Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馮哲川
dc.contributor.authorChu-Wan Huangen
dc.contributor.author黃初旺zh_TW
dc.date.accessioned2021-06-08T05:59:21Z-
dc.date.copyright2007-08-28
dc.date.issued2007
dc.date.submitted2007-07-30
dc.identifier.citationReferences
2.1 R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, 2nd ed., Amsterdam: North Holland (1987).
2.2 Roseler, Infrared Spectroscopic Ellipsometry, Berlin: Akademie-Verlag (1990).
2.3 H. G. Tompkins, A User’s Guide to Ellipsometry, San Diego, CA: Academic Press (1993).
2.4 H. G. Tompkins and W. A. McGahan, Spectroscopic Ellipsometry and Reflectometry, New York: Wiley (1999).
2.5 Rothen et al., Ellipsometry in the Measurement of Surfaces and Thin Films, Washington, DC: U.S. Government Printing Office, Nati. Bur. Stand. Misc. Pub. I. 256 (1964).
2.6 N. M. Bashara, A. B. Buckman, and A. C. Hall (eds.), Proceedings of the Symposium on Recent Developments in Ellipsometiy, Amsterdam: North Holland (1969).
2.7 N. M. Bashara and R. M. A. Azzam (eds.), Ellipsometiy, Proceedings of the Third International Conference on Ellipsometiy, Amsterdam: North Holland (1976).
2.8 J. de Physique, Ellipsometry and Other Optical Methods for Surface and Thin Film Analysis, Les Ulis, France (1983).
2.9 C. Boccara, C. Pickering, and J. Rivory (eds.), Spectroscopic Ellipsometry, Amsterdam: Elsevier (1993).
2.10 R. W. Collins, D. E. Aspnes, and E. A. Irene (eds.), Spectroscopic ellipsonietry, Thin Solid Films, 313-314 (1-2): 1-837 (1998).
2.11 H. Arwin, Spectroscopic ellipsometry and biology: Recent developments and challenges, Thin Solid Films, 313-314 (1-2): 765-775 (1998).
2.12 S. Gottesfeld, Y. T. Kim, and A. Redondo, Recent applications of ellipsometry and spectroellipsonietry in electrochemical systems, in I. Rubinstein (ed.), Physical Electrochemistry: Principles, Methods, and Applications, New York: Dekker, pp. 393-468 (1995).
2.13 R. Muller, R. Varma, and J.R. Selman (eds.), Techniques for Characterization of Electrodes and Electrochemical Processes, New York: Wiley, pp. 167-226 (1991).
2.14 Wei Gao, Tingkai Li. Yoshi Ono and Sheng Teng Hsu, Photoluminesence and electroluminescence studies on Tb doped silicon rich oxide materials and devices, Journal of rare earths, 24, 673 -678 (2006).
2.15 Stefan Zollner, J. G. Chen, and Erika Duda, Dielectric functions of bulk 4H and 6H SiC and spectroscopic ellipsometry studies of thin SiC films on Si, J. Appl. Phys., 85, pp. 8353-8361 (1999).
2.16 T. P. Chen, Y. Liu, M. S. Tse, and P. F. Ho, Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry, Appl. Phys. Lett.l, 81, pp. 4724-4726 (2002).
2.17 T Easwarakhanthan, M. B. Assouar, P. Pigeat, and P. Alnot, Optical models for radio- frequency- magnetron reactively sputtered AlN films, J. Appl. Phys., 98, pp. 073531 (2005).
2.18 Leonard I. Kamlet, Fred L. Terry Jr., Dielectric function modeling for In1-yAlyAs on InP, Thin Solid Films, 313-314, pp. 177-182 (1998).
2.19 Emmanouil Lioudakis, Androula Nassiopoulou, Andreas Othonos, Ellipsometric analysis of ion-implanted polycrystalline silicon films before and after annealing, Thin Solid Films, 496, pp. 253-258 (2006).
2.20 H. Ahn, C.-H. Shen, C. -L. Wu, and S. Gwo, Spectroscopic ellipsometry study of wurtzite InN epitaxial films on Si(111) with varied carrier concentrations, Appl. Phys. Lettl, 86, pp. 201905 (2005).
2.21 S. Van Gils, C. A. Melendres and H. Terryn, Quantitative chemical composition of thin films with infrared spectroscopic ellipsometry: application to hydrated oxide films on aluminium, Surf. Interface Ana, 35, pp. 387-394 (2003)
2.22 R. P. Shrestha, D. Yang, E.A. Irene, Ellipsometry study of poly (o-methoxyaniline) thin films, Thin Solid Films, 500, pp. 252-258 (2006).
2.23 Iwao Suzuki, Masahiro Ejima, Kenichi Watanabe, Yi-Ming Xiong, Tadashi Saitoh, Spectroscopic ellipsometry characterization of Ba0.7Sr0.3TiO3 thin films prepared by the sol-gel method, Thin Solid Films, 313-31, pp. 214-217 (1998).
2.24 James N. Hilfiker, Corey L Bungay, Ron A. Synowicki, Thomas E. Tiwald Craig M. Herzinger, Blaine Johs, Greg K. Pribil, and John A. Woollam, Progress in spectroscopic ellipsometry: Applications from vacuum ultraviolet to infrared, J. Vac. Sci. Technol A., 21, pp. 1103-1108 (2003).
2.25 John A. Woollam, Blaine Johs, Craig M. Herzinger, James Hilfiker, Ron Synowicki, and Corey L. Bungay, Overview of Variable Angle Spectroscopic Ellipsometry (VASE), Part I: Basic Theory and Typical Applications, Critical Reviews of Optical Science and Technology, CR72, (200)
2.26 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, Cambridge University Press, Cambridge (1988).
2.27 G. E. Jellison, Jr., Spectroscopic ellipsometry data Analysis: Measured Versus Calculated Quantities, Thin Solid Films 313-314, 33 (1998).
3.1 Se-Young Seo and Jung H. Shin, Enhancement of the green, visible Tb+3 luminescence from Tb-doped silicon-rich silicon oxide by C co-doping, Appl. Phys. Lett., 84, pp. 4379-4381 (2004).
3.2 Wei Gao, Tingkai Li. Yoshi Ono and Sheng Teng Hsu, Photoluminesence and electroluminescence studies on Tb doped silicon rich oxide materials and devices, Journal of rare earths, 24, 673 -678 (2006).
3.3 Stefan Zollner, J. G. Chen, and Erika Duda, Dielectric functions of bulk 4H and 6H SiC and spectroscopic ellipsometry studies of thin SiC films on Si, J. Appl. Phys., 85, pp. 8353-8361 (1999).
3.4 T. P. Chen, Y. Liu, M. S. Tse, and P. F. Ho, Depth profiling of Si nanocrystals in Si-implanted SiO2 films by spectroscopic ellipsometry, Appl. Phys. Lett.l, 81, pp. 4724-4726 (2002).
3.5 T. Easwarakhanthan, M. B. Assouar, P. Pigeat, and P. Alnot, Optical models for radio- frequency- magnetron reactively sputtered AlN films, J. Appl. Phys., 98, pp. 073531 (2005).
3.6 Leonard I. Kamlet, Fred L. Terry Jr., Dielectric function modeling for In1-yAlyAs on InP, Thin Solid Films, 313-314, pp. 177-182 (1998).
3.7 Emmanouil Lioudakis, Androula Nassiopoulou, Andreas Othonos, Ellipsometric analysis of ion-implanted polycrystalline silicon films before and after annealing, Thin Solid Films, 496, pp. 253-258 (2006).
3.8 H. Ahn, C.-H. Shen, C. -L. Wu, and S. Gwo, Spectroscopic ellipsometry study of wurtzite InN epitaxial films on Si(111) with varied carrier concentrations, Appl. Phys. Lettl, 86, pp. 201905 (2005).
3.9 S. Van Gils, C. A. Melendres and H. Terryn, Quantitative chemical composition of thin films with infrared spectroscopic ellipsometry: application to hydrated oxide films on aluminium, Surf. Interface Ana, 35, pp. 387-394 (2003)
3.10 R. P. Shrestha, D. Yang, E.A. Irene, Ellipsometry study of poly (o-methoxyaniline) thin films, Thin Solid Films, 500, pp. 252-258 (2006).
3.11 Iwao Suzuki, Masahiro Ejima, Kenichi Watanabe, Yi-Ming Xiong, Tadashi Saitoh, Spectroscopic ellipsometry characterization of Ba0.7Sr0.3TiO3 thin films prepared by the sol-gel method, Thin Solid Films, 313-31, pp. 214-217 (1998).
3.12 James N. Hilfiker, Corey L Bungay, Ron A. Synowicki, Thomas E. Tiwald Craig M. Herzinger, Blaine Johs, Greg K. Pribil, and John A. Woollam, Progress in spectroscopic ellipsometry: Applications from vacuum ultraviolet to infrared, J. Vac. Sci. Technol A., 21, pp. 1103-1108 (2003).
4.1 S. Nakamura, M.Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyyoku and Y. Sugimoto, InGaN-Based Multi-Quantum-Well-Structure Laser Diodes, Jpn. J. Appl. Phys. 35, L74 (1996).
4.2 S. N. Mohammad and H. Morkoc, Progress and Prospects of Group III-V Nitride Semiconductors, Progress in Quantum Electronics, Vol. 20, Numbers 5 and 6, pp. 361-525 (1996).
4.3 Ambacher, M. Arzberger, D. Brunner, H. Angerer, F. Freudenberg, N. Esser, T. Wethkamp, K. Wilmers, W. Richter and M. Stutzmann, MIJ-NIR 2, Art. 22 (1997).
4.4 G. Yu, H. Ishikawa, M. Umeno, T. Egawa, J. Watanabe, T.Jimbo and T. Soga, Optical properties of AlxGa1 – xN/GaN heterostructures on sapphire by spectroscopic ellipsometry, Appl. Phys. Lett 72, 2204 (1998).
4.5 F. Abeles and M L Theye, Méthode de calcul des constantes optiques des couches minces absorbantes à partir de mesures de réflexion et de transmission, Surf. Sci. 5, 325 (1966).
4.6 R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon, J. Phys. E 16, 1214 (1983).
4.7 R.Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films, J. Phys. E 17, 896 (1984).
4.8 J. Szczyrbowski, Determination of optical constants of real thin films, J. Phys. D 11, 583 (1978).
4.9 M. Nowak, Determination of optical constants and average thickness of inhomogeneous-rough thin films using spectral dependence of optical transmittance, Thin Solid Films 254, 200 (1995).
4.10 S. H. Wemple and J.A. Seman, Optical transmission through multilayered structures, App. Opt. 12, 2947 (1973).
4.11 R.J. Elliott, Intensity of Optical Absorption by Excitons, Phys Rev 108, 1384 (1957).
4.12 C. Tanguy, IEEE J. Quantum Electron 32, 1746 (1998).
4.13 M.D. Sturge, Optical Absorption of Gallium Arsenide between 0.6 and 2.75 eV, Phys Rev 127, 768, (1962)
4.14 Zhonghai Yu, M.A.L. Johnson, J.D. Brown, N.A. El-Masry, J.W. Cook, Jr., and J.F. Schetzina. Proc. of IX Int. Conf. on MOVPE, LaJolla, CA (May 1998).
4.15 S. Nakamura and G. Fasol, The Blue Laser Diode, Springer-Verlag, New York, 1996.
4.16 Y. Koide, H. Itoh, N. Sawaki, M Hashimoto, and I Akasaki. J. Electrochem, Epitaxial growth and properties of Al xGa 1-xN by MOVPE, Soc. 133, 1956 (1986)
4.17 Y. Koide, H. Itoh, M.R.H. Khan, K. Hiramatsu, N. Sawaki, and I. Akasaki, Energy band-gap bowing parameter in an AlxGa1- x N alloy, J. Appl. Phys. 61, 4540 (1987)
4.18 K. Knobloch, P. Perlin, J. Krueger, E.R. Weber, C. Kisielowski, MIJ-NSR 3, Art. 45 (1998).
5.1 D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Optically pumped lasing of ZnO at room temperature, Appl. Phys. Lett. 70, 2230 (1997).
5.2 P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Room-temperature gain spectra and lasing in microcrystalline ZnO thin films, J. Cryst. Growth 184-185, 601 (1998).
5.3 C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (01 2) sapphire by metalorganic chemical vapor deposition, J. Appl. Phys. 85, 2595 (1999).
5.4 W. L. Bond, Measurement of the Refractive Indices of Several Crystals, J. Appl. Phys. 36, 1674 (1965).
5.5 J. L. Freeouf, Far-Ultraviolet Reflectance of II-VI Compounds and Correlation with the Penn—Phillips Gap, Phys. Rev. B 7, 3810 (1973).
5.6 G. E. Jellison, Jr. and L. A. Boatner, Optical functions of uniaxial ZnO determined by generalized ellipsometry, Phys. Rev. B 58, 3586 (1998).
5.7 H. Yoshikawa and S. Adachi, Optical Constants of ZnO, Jpn. J. Appl. Phys., Part 1 36, 6237 (1997).
5.8 V. Gupta and A. Mansingh, Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film, J. Appl. Phys. 80, 1063 (1996).
5.9 J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, Excitonic structure and absorption coefficient measurements of ZnO single crystal epitaxial films deposited by pulsed laser deposition, J. Appl. Phys. 85, 7884 (1999).
5.10 Y. Igasaki, Epitaxial growth of aluminum-doped zinc oxide films on (11 0) oriented sapphire substrates, J. Cryst. Growth 116, 357 (1992).
5.11 R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light, North-Holland, Amsterdam, (1977).
5.12 T. Holden, P. Ram, F. H. Pollak, J. L. Freeouf, B. X. Yang, and M. C. Tamargo, Spectral ellipsometry investigation of Zn0.53Cd0.47Se lattice matched to InP, Phys. Rev. B 56, 4037 (1997).
5.13 I. Ohlı´dal and D. Franta, Complete optical characterization of imperfect hydrogenated amorphous silicon layers by spectroscopic ellipsometry and spectroscopic reflectometry, Acta Phys. Slov. 48, 459 (1998).
5.14 T. Koid, S. F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki and M. Kawasaki, Radiative and Nonradiative Excitonic Transitions in Nonpolar (110) and Polar (000) and (0001) ZnO Epilayers, Appl. Phys. Lett. 84, pp. 1079-1081 (2004).
5.15 X. Li, B. Keyes, S. Asher, S.B. Zhang, S.H. Wei, T.J. Coutts, S. Limpijummong and C.G.Van de Walle, Hydrogen passivation effect in nitrogen-doped ZnO thin film, Appl. Phys. Lett. Vol. 86, pp. 122107 (2004).
5.16 C. X. Xu, X.W. Sun, C. Yuen, B.J. Chen, S.F. Yu and Z.L. Dong, Ultraviolet amplified spontaneous emission from self-organized network of zinc oxide nanofibers, Appl. Phys. Lett.Vol. 86, pp. 011118 (2005).
5.17 S. Kolesnik, B. Dabrowski and J. Mais, Structural and magnetic properties of transition metal substituted ZnO, J. Appl. Phys. 95, pp. 2582 (2004).
5.18 Ya. I. Alivov, J.E.Van Nostrand, D.C. Look, M.V. Chukichev and B.M. Ataev, Observation of 430 nm Electroluminescence from ZnO/GaN heterojunction light-emitting diodes, Appl. Phys. Lett. Vol. 83, pp. 2943 (2003).
5.19 Z. Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X.L. Yuan and T. Sekiguchi, Postgrowth annealing of defects in ZnO studied by positron annihilation, X-ray diffraction, Rutherford backscattering, cathodoluminescence and Hall measurements, J. Appl. Phys. Vol. 94, pp. 4807 (2003).
5.20 C. Yuen, S.F. Yu, S.P. Lau, Rusli, and T.P. Chen, Fabrication of n-ZnO:Al/p-SiC(4H) heterojunction light-emitting diodes by filtered cathodic vacuum arc technique, Appl. Phys. Lett. Vol. 86, pp. 241111 (2005).
5.21 C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E.M. Kaidashev, M. Lorenz and M. Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Ga and Li, Appl. Phys. Lett. Vol. 83, pp. 1974 (2003).
5.22 J. Ye, S. Gu, S. Zhu, T. Chen, W. Liu, F. Qin, L. Hu, R. Zhang, Y. Shi and Y. Zheng, The growth and annealing of single crystalline ZnO films by low-pressure MOCVD, J. Vac. Sci. Technol. Vol. 21, pp. 979 (2003).
5.23 M. H. Kane, R. Varatharajan, Z.C. Feng, S. Kandoor, J. Nause, C. Summers, I.T. Ferguson, Characterization of Bulk Crystals Of Transition Metal Doped ZnO for Spintronic Applications, MRS Symp. Proc. Vol. 799, pp. Z8.6 (2004).
5.24 S. Ganesan, Z.C. Feng, D. Mehta, M.H. Kane, I. Ferguson, J. Nause, B. Wagner, and C. Summers, Optical properties of bulk and epitaxial ZnO, MRS Symp. Proc. Vol. 799, pp. Z8.10 (2004).
6.1 R. Ruh and P.W.R. Corfield, Crystal Structure of Monoclinic Hafnia and Comparison with Monoclinic Zirconia, J. Am. Ceram. Soc. 53, 126 (1970).
6.2 G. D. Wilk, R.M. Wallace, and J.M. Anthony, High-k gate dielectrics: Current status and materials properties considerations, J. Appl. Phys. 89, 5243 (2001).
6.3 E. P. Gusev, E. Cartier, D.A. Buchanan, M. Gribelyuk, M. Copel H. Okorn-Schmidt, and C. D’Emic, Study of Interactions of Hf and SiO2 Film for High-k Materials, Microelectron. Eng. 59, 341 (2001).
6.4 X. Zhao and D. Vanderbilt, Phonons and lattice dielectric properties of zirconia, Phys. Rev. B 65, 075105 (2002)
6.5 Balk, P., Dielectrics For Field-Effect Technology, Advanced Materials, 7(8), p. 703-710 (1995).
6.6 Choi, J.-H., J.-W. Kim, and T.-S. Oh, Dielectric Properties and Leakage Current Characteristics of Al2O3 Thin Films with Thickness Variation. Mater. Res. Soc. Symp. Proc., 666, p. F.3.5.1. (2001).
6.7 Klein, T.M., et al., Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100). Applied Physics Letters, 75(25), p. 4001-4003 (1999).
6.8 Klein, T.M., Advanced Gate Dielectrics for Thin Film and CMOS Transistors, in Chemical Engineering, North Carolina State University: Raleigh, (1999)
6.9 Koh, W., S.J. Ku, and Y. Kim, Chemical vapor deposition of Al2O3 films using highly volatile single sources. Thin Solid Films, 304(1-2), p. 222-224 (1997).
6.10 Dixit, S.J., et al., Characterization of aluminum nitride thin films deposited by filtered catholic arc process. Thin Solid Films, 398, p. 17-23. (2001).
6.11 Miyazaki, S., Photoemission study of energy-band alignments and gap-state density distributions for high-k dielectrics. Journal of Vacuum Science & Technology B, 19(6), p. 2212-2216 (2001).
6.12 Lucovsky, G., G.B. Rayner, and R.S. Johnson, Chemical and physical limits on the performance of metal silicate high-k gate dielectrics. Microelectronics Reliability, 41(7), p. 937-945 (2001).
6.13 Lazar, H.R., et al., Characteristics of metalorganic remote plasma chemical vapor deposited Al2O3 gate stacks on SiC metal-oxide-semiconductor devices. Applied Physics Letters, 79(7), p. 973-975 (2001).
6.14 Johnson, R.S., G. Lucovsky, and I. Baumvol, Physical and electrical properties of noncrystalline Al¬2O3 prepared by remote plasma enhanced chemical vapor deposition. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 19(4), p. 1353-1360 (2001).
6.15 Ritala, M., et al., Atomic Layer Deposition of Oxide Thin Films with Metal Alkoxides as Oxygen Sources. Science, 288, p. 319-321 (2000).
6.16 Gusev, E.P., et al., High-resolution depth profiling in ultrathin Al2O3 films on Si. Applied Physics Letters, 76(2), p. 176-178 (2000).
6.17 Zafar, S., E. Cartier, and E.P. Gusev, Measurement of barrier heights in high permittivity gate dielectric films. Applied Physics Letters, 80(15), p. 2749-2751 (2002).
6.18 Ludeke, R., M.T. Cuberes, and E. Cartier, Local transport and trapping issues in Al2O3 gate oxide structures. Applied Physics Letters, 2000. 76(20), p. 2886-2888.
6.19 Copel, M., et al., Robustness of ultrathin aluminum oxide dielectrics on Si(001). Applied Physics Letters, 78(18), p. 2670-2672 (2001).
6.20 Gusev, E.P., et al., Ultrathin high-K metal oxides on silicon: processing, characterization and integration issues. Microelectronic Engineering, 59(1-4), p. 341-349 (2001).
6.21 Afanas'ev, V.V., et al., Energy barriers between (100) Si and Al2O3 and ZrO2-based dielectric stacks: internal electron photoemission measurements. Microelectronic Engineering, 59(1-4), p. 335-339 (2001).
6.22 Nohira, H., et al., Characterization of ALCVD-Al2O3 and ZrO2 layer using X-ray photoelectron spectroscopy. Journal of Non-Crystalline Solids, 303(1), p. 83-87 (2002).
6.23 Ponce, F.A., Fault-Free Silicon At the Silicon-Sapphire Interface. Applied Physics Letters, 41(4), p. 371-373 (1982).
6.24 Hardwick, D.A., The mechanical properties of thin films: a review. Thin Solid Films 154, p. 109–124 (1987).
6.25 Nix, W.D., Yielding and strain hardening of thin metal films on substrates. Scripta Materialia, 39(4–5), p. 545–554 (1998).
6.26 Ohring, M., The Materials Science of Thin Films, Academic Press, New York, p. 403 (1992).
6.27 Hoffman, R.W., Physics of Thin Films (edited by Hass, G. and Thun, R.E.), Vol. 3, Academic Press, New York, (1966).
6.28 Read, D.T. and Dally, J.W., New method for measuring the strength and ductility of thin films. Journal of Materials Research 8(7), p. 1542–1549 (1993).
6.29 Nix, W.D., Mechanical properties of thin films, Metallurgical Transactions A, Physical Metallurgy & Materials Science 20A(11), p. 2217–2245 (1989).
6.30 Baker, S.P. and Nix, W.D., Mechanical properties of compositionally modulated Au-Ni thin films:nanoindentation and microcantilever deflection experiments. Journal of Materials Research 9(12), p. 3131–3152 (1994).
6.31 Weihs, T.P. Hong, S. Bravman, J.C. and Nix W. D., Journal of Materials Research 3(5), p. 931–942 (1998).
6.32 Oliver, W.C., Measurement of Thin Film Mechanical Properties using Nanoindentation. MRS Bull. XI(5), p.15 (1986).
6.33 Doerner, M. and Nix,W.D., A method for interpreting the data from depth-sensing indentation instruments.Journal of Materials Research 1, p. 601–609 (1986).
6.34 Oliver,W.C. and Pharr, G.M., Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 7(6), p. 1564–1580 (1992).
6.35 Marshall, D. B. and Evans, A. G., Measurement of adherance of residually stressed thin films by indentation: I. Mechanics of interface delamination, Journal of Applied Physics 56(10), p. 2632–2638 (1984).
6.36 Vlassak, J.J. Drory, M.D. and Nix, W.D., Simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titanium. Journal of Materials Research, 12(7), p. 1900–1910 (1997).
6.37 Kriese, M.D. and Gerberich, W.W., Quantitative adhesion measures of multilayer films. Part I. Indentation mechanics. Journal Materials Research, 14(7), p. 3007–3018 (1999).
6.38 Vella, J.B. Smith, S.M. Volinsky, A.A. and Adhihetty, I.S., Adhesion quantification of post-CMP copper to amorphous SiN passivation by nanoindentation, Materials Research Society Symposium, 649, Q6.1.1–Q6.1.6. (2000).
6.39 Volinsky, A.A., Vella, J.B. and Gerberich, W.W., Thin Solid Films, 429(1-2), p. 201–210. (2002).
6.40 Pharr, G.M., Harding, D.S. and Oliver,W.C., Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures (edited by Nastasi, M. et al. ), Kluwer Academic Press, Dordrecht, Holland, p. 449–461 (1993).
6.41 Harding, D., Oliver, W. and Pharr, G., Cracking during nanoindentation and its use in the measurement of fracture toughness, Materials Research Society Symposium Proceedings, 356, p. 663–668 (1995).
6.42 Gidley, D.W., Frieze,W.E., Dull, T.L., Yee, A.F., Nguyen, C.V. and Yoon, D.Y. Determination of pore-size distribution in low-dielectric thin films. Applied Physics Letters, 76(10), p. 1282 (2000).
6.43 Kondoh, E., Baklanov, M. R., Lin, E., Gidley, D. and Nakashima, A., Comparative study of pore size of low-dielectric-constant porous spin-on-glass films using different methods of nondestructive instrumentation. Japanese Journal of Applied Physics, Part 2 (Letters), 40, L323–L326 (2001).
6.44 Baklanov, M.R., Moglinikov, K.P., Polovinkin, V.G. and Dultzev, F.N., Determination of pore size distribution in thin films by ellipsometric porosimetry. Journal Vacuum Science and Technology, B18(3), 1385–1391 (2000).
6.45 Edwards, N.V. Vella, J.B. Xie, Q. Zollner, S. Werho, D. Liu, R. Adhihetty, I. Vires, J. and Junker, K., Spectroscopic ellipsometry as a potential in-line optical metrology tool for relative porosity measurements of low-K dielectric films. Materials Research Society Proceedings, 695, L6.25 (2001).
6.46 Lin, E.K., Wu, W-L., Jin, C. and Wetzel, J.T., Structure and property characterization of porous low-k dielectric constant thin films using X-ray reflectivity and small angle neutron scattering. Materials Research Society Symposium Proceedings, 612, D411–D418 (2000).
7.1 K. V. Vassilevski, V. A. Dmitriev, and A. V. Zorenko, Silicon carbide diode operating at avalanche breakdown current density of 60 kA/cm2, J. Appl. Phys. 74,7612 (1993).
7.2 J. A. Edmond, H.-S. Kong, and C. H. Carter Jr., Blue LEDs, UV photodiodes and high-temperature rectifiers in 6H-SiC, Physica B 185, 453 (1993).
7.3 J. W. Palmour, J. A. Edmond, H. S. Kong, and C. H. Carter Jr., 6H-silicon carbide devices and applications, Physica B 185, 461 (1993).
7.4 R. F. Davis, Thin films and devices of diamond, silicon carbide and gallium nitride, Physica B 185, 1 (1993).
7.5 E. Janze´n and O. Kordina, SiC material for high-power applications, Mater. Sci. Eng., B 46, 203 (1997).
7.6 G. L. Harris, Properties of Silicon Carbide, INSPEC, London, (1995).
7.7 D. W. Feldman, J. H. Parker, W. J. Choyke, and L. Patrick, Phonon Dispersion Curves by Raman Scattering in SiC, Polytypes 3C, 4H, 6H, 15R, and 21R, Phys. Rev. 173, 787 (1968).
7.8 W. J. Choyke and E. D. Palik, in Handbook of Optical Constants, edited by E. D. Palik, Academic, New York, (1985), p. 587.
7.9 S. Ninomiya and S. Adachi, Optical Constants of 6H–SiC Single Crystals, Jpn. J. Appl. Phys., Part 1 33, 2479 (1994).
7.10 L. Di Cioccio, F. Letertre, Y. Le Tiec, A. M. Papon, C. Jaussaud, and M. Bruel, Silicon carbide on insulator formation by the Smart-Cut process. Mater. Sci. Eng., B 46, 349 (1997).
7.11 M. Roschke, F. Schwierz, G. Paasch, and D. Schipanski, Evaluating the Three Common SiC Polytypes for MESFET Applications, Mater. Sci. Forum 264–268, 965 (1998).
7.12 W. J. Choyke and G. Pensl, Silicon Carbide Electronic Materials and Devices, MRS Bull. 22, 25 (1997).
7.13 A. V. Mel’nichuk and Yu. A. Pasechnik, Anisotropy of the effective masses of electrons in silicon carbide, Sov. Phys. Solid State 34, 227 (1992).
7.14 M. F. Macmillan, A. Henry, and E. Janzen, Thickness Determination of Low Doped SiC Epi-Films on Highly Doped SiC Substrates, J. Electron. Mater. 27, 300 (1998).
7.15 S. Nakashima and H. Harma, Raman Investigation of SiC Polytypes, Phys. Status Solidi A 162, 39 (1997).
7.16 H. Harima, S. Nakashima, and T. Uemura, Raman scattering from anisotropic LO phonon Plasmon coupled mode in n-type 4H– and 6H–SiC, J. Appl. Phys. 78, 1996 (1995).
7.17 G. B. Dubrovskii, A. A. Lepneva, and E. I. Radovanova, Optical absorption associated with superlattice in silicon carbide crystals, Phys. Status Solidi B 57, 423 (1973).
7.18 R. Weingartner, M. Bickermann, D. Hoffmann, M. Rasp, T. L. Straubinger, P. J. Wellmann, and A. Winnacker, Absorption measurements and doping level evaluation in n-type and p-type 4H-SiC and 6H-SiC, Mater. Res. Forum 353–356, 397 (2000).
7.19 S. Limpijumnong, W. R. L. Lambrecht, S. N. Rashkeev, and B. Segall, Optical-absorption bands in the 1–3 eV range in n-type SiC polytypes, Phys. Rev. B 59, 12890 (1999).
7.20 H. Yan, Chen Guang-hua, S.P. Wong, and R.W.M. Kwok, Preparation and infrared absorption properties of buried SiC layers, Acta Physica Sinica, 46, pp. 2274 -2279, 1997.
7.21 H. Yan, Chen Guang-hua, S.P. Wong, and R.W.M. Kwok, Characteristic electron energy loss spectra in SiC buried layers formed by C implantation into crystalline silicon, Acta Physica Sinica, 47, pp. 876 -880, 1996.
7.22 S. P. Wong, L.C. Ho, Dihu Chen, W.S. Guo, H. Yan and R.W.M. Kwok, Ion beam synthesis of SiC/Si Heterostructures by MEVVA implantation, Mat. Res. Soc. Symp. Proc., 438, pp. 277-282, 1997.
8.1 K. Uchino, Ferroelectric Devices, Marcel Dekker, New York, (2000).
8.2 Y. Xu, Ferroelectric Materials and Their Applications, North-Holland, Tokyo, (1991).
8.3 B. Li, P. T. Lai, G. Q. Li, S. H. Zheng, and M. Q. Hwang, A new multi-function thin-film microsensor based on Ba1-xLaxTiO3, Smart Mater. Struct. 9, 498 (2000).
8.4 I. K. Yoo, in Ferroelectric Thin Films, edited by S. Hong Kluwer Academic, New York, p. 3 (2004).
8.5 R. Ramesh, S. Aggarwal, and O. Auciello, Science and technology of ferroelectric films and heterostructures for non-volatile ferroelectric memories, Mater. Sci. Eng., R. 32, 191 (2001).
8.6 C. H. Peng, J.-F. Chang, and S. B. Desu, in Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. Tuttle, MRS Symposia Proceedings No. 243 (Materials Research Society, Pittsburgh, p. 21. (1992)
8.7 S. Yang, D. Mo, and X. Tang, Ferroelectrics 287, 35 (2003).
8.8 M. P. Moret, M. A. C. Devillers, K. Wörhoff, and P. K. Larsen, J. Appl. Phys. 92, 468 (2002).
8.9 L. Pintile, I. Boerasu, M. J. M. Gomes, and M. Pereira, Thin Solid Films 458, 114 (2004).
8.10 I. Boerasu, L. Pintile, M. Pereira, M. I. Vasilevskiy, and M. J. M. Gomes, J. Appl. Phys. 93, 4776 (2003).
8.11 S. B. Krupanidhi, H. Hu, and V. Kumar, Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films, J. Appl. Phys. 71, 376 (1992).
8.12 S. Dutta, R. N. P. Choudhary, P. K. Sinha, and A. K. Thakur, J. Appl. Phys. 96, 1607 (2004).
8.13 K. W. Kwok, R. C. W. Tsang, H. L. W. Chan, and C. L. Choy, Effects of niobium doping on the piezoelectric properties of sol–gel-derived lead zirconate titanate films, J. Appl. Phys. 95, 1372 (2004).
8.14 S. Bhaskar, S. B. Majumder, and R. S. Katiyar, Diffuse phase transition and relaxor behavior in (PbLa)TiO3 thin films, Appl. Phys. Lett. 80, 3997 (2002).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24972-
dc.description.abstract橢偏儀是一種利用當光進入材料內部作用時其極化的改變的一種光學量測方法。在基本模型上回歸極限是到實驗所能得的資料內容。也因為如此,橢偏儀為了可以得到更多的資訊通常會量測多角度和多波長。對橢偏儀來說多做一個波長的量測可以增加一筆資訊。對於材料特性而言光學係數的消散可以得到更多的資訊。橢偏儀的特性已經廣泛地被工業和研究應用。傳統上橢偏儀量測波段為紫外光到近紅外光部分對於任何應用在此波段的元件可以得到表面和堆疊特性。橢偏儀已經被建立成為一種具有高敏感度和高正確性的薄膜表面特性量測方法是一種非常有效率的技術。在很多種工業上,可變角度橢偏儀對於形態學是很重要的,而且對於研究新材料和新製程更是一個強而有力的技術。
在本文中,我們報告了不同的半導體的介電常數。對光通訊及網路連結,以矽為基底的光電整合提供了低成本解決方案一個有希望的機會。對三族氮化物材料而言,擁有其反射率及消光係數的知識是有助於製光電元件設計的製造。用穿透及反射量測以藍寶石為基板的氮化鎵、氮化鋁及氮化鋁鎵的光學性質已經被探討。這些特性可以提供在最佳化設計太陽盲光偵測器或是其他光電元件的關鍵資訊。
在很多光學和光電的應用中氧化鋅是被注目的材料。舉例來說,自從在氧化鋅薄膜上發現室溫雷射現象,氧化鋅磊晶是個發展紫外光雷射有機會的材料。
金氧高介電質最近被聚焦為替代目前努力找到在互補金氧半導體元件閘極中氧化矽材料。氧化鉿、氧化鋯及氧化矽混合物可以達到這樣的目標。在化學氣相沉積有機矽酸鹽玻璃交界層介電質對積體電路工業而言形成度量和特性的新方法是具有挑戰性。
對於分析氮化鎵鋁和氮化鎵異質接面場效電晶體六方堆積碳化矽是極佳的基底。不幸的,由於碳化矽差表面性質使得氮化鎵在碳化矽成長品質無法與在一般常用藍寶石基板相比。不論如何,這些表面的備製都是相當的困難。
在微機構鐵電元件中氧化鉛鋯鈦薄膜系統是受矚目的鈣鈦礦材料。氧化鉛鋯鈦薄膜系統唯一性提供很多令人有興趣的元件應用被廣泛地當主題式探討。例如在微聲波元件、遠紅外影像、光電整合及高效能半導體記憶體。
zh_TW
dc.description.abstractSpectroscopic ellipsometry (SE) is an optical measurement of the polarization change occurring when light interacts with materials. Model-based regression is limited to the information content available from the experimental data. For this reason, ellipsometry is often performed at multiple angles and wavelengths to increase the available information. SE measurements provide additional information for each new wavelength. The optical constant dispersion carries information about many material properties. SE characterization has been applied to a wide range of industrial and research applications. Traditional SE from UV-VIS to NIR can characterize the films and stacks used with any of these device applications. SE has been established to be a very effective technique for the characterization of thin surface layers with high sensitivity and accuracy. Variable angle spectroscopic ellipsometry (VASE) is important for metrology in several industries, and is a powerful technique for research on new materials and processes.
In this thesis, we report the dielectric constants of different semiconductors. Silicon based optoelectronics integration offers promising opportunity for low-cost solutions to optical communications and interconnects. The design of optoelectronic devices fabricated from III-nitride materials is aided by knowledge of the refractive index and absorption coefficient of these materials. The optical properties of GaN, AlN and AlGaN grown on sapphire substrates were investigated by means of transmittance and reflectance measurements. These properties provide information critical to the optimal design of solar blind detectors or other optoelectronic devices.
ZnO is an attractive material for many applications in optics and optoelectronics. For instance, since a room temperature lasing has been observed in ZnO thin films, the epitaxial ZnO is a promising candidate material for ultraviolet lasers.
High-K metal-oxide dielectrics have recently been the focus of substantial ongoing efforts directed towards finding a replacement for SiO2 as the gate dielectric in complementary metal-oxide-semiconductor devices. HfO2, ZrO2, and their SiO2 mixtures show promise for this purpose. The integration of chemical vapor deposited organo-silicate glass (OSG) interlayer dielectrics (ILD) has challenged the IC industry to formulate new methods of metrology and characterization.
6H–SiC are excellent substrates for the synthesis of AlGaN–GaN heterojunction field effect transistors. Unfortunately, the quality of GaN layers grown on SiC is inferior to that grown on the commonly used sapphire substrate due to the relative poor surface properties of SiC. However, preparing such surfaces is relatively difficult.
The lead zirconate titanate thin-film system Pb(ZrxTi1-x)O3 (PZT) is one of the most attractive perovskite materials for microstructured ferroelectric devices. The thin film synthesis of PZT is the subject of widespread current interest as its unique properties offer many interesting device applications. Among these are microwave acoustic devices, infrared imagers, integrated optic circuits, optical display, and high performance semiconductor memories.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:59:21Z (GMT). No. of bitstreams: 1
ntu-96-J94921017-1.pdf: 3223576 bytes, checksum: 2924a5ae4a52b9acbd3dc8784b6392e8 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員審定書…………………………………………………………I
誌謝……………………………………………….……………………….II
摘要……………….……………………………………………………IV
Abstract………………………………….……………………………..…V
Contents………………………………………………………………..VIII
List of Figures……………………………………………………………XII
List of Tables.…………………………………………………………XVIII
Chapter 1 Introduction….......................................................................1
Chapter 2 Spectroscopic Ellipsometry Theory………………………5
2.1 Introduction………………………………………………...……………………5
2.2 Fresnel Equations………………………………………………………………6
2.3 Kramers-Kronig Relations…………………………….…………….…8
2.3.1 Linear response function and susceptibility……….………………………8
2.3.2 Symmetry property of the susceptibility ……………….……………..10
2.3.3 Complex ………………………………………………………………..11
2.3.4 K-K relations……………………………………………………………...11
2.3.5 Application in reflectance spectrum……………………………………..14
2.4 Spectroscopic Ellipsometry Theory…………………………………………….15
2.5 Spectroscopic Ellipsometry Structure……………………...…………………17
2.6 SE Data Analysis……………………………………………………………….19
References…………………………………………………….…………………..23
Chapter 3 Tb-doped SiO2 thin film on Silicon…………………………27
3.1 Introduction…………………………………………………………………..27
3.2 Experiments…………………………………………………………………….29
3.3 Analyses and Discussions………………………………………………………31
3.4 Conclusion…………………………………………………………………….34
References…………………………………………………………….……………36
Chapter 4 III-N materials……………………………………………38
4.1 Introduction……………………………………………………….…………..38
4.2 Experiments…………………………………………………………………..41
4.2.1 GaN growth on Silicon, Sapphire and ZnO……………….…….………..41
4.2.2 p-type GaN………………………………………………………………...41
4.3 Analyses and Discussions………………………………………………………42
4.4 Conclusion……………………………………………………………………51
References…………………………………….…………………………………..52
Chapter 5 II-VI materials………………………………………………55
5.1 Introduction……………………………………….…………………………….55
5.2 Theoretical model………………………………………………….…………..56
5.2.1 Model dielectric function of ZnO………………………………..…………56
5.2.2 Surface Layer…………………………………………………...………….58
5.3 Samples presentation…………………………………………………………..59
5.4 Experiments………………………………………………….………………..60
5.5 Results and Discussions…………………………………...…………………61
5.6 Conclusion…………………………………………………..…………………71
References……………………………………………………….………..73
Chapter 6 High k and low k materials…………………………………77
6.1 Introduction…………………………………………………………………..77
6.2 Ideal High-k Materials………………………………….………………………79
6.3 Recent Studies on High-k Gate Dielectrics…………………………………..82
6.4 Recent studies on Low-k material Dielectrics………………….…………….84
6.5 Experiments…………………………………………………………………..87
6.6 Analyses and Discussions……………………………………………………88.
6.7 Conclusion……………………………………………………...…………….92
References....................................................................................................93
Chapter 7 SiC materials…………………………………….………….100
7.1 Introduction…………………………………………………………………...100
7.2 Experiments……………………………………………………….…………..103
7.2.1 Amorphous SiC………………………………….………………………..104
7.2.2 6H SiC…………………………………………………………………….104
7.3 Analyses and Discussions……………………………………………………..104
7.4 Conclusion…………………………………………………………………….108
References…………………………………………………………………………109
Chapter 8 Lead Zirconate Titanate thin film system………………...112
8.1 Introduction…………………………………………………………………112
8.2 Experiments…………………………………………………………………114
8.3 Analyses and Discussions……………………………………………………114
8.4 Conclusion…………………………………………………………………..120
References………………………………………………………..……………121
dc.language.isoen
dc.subject介電常數zh_TW
dc.subject氧化鉛鋯鈦zh_TW
dc.subject氧化鋅zh_TW
dc.subject氮化鎵zh_TW
dc.subject橢偏儀zh_TW
dc.subjectZnOen
dc.subjectPZTen
dc.subjectspectroscopic ellipsometryen
dc.subjectdielectric constantsen
dc.subjectGaNen
dc.title以橢偏儀量測及模擬寬能隙半導體之光學特性zh_TW
dc.titleOptical Properties of Wide Band Gap Semiconductor by Spectroscopic Ellipsometry and Simulationen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊遵榮,許世欣
dc.subject.keyword橢偏儀,介電常數,氮化鎵,氧化鋅,氧化鉛鋯鈦,zh_TW
dc.subject.keywordspectroscopic ellipsometry,dielectric constants,GaN,ZnO,PZT,en
dc.relation.page122
dc.rights.note未授權
dc.date.accepted2007-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved