請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25026完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王大銘 | |
| dc.contributor.author | Cheng-Ting Wu | en |
| dc.contributor.author | 吳正婷 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:00:31Z | - |
| dc.date.copyright | 2007-07-31 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-27 | |
| dc.identifier.citation | 1. Mulder, M., Basic Principles of Membrane Technology. Kluwer Academic
Publishers: Dordrecht, 1991. 2. Ho, W. S.; Sirkar, K. K., Membrane Handbook. Van Nostrand Reinhold: New York, 1992. 3. Baker, R. W.; Cussler, E. L.; Eykamp, W.; Koros, W. J.; Riley, R. L.; Strathmann, H., Membrane Separation Systems-Recent Developments and Future Directions. Noyes Data Co.: Park Ridge, 1991. 4. Smolders, C. A.; Reuvers, A. J.; Boom, R. M.; Wienk, I. M., Microstructures in Phase-Inversion Membranes .1. Formation of Macrovoids. Journal of Membrane Science 1992, 73, (2-3), 259-275. 5. Boom, R. M.; Wienk, I. M.; Vandenboomgaard, T.; Smolders, C. A., Microstructures in Phase Inversion Membranes .2. the Role of a Polymeric Additive. Journal of Membrane Science 1992, 73, (2-3), 277-292. 6. Reuvers, A. J., Membrane Formation: Diffusion Induced Demixing Process in Ternary Systems. Ph. D. Thesis, Twente University, Netherlands, 1987. 7. Cheng, J. M.; Wang, D. M.; Lin, F. C.; Lai, J. Y., Formation and Gas Flux of Asymmetric PMMA Membranes. Journal of Membrane Science 1996, 109, (1), 93-107. 8. Caneba, G. T.; Soong, D. S., Polymer Membrane Formation through the Thermal-Inversion Process .2. Mathematical-Modeling of Membrane-Structure Formation. Macromolecules 1985, 18, (12), 2545-2555. 9. Siggia, E. D., Late Stages of Spinodal Decomposition in Binary-Mixtures. Physical Review A 1979, 20, (2), 595-605. 10. Lifshitz, I. M.; Slyozov, V. V., The Kinetics of Precipitation from Supersaturated Solid Solutions. Journal of Physics and Chemistry of Solids 1961, 19, (1-2), 35-50. 11. McGuire, K. S.; Lazminarayan, A.; Lloyd, D. R., A Simple Method of Extrapolating the Coexistence Curve and Predicting the Melting Point Depression Curve from Cloud Point Data for Polymer-diluent Systems Polymer 1994, 35, (20), 4404-4407. 12. Chou, Y. C.; Goldburg, W. I., Phase-Separation and Coalescence in Critically Quenched Isobutyric-Acid-Water and 2,6-Lutidine-Water Mixtures. Physical Review A 1979, 20, (5), 2105-2113. 13. Voigtmartin, I. G.; Leister, K. H., Kinetics of Phase-Separation in Polymer Blends for Deep Quenches. Journal of Polymer Science Part B-Polymer Physics 1986, 24, (4), 723-751. 14. Nojima, S.; Shiroshita, K.; Nose, T., Phase-Separation Process in Polymer Systems .2. Microscopic Studies on a Polystyrene and Diisodecyl Phthalate Mixture. Polymer Journal 1982, 14, (4), 289-294. 15. Tsai, F. J.; Torkelson, J. M., Microporous Poly(Methyl Methacrylate) Membranes - Effect of a Low-Viscosity Solvent on the Formation Mechanism. Macromolecules 1990, 23, (23), 4983-4989. 16. Tsai, F. J.; Torkelson, J. M., Roles of Phase-Separation Mechanism and Coarsening in the Formation of Poly(Methyl Methacrylate) Asymmetric Membranes. Macromolecules 1990, 23, (3), 775-784. 17. Song, S. W.; Torkelson, J. M., Coarsening Effects on Microstructure Formation in Isopycnic Polymer-Solutions and Membranes Produced Via Thermally-Induced Phase-Separation. Macromolecules 1994, 27, (22), 6389-6397. 18. McGuire, K. S.; Laxminarayan, A.; Lloyd, D. R., Kinetics of Droplet Growth in Liquid-liquid Phase Separation of Polymer-diluent Systems: Experimental Results. Polymer 1995, 36, (26), 4951-4960. 19. Tanaka, H., New Coarsening Mechanisms for Spinodal Decomposition Having Droplet Pattern in Binary-Fluid Mixture - Collision-Induced Collisions. Physical Review Letters 1994, 72, (11), 1702-1705. 20. Kamide, K.; Iijima, H.; Matsuda, S., Thermodynamics of Formation of Porous Polymeric Membrane by Phase-Separation Method .1. Nucleation and Growth of Nuclei. Polymer Journal 1993, 25, (11), 1113-1131. 21. Kamide, K.; Iijima, H.; Shirataki, H., Thermodynamics of Formation of Porous Polymeric Membrane by Phase-Separation Method .2. Particle Simulation Approach by Monte-Carlo Method and Experimental-Observations for the Process of Growth of Primary Particles to Secondary Particles. Polymer Journal 1994, 26, (1), 21-31. 22. Kamide, K.; Iijima, H.; Kataoka, A., Thermodynamics of Formation of Porous Polymeric Membrane by Phase-Separation Method .4. Pore Formation by Contacting Secondary Particles - Computer-Simulation Experiments. Polymer Journal 1994, 26, (5), 623-636. 23. vandeWitte, P.; Dijkstra, P. J.; vandenBerg, J. W. A.; Feijen, J., Phase Separation Processes in Polymer Solutions in Relation to Membrane Formation. Journal of Membrane Science 1996, 117, (1-2), 1-31. 24. Matsuyama, H.; Teramoto, M.; Uesaka, T.; Goto, M.; Nakashio, F., Kinetics of Droplet Growth in the Metastable Region in Cellulose Acetate/Acetone/Nonsolvent System. Journal of Membrane Science 1999, 152, (2), 227-234. 25. Flory, P. J., Principles of Polymer Chemistry. Cornell University Press, 1953. 26. Lee, H. J.; Jung, B.; Kang, Y. S.; Lee, H., Phase Sparation of Polymer Casting Solution by Nonsolvent Vapor. Journal of Membrane Science 2004, 245, (1-2), 103-112. 27. Karimi, M.; Albrecht, W.; Heuchel, M.; Kish, M. H.; Frahn, J.; Weigel, T.; Hofmann, D.; Modarress, H.; Lendlein, A., Determination of Water/Polymer Interaction Parameter for Membrane-forming Systems by Sorption Measurement and a Fitting Technique. Journal of Membrane Science 2005, 265, (1-2), 1-12. 28. Barth, C.; Wolf, B. A., Quick and Reliable Routes to Phase Diagrams for Polyethersulfone and Polysulfone Membrane Formation. Macromolecular Chemistry and Physics 2000, 201, (3), 365-374. 29. Kim, Y. D.; Kim, J. Y.; Lee, H. K.; Kim, S. C., Formation of Polyurethane Membranes by Immersion Precipitation. I. Liquid-liquid Phase Separation in a Polyurethane/DMF/Water system. Journal of Applied Polymer Science 1999, 73, (12), 2377-2384. 30. Song, S. W.; Torkelson, J. M., Coarsening Effects on the Formation of Microporous Membranes Produced Via Thermally-Induced Phase-Separation of Polystyrene-Cyclohexanol Solutions. Journal of Membrane Science 1995, 98, (3), 209-222. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25026 | - |
| dc.description.abstract | 在製備多孔性薄膜的前提下,本研究希望能夠深入地探究液-液相分離後之合併現象,唯此方能有效地控制出預期之薄膜結構。文獻曾提及,影響合併速率最主要之兩項因素分別為介質黏度和界面張力,因此本研究便欲藉著探討這兩項因素來了解合併速率之於薄膜結構的影響。
在以DMF(N,N-dimethylformamide)和2P(2-Pyrrolidinone)作為溶劑(或共溶劑)之鑄膜液系統中,PU和PSf薄膜雖均能藉蒸氣誘導式相分離法順利製得微米級之雙連續薄膜型態,不過卻於後續之蕾絲結構維持能力上有著顯著的差異。於同一鑄膜液濃度下,使用2P作為溶劑組成可提高鑄膜液之黏度,且高黏度之性質能有效地抗拒合併現象的產生,進而使蕾絲結構得以於非溶劑蒸氣環境中長時間地保持住;相反地,以DMF作為溶劑組成時,由於無法明顯地提升鑄膜液之黏度,因此產生了較高之合併速率,使蕾絲結構很快地便消失。然而,於相同溶劑(或共溶劑)使用下,雖然提高鑄膜液之濃度也可增加黏度值,但經FTIR量測後發現,提高鑄膜液濃度同時亦會拉升相分離後之兩相組成濃度差,因此產生較大之界面張力值,故高濃度之鑄膜液系統反而無法如低濃度鑄膜液系統,展現較緩慢之合併速率。 在不同高分子之成膜系統中,高分子間的差異也會為最終薄膜結構帶來不同的型態。如本研究中之PU和PSf系統,我們觀察到PU薄膜結構整體上是較PSf薄膜結構更具多孔性;故經三成份相圖之分析後發現,PU系統可藉稀釋效應、tie line型態等現象來延緩合併現象,因而較易展現多孔之薄膜結構。除此之外,成膜環境之相對濕度亦會對薄膜結構產生影響;我們觀測到低濕度之非溶劑蒸氣環境可降緩合併及固化速率,故相較於高濕度環境而言,其薄膜結構合併(成長)得較慢但最終結構尺寸卻較大。因此,若欲藉蒸氣誘導式相分離法製備預期之薄膜型態,黏度、濃度、高分子和濕度皆係為考量重點。 | zh_TW |
| dc.description.abstract | In order to control the porous membrane structures in preparation processes, the coarsening behavior after liquid-liquid phase separation must be deeply understood. As previous literature mentioned, the medium viscosity and interfacial tension between two phases are two main factors affecting coarsening rate, therefore, this research is to realize the effects of coarsening on membrane morphology by analyzing these two important factors.
In the VIPS process, although the bicontinuous structures were both found in PU and PSf membranes by using DMF and 2P as solvent (or cosolvent), these membranes still demonstrated different ability in keeping their own lacy structures. At the same polymer concentration of cast solution, it was observed that increasing the viscosity by using 2P as solvent composition strengthened the resistance to coarsening, while using DMF as solvent composition didn't help with enhancing viscosity, and low resistance to coarsening was shown. However, viscosity wasn't the only factor influencing coarsening. In the same couple of polymer and solvent, although the higher polymer concentration of cast solution resulted in high viscosity, higher interfacial tension, which was resulted from larger concentration difference between two phases after phase separation, was also caused by increasing concentration of cast solution from FTIR analysis. Therefore, merely increasing the viscosity of cast solution couldn't completely reduce the coarsening rate, the interfacial tension arising from the concentration of cast solution should also be taken into account. Besides, the difference between polymers might cause different membrane structures, just like what PU and PSf were showed in this research. From the analysis of ternary phase diagram, PU membranes had higher porosity and coarsening-resisting ability than PSf membranes due to dilution effect in polymer concentration and tie line type, etc., and all these factors exactly originated in difference between polymers. The last discussed parameter affected membranes structure in this research was relative humidity. It was found that low humidity environment could decelerate coarsening and solidifying rates, so in low humidity, the structures grew slowly but were larger in final pore size. Overall, in the VIPS process, the following parameters such as viscosity, concentration, polymer characteristics and humidity environment, must all be concerned to prepare expected membrane structures. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:00:31Z (GMT). No. of bitstreams: 1 ntu-96-R93524015-1.pdf: 12124856 bytes, checksum: fdd2e3daf25d165343c23b533da9a721 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 致謝 Ⅰ
中文摘要 Ⅱ 英文摘要 Ⅳ 目錄 Ⅵ 圖索引 Ⅶ 表索引 Ⅹ 第一章 緒論 1 1-1薄膜之應用 1 1-2薄膜製備方法 2 1-3 NIPS成膜理論之介紹 4 1-3-1熱力學 4 1-3-2動力學 5 1-3-2-1質傳動力學 5 1-3-2-2合併成長動力學 6 1-4高分子材料簡介 8 1-4-1 PU(Polyurethane)介紹 8 1-4-2 PSf(Polysulphone)介紹 9 1-5文獻回顧 11 1-6研究動機和目的 15 第二章 實驗材料與研究方法 16 2-1實驗藥品 16 2-2實驗儀器 16 2-3研究方法 17 2-3-1鑄膜液配製 17 2-3-2薄膜之製備 17 2-3-3掃描式電子顯微鏡分析(SEM) 17 2-3-4吸水秤重實驗 17 2-3-5黏度量測 18 2-3-6凝聚值(Coagulant value)量測 18 2-3-7霧點(Cloud-point)量測 18 2-3-8相圖繪製 18 2-3-9 FTIR-Microscopy分析 21 第三章 結果與討論 23 3-1鑄膜液組成對PU薄膜結構之影響 23 3-1-1鑄膜液之溶劑組成對PU薄膜結構之影響 23 3-1-2鑄膜液之濃度對PU薄膜結構之影響 32 3-1-3鑄膜液組成對PU薄膜合併效應之比較 37 3-2鑄膜液組成對PSf薄膜結構之影響 41 3-2-1鑄膜液之溶劑組成對PSf薄膜結構之影響 41 3-2-2鑄膜液之濃度對PSf薄膜結構之影響 47 3-2-3鑄膜液組成對PSf薄膜合併效應之比較 53 3-3 FTIR之分析結果 56 3-4高分子間之差異性對薄膜結構之影響 66 3-5成膜環境之相對濕度對薄膜結構之影響 70 第四章 結論 80 第五章 參考文獻 82 附錄A 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | PU | zh_TW |
| dc.subject | PSf | zh_TW |
| dc.subject | 高分子黏度 | zh_TW |
| dc.subject | 高分子濃度 | zh_TW |
| dc.subject | 合併速率 | zh_TW |
| dc.subject | PU | en |
| dc.subject | viscosity | en |
| dc.subject | concentration | en |
| dc.subject | PSf | en |
| dc.subject | coarsening rate | en |
| dc.title | 蒸氣誘導式相分離法中高分子富相和高分子貧相之合併速率對於薄膜結構的影響 | zh_TW |
| dc.title | Coarsening of polymer-rich phase and polymer-poor phase
on membrane structures in VIPS process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賴君義,林芳慶 | |
| dc.subject.keyword | PU,PSf,高分子黏度,高分子濃度,合併速率, | zh_TW |
| dc.subject.keyword | PU,PSf,concentration,viscosity,coarsening rate, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 11.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
