Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25021
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王大銘
dc.contributor.authorWan-Yu Leeen
dc.contributor.author李宛諭zh_TW
dc.date.accessioned2021-06-08T06:00:25Z-
dc.date.copyright2007-07-31
dc.date.issued2007
dc.date.submitted2007-07-27
dc.identifier.citation1. Mulder, M., Basic Principles of Membrane Technology. second ed.; Kluwer Academic Boston, 1997.
2. Kang, Y. S.; Kim, H. J.; Kim, U. Y., Asymmetric membrane formation via immersion precipitation method .1. kinetic effect. Journal of Membrane Science 1991, 60, (2-3), 219-232.
3. Qin, J. J.; Li, Y.; Lee, L. S.; Lee, H., Cellulose acetate hollow fiber ultrafiltration membranes made from CA/PVP 360 K/NMP/water. Journal of Membrane Science 2003, 218, (1-2), 173-183.
4. Caneba, G. T.; Soong, D. S., Polymer membrane formation through the thermal-inversion process .1. experimental-study of membrane-structure formation. Macromolecules 1985, 18, (12), 2538-2545.
5. Caneba, G. T.; Soong, D. S., Polymer membrane formation through the thermal-inversion process .2. mathematical-modeling of membrane-structure formation. Macromolecules 1985, 18, (12), 2545-2555.
6. Reuvers, A. J.; Altena, F. W.; Smolders, C. A., Demixing and gelation behavior of ternary cellulose-acetate solutions. Journal of Polymer Science Part B-Polymer Physics 1986, 24, (4), 793-804.
7. Young, T. H.; Cheng, L. P.; Lin, D. J.; Fane, L.; Chuang, W. Y., Mechanisms of PVDF membrane formation by immersion-precipitation in soft (1-octanol) and harsh (water) nonsolvents. Polymer 1999, 40, (19), 5315-5323.
8. Lin, F. C.; Wang, D. M.; Lai, J. Y., Asymmetric TPX membranes with high gas flux. Journal of Membrane Science 1996, 110, (1), 25-36.
9. Stropnik, C.; Musil, V.; Brumen, M., Polymeric membrane formation by wet-phase separation; turbidity and shrinkage phenomena as evidence for the elementary processes. Polymer 2000, 41, (26), 9227-9237.
10. Tanaka, H., Viscoelastic phase separation. Journal of Physics-Condensed Matter 2000, 12, (15), R207-R264.
11. Lifshitz, I. M.; Slyozov, V. V., The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids 1961, 19, (1-2), 35-50.
12. Siggia, E. D., Late stages of spinodal decomposition in binary-mixtures. Physical Review A 1979, 20, (2), 595-605.
13. Ripoche, A.; Menut, P.; Dupuy, C.; Caquineau, H.; Deratani, A., Poly(ether imide) membrane formation by water vapour induced phase inversion. Macromolecular Symposia 2002, 188, 37-48.
14. Matsuyama, H.; Ohga, K.; Maki, T.; Tearamoto, M.; Nakatsuka, S., Porous cellulose acetate membrane prepared by thermally induced phase separation. Journal of Applied Polymer Science 2003, 89, (14), 3951-3955.
15. Pinnau, I.; Koros, W. J., Influence of quench medium on the structures and gas permeation properties of polysulfone membranes made by wet and dry wet phase inversion. Journal of Membrane Science 1992, 71, (1-2), 81-96.
16. Radovanovic, P.; Thiel, S. W.; Hwang, S. T., Formation of asymmetric polysulfone membranes by immersion precipitation .1. modeling mass-transport during gelation. Journal of Membrane Science 1992, 65, (3), 213-229.
17. Fan, S. C.; Wang, Y. C.; Li, C. L.; Lee, K. R.; Liaw, D. J.; Huang, H. P.; Lai, J. Y., Effect of coagulation media on membrane formation and vapor permeation performance of novel aromatic polyamide membrane. Journal of Membrane Science 2002, 204, (1-2), 67-79.
18. Loske, S.; Goncalves, M. D. C.; Wolf, B. A., Fractionation of cellulose acetate for the investigation of molecular weight influences on the morphology of membranes. Journal of Membrane Science 2003, 214, (2), 223-228.
19. 蘇順良,'雙凝聚槽製備PMMA三層結構薄膜之成膜機制探討',中原大學化學工程學系碩士論文(2006).
20. Xu, Z. L.; Chung, T. S.; Loh, K. C.; Lim, B. C., Polymeric asymmetric membranes made from polyetherimide/polybenzimidazole/poly(ethylene glycol) (PEI/PBI/PEG) for oil-surfactant-water separation. Journal of Membrane Science 1999, 158, (1-2), 41-53.
21. Xu, Z. L.; Chung, T. S.; Huang, Y., Effect of polyvinylpyrrolidone molecular weights on morphology, oil/water separation, mechanical and thermal properties of polyetherimide/polyvinylpyrrolidone hollow fiber membranes. Journal of Applied Polymer Science 1999, 74, (9), 2220-2233.
22. Kang, J. S.; Kim, K. Y.; Lee, Y. M., Preparation of microporous chlorinated poly(vinyl chloride) membrane in fabric and the characterization of their pore sizes and pore-size distributions. Journal of Applied Polymer Science 2002, 86, (5), 1195-1202.
23. Akthakul, A.; McDonald, W. F.; Mayes, A. M., Noncircular pores on the surface of asymmetric polymer membranes: evidence of pore formation via spinodal demixing. Journal of Membrane Science 2002, 208, (1-2), 147-155.
24. Park, H. C.; Kim, Y. P.; Kim, H. Y.; Kang, Y. S., Membrane formation by water vapor induced phase inversion. Journal of Membrane Science 1999, 156, (2), 169-178.
25. Tsai, F. J.; Torkelson, J. M., Microporous poly(methyl methacrylate) membranes - effect of a low-viscosity solvent on the formation mechanism. Macromolecules 1990, 23, (23), 4983-4989.
26. Song, S. W.; Torkelson, J. M., Coarsening effects on microstructure formation in isopycnic polymer-solutions and membranes produced via thermally-induced phase-separation. Macromolecules 1994, 27, (22), 6389-6397.
27. McGuire, K. S.; Laxminarayan, A.; Lloyd, D. R., Kinetics of droplet growth in liquid-liquid phase separation of polymer-diluent systems: Experimental results. Polymer 1995, 36, (26), 4951-4960.
28. 林冠宇,'三成分系統熱誘導式相分離孔洞成長與合併之探討',中原大學化學工程學系碩士論文(2003).
29. Balashova, I. M.; Danner, R. P.; Puri, P. S.; Duda, J. L., Solubility and diffusivity of solvents and nonsolvents in polysulfone and polyetherimide. Industrial & Engineering Chemistry Research 2001, 40, (14), 3058-3064.
30. 陳儀梅,'醋酸纖維素中空纖維透析器接枝肝素對血液相容性之影響',國立台灣科技大學高分子工程學系碩士論文(2004).
31. Barton, A. F. M., CRC Handbook of Solubility Parameters and Other Cohesion Parameter. sencond ed.; Boca Raton : CRC Press: Florida, 1991.
32. White, S. A.; Weissman, S. R.; Kambour, R. P., Resistance of a Polyetherimide to Environmental-Stress Crazing and Cracking. Journal of Applied Polymer Science 1982, 27, (7), 2675-2682.
33. Aarts, D.; Dullens, R. P. A.; Lekkerkerker, H. N. W., Interfacial dynamics in demixing systems with ultralow interfacial tension. New Journal of Physics 2005, 7.
34. Li, Z. S.; Jiang, C. Z., Investigation of the dynamics membrane formation by of poly(ether sulfone) membrane formation by precipitation immersion. Journal of Polymer Science Part B-Polymer Physics 2005, 43, (5), 498-510.
35. Caquineau, H.; Menut, P.; Deratani, A.; Dupuy, C., Influence of the relative humidity on film formation by vapor induced phase separation. Polymer Engineering and Science 2003, 43, (4), 798-808.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25021-
dc.description.abstract本研究主要工作是以非溶劑誘導相分離法製備高孔隙度膜面結構之探討,製程方法包括濕式法(Wet process)以及蒸氣誘導式法(VIPS process)。選用三種高應用性之材料分別為PEI ( polyetherimide)、PSf ( polysulfone )及CA ( cellulose acetae );由於所使用之系統或製程中溶劑移除較慢,因此合併速度在薄膜孔洞控制方面極為重要,而本研究則透過添加物或改變溶劑來控制合併行為。
第一部份為濕式法,以乙醇為凝聚劑以避免緻密皮層產生;於PEI/NMP(N-Methyl-Pyrrolidone)系統,可得多孔膜面,孔隙度為30.8%;於PSf/NMP系統中,由於過度成長,膜面轉為緻密,因此透過添加物於鑄模液中,在黏度提升不高時(100cp以下),抑制孔洞合併,孔隙度為35.7%。在CA/NMP系統中,相分離過程表面高分子濃度大幅下降,因而相分離後高分子貧相與富相間的界面張力差異小,此外鑄膜液黏度高於1500cp,抑制孔洞合併,最終膜面孔隙度為46.5%。
第二部份為蒸氣誘導式相分離法,此部份控制不同的VIPS時間,使孔洞成長,再入水固定結構,而達到控制孔洞大小之目的。由於VIPS中溶劑移除較濕式法為慢,因此需設法抑制合併以製備多孔結構。在PEI/NMP系統中相較添加非溶劑GBL(γ-butyrolactone)於鑄膜液中,添加劑2P(2-Pyrrolidinone)較可有效提升黏度(約196cp以上),此外於PSf系統以2P為溶劑,也可大幅提升黏度(約588cp),因此抑制合併速度,利於製程上控制孔洞大小。在後續研究中結合VIPS程序再以乙醇為凝聚劑固定結構,最終膜面孔隙度可高達49.6%,且抑制巨型孔洞之生成,並有機會提升薄膜之應用性。
zh_TW
dc.description.abstractThe present work was to prepare polymer membranes with highly porous surface structure by non-solvent induced phase separation method, including wet process and vapor induced phase separation. Three highly applied materials, PEI, PSf and CA were chosen. In some systems or during the membrane preparation process, because the solvents were hard to be removed, the coarsening rate was important for controlling the pore size. Therefore the present work was to reduce the coarsening phenomena by additives or changing solvents in the casting solution.
In first part, wet process method was used. Ethanol was chosen as coagulant to prevent the formation of dense surface. In PEI/NMP system, a porous surface with 30.8% porosity was obtained. In PSf/NMP system, because of further coarsening a denser surface was obtained. By adding non-solvent in the casting solution, while the viscosity was lower than 100cp, the coarsening phenomenon was reduced and a porous surface with 35.7% porosity was obtained. In CA/NMP system, during phase separation process the polymer concentration on the surface decreased, therefore the interfacial tension between two phases was smaller. Also the viscosity was higher than 1500 cp, as a result a slower coarsening rate and the porosity reached 46.5%.
In second part, the vapor induce phase separation method was used. By controlling different VIPS time, the growth of polymer poor phase could be controlled. Then water was chosen as coagulant to solidify the structure to prepare membranes with different pore sizes. Because the solvents were harder to be removed compared the wet process, it would be necessary to reduce the coarsening rate and a micron porous surface membrane could be prepared. In PEI/NMP system, by adding non-solvent 2P, the viscosity increased efficiently ( about 196cp ) compared the casting solution by adding non-solvent GBL. Also in PSf system, 2P was chosen as solvent, the viscosity could increase efficiently ( about 588cp ). Therefore the coarsening rate was slower, and hence it was easier to control the membrane structure. Finally, the method combining the VIPS process and wet process with coagulant ethanol could obtain porous surface approaching 49.6% porosity, suppress the formation of macrovoids, and have chance to improve the application of membranes.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:00:25Z (GMT). No. of bitstreams: 1
ntu-96-R94524022-1.pdf: 5941211 bytes, checksum: 101ca746935a63604e819a5719406be0 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XIII
縮寫符號說明 XV
第一章、緒論 1
1-1 、薄膜簡介 1
1-2 、成膜方式之介紹 2
1-2-1 、濕式相轉換法(Wet method ) 2
1-2-2 、蒸氣誘導式相分離法 ( Vapor induced phase separation method ) 3
1-2-3 、乾式製程(Dry method) 3
1-2-4 、乾/濕式製程(Dry/Wet method) 3
1-2-5 、熱誘導式相轉換法 (Thermally induced phase separation) 3
1-3 、基礎理論 4
1-3-1 、熱力學 4
1-3-1-1 、液-液相分離(liquid-liquid demixing) 4
1-3-1-2 、膠化(gelation) 5
1-3-1-3 、結晶(crystallization) 5
1-3-2 、動力學 6
1-3-2-1 、質傳動力學 6
1-3-2-2 、質傳動力學-成長及合併(coarsening)行為 8
1-4 、影響薄膜結構及孔洞控制之因素 11
1-5 、製備多孔薄膜及孔洞控制 12
1-6 、PEI、PSf、CA高分子之性質介紹 16
1-7 、研究動機 18
第二章、實驗 19
2-1 、實驗藥品 19
2-2 、實驗儀器 20
2-3 、實驗方法 21
2-3-1 、鑄膜液之配製 21
2-4 、薄膜之製備與觀察 21
2-4-1 、濕式法(wet process) 21
2-4-2 、蒸氣誘導式法(VIPS) 22
2-4-3 、薄膜結構之分析 22
2-4-4 、光學顯微鏡 22
2-4-5 、鑄膜液黏度的量測 23
2-4-6 、凝聚值(CVs)量測 23
第三章、結果與討論 25
3-1 、以乙醇為凝聚劑濕式成膜 26
3-1-1 、PEI多孔薄膜之製備 27
3-1-2 、PSf多孔薄膜之製備 33
3-1-3 、CA多孔薄膜之製備 39
3-2 、以蒸氣誘導式法製膜 47
3-2-1 、VIPS製備多孔PEI薄膜 – 黏度對合併速度之效應 47
3-2-2 、VIPS製備多孔PEI薄膜 – 濃度對合併速度之效應 57
3-2-3 、VIPS法製備多孔PSf薄膜 – 黏度對合併速度的效應 59
3-2-4 、後續濕式法凝聚劑使用乙醇槽之效應 64
第四章、結論 67
參考文獻 69
附錄…………………………………………………………………………………… 73
dc.language.isozh-TW
dc.subject合併速度zh_TW
dc.subject高孔隙度zh_TW
dc.subject非溶劑誘導相分離法zh_TW
dc.subject聚醚醯亞胺zh_TW
dc.subject聚&#30904zh_TW
dc.subject醋酸纖維素zh_TW
dc.subjectcellulose acetateen
dc.subjecthigh porosityen
dc.subjectpolysulfoneen
dc.subjectpolyetherimideen
dc.subjectcoarsening rateen
dc.subjectnon-solvent induced phase separation process methoden
dc.title以非溶劑誘導相轉換法製備高孔隙度膜面結構之探討zh_TW
dc.titlePreparation of polymer membranes with highly porous surface
structure by non-solvent induced phase separation method
en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴君義,林芳慶
dc.subject.keyword高孔隙度,非溶劑誘導相分離法,聚醚醯亞胺,聚&#30904,醋酸纖維素,合併速度,zh_TW
dc.subject.keywordhigh porosity,non-solvent induced phase separation process method,polyetherimide,polysulfone,cellulose acetate,coarsening rate,en
dc.relation.page72
dc.rights.note未授權
dc.date.accepted2007-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
5.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved