GS-1於抵抗砷及鎘所誘導的氧化壓力中扮演了十分重要的角色。zh_TW
dc.description.abstractGlutathione synthetase (GS) catalyzes the ATP-dependent synthesis of GSH from γ-glutamylcysteine (γ-Glu-Cys) and glycine. It is predicted that GS-1 is the C. elegans ortholog of GS. To investigate the protective role of cellular GSH against arsenic- and cadmium-induced oxidative stress in C. elegans, we examined the effect of GS-1 in response to arsenic and cadmium exposure. The functional importance of GS-1 in C. elegans is investigated by RNA interference (RNAi) mediated (GS-1-dificent) worms. Under normal growth conditions, pleiotropic phenotypes of GS-1 (RNAi) worms were observed, including shorten life span, decreased survival rate and adult percentage, and morphological changes, suggesting that GS-1 is essential for development and viability. These observed effects were more profound while GS-1 (RNAi) worms were grown in the presence of As (III) and Cd (II), indicating that GS-1 is required C. elegans' defense against As (III) and Cd (II) toxicity. GS-1 mRNA expression regulated by different metals in vivo and in vitro were examined by transgenic C. elegans and real-time RT-PCR analysis. GS-1 mRNA varied in different developmental stages of worms and the highest level of GS-1 mRNA was observed at L4-stage. Heat, paraquat, and Cd (II) significantly induced GS-1 expression with the highest level GFP signal, whereas other metals induced less extent. In this study, our results indicated that GS-1 plays an important role in C. elegans’ development and life span, and it is required for the protection of C. elegans against arsenic- and cadmium-induced oxidative stress.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:01:04Z (GMT). No. of bitstreams: 1
ntu-96-R94622014-1.pdf: 1555223 bytes, checksum: 53e2c08c7f6b95e5ffacda80e0508688 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsTABLE OF CONTENTS
口試委員會審定書 I
The approval Sheet II
致謝 III
中文摘要 V
ABSTRACT VI
TABLE OF CONTENTS VIII
LIST OF FIGURES X
LIST OF TABLES XI
Abbreviations XII

CHAPTER 1 INTRODUCTION 1
1.1 Overview 1
1.2 Arsenic 1
1.3 Cadmium 3
1.4 Oxidative Stress 4
1.5 Glutathione and Glutathione Synthetase 8
1.6 Caenorhabditis elegans 13
1.7 Glutathione Synthetase Homolog in C. elegans 14
1.8 Purpose of Study 14
CHAPTER 2 MATERIALS & METHODS 16
2.1 Chemicals 16
2.2 Strains, Clones, and Worm Culture 16
2.3 RNA Interference 16
2.4 Culture and Isolation of C. elegans Exposed to Various Stressors 17
2.5 Synchronization of C. elegans 18
2.6 RNA Isolation and real-time RT-PCR 18
2.7 Effect of Transgenic C. elegans 21
2.8 Life Span Assay 21
2.9 Intracellular GSH Measurement 22
2.10 Statistical Analysis 23
CHAPTER 3 RESULTS 24
3.1 Structure and Organization of gs-1 24
3.2 RNA Interference Analysis 28
3.2.1 Phenotypic analysis of wild type worms with GS-1-deficient 28
3.2.2 As(III) and Cd(II) hypersensitivity of GS-1(RNAi) worms 35
3.2.3 Screening of putative transporter gene using GS-1(RNAi) 40
3.2.4 Down-regulation of GS-1 suppresses longevity in C. elegans 42
3.3 Analysis of GS-1 mRNA Expression level Affected by Stressors 45
3.3.1 Regulation of GS-1 mRNA expression level by As(III), As(V), and Cd(II) 45
3.3.2 Regulation of GS-1 mRNA expression by As(III) associated with development 46
3.4 Effect of Various Stressors on gs-1 Transcription in Transgenic C.elegans 47
CHAPTER 4 DISCUSSION 55
4.1 Characterization of C. elegans GS-1 55
4.2 Down-regulation of GS-1 Reduces C. elegans Life Span 57
4.3 GS-1 mRNA expression affected by various metals Exposure 58
4.4 How As(III) and Cd(II) are exported in C. elegans 61
CHAPTER 5 CONCLUSION 64
REFERENCES 66

LIST OF FIGURES
Figure 1-1 Pathway for the biosynthesis of glutathione 9
Figure 1-2 The roles of GSH were played in oxidative stress managerments 12
Figure 3-1 Schematic diagram and exon/intron organization of gs-1 25
Figure 3-2 Multiple alignment of the predicted amino acid sequence of C. elegans glutathione synthetase with other known GS amino acid sequence. 26
Figure 3-3 Hydropathy profile of the GS-1 amino acid sequence. 29
Figure 3-4 Putative upstream regulatory elements in gs-1 30
Figure 3-5 Effect of GS-1 (RNAi) on C. elegans 32
Figure 3-6 GS-1 (RNAi) affects reproduction of worms 33
Figure 3-7 Morphologic change associated with GS-1 RNAi 34
Figure 3-8 RNAi effect in growth delayed of C. elegans 36
Figure 3-9 RNAi effect in C. elegans of As (III) 38
Figure 3-10 RNAi effect in C. elegans of Cd (II) 39
Figure 3-11 RNAi effect of N2 and VC287 (hmt-1 mutant) in C. elegans 41
Figure 3-12 Lifespan reduction by GS-1-dicifent and mediated with As (III) 43
Figure 3-13 Lifespan reduction by GS-1-dicifent and mediated with Cd (II) 44
Figure 3-14 GS-1 mRNA level by various heavy metals 48
Figure 3-15 The expression of GS-1 during C. elegans development with As (III)..…………………………………………………………………...50
Figure 3-16 Expression pattern of transgenic C. elegans 52
Figure 3-17 Expression pattern of transgenic C. elegans of Cd (II) exposure 53
Figure 3-18 Expression pattern of transgenic C. elegans 54
LIST OF TABLES
Table 2-1 Primers used for real-time PCR 20
dc.language.isoen
dc.subjectCaenorhabditis eleganszh_TW
dc.subjectGlutathione synthetasezh_TW
dc.subjectRNA干擾技術zh_TW
dc.subject砷zh_TW
dc.subject鎘zh_TW
dc.subject氧化壓力zh_TW
dc.subjectarsenicen
dc.subjectoxidative stressen
dc.subjectcadmiumen
dc.subjectGlutathione synthetaseen
dc.subjectRNA interferenceen
dc.subjectCaenorhabditis elegansen
dc.titleCaenorhabditis elegans之glutathione synthetase 基因 受重金屬調控之機制之探討zh_TW
dc.titleRegulation of glutathione synthetase gene in Caenorhabditis elegans by heavy metalsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李心予(Hsin-Yu Lee),沈偉強(Wei-Chiang Shen)
dc.subject.keywordGlutathione synthetase,Caenorhabditis elegans,RNA干擾技術,砷,鎘,氧化壓力,zh_TW
dc.subject.keywordGlutathione synthetase,Caenorhabditis elegans,RNA interference,arsenic,cadmium,oxidative stress,en
dc.relation.page73
dc.rights.note未授權
dc.date.accepted2007-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved