Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 商學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24959
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔣明晃
dc.contributor.authorWei-Ting Linen
dc.contributor.author林威廷zh_TW
dc.date.accessioned2021-06-08T05:59:06Z-
dc.date.copyright2007-08-03
dc.date.issued2007
dc.date.submitted2007-07-31
dc.identifier.citation1. 方世傑,「市場預測方法一百種」,臺北:書泉出版社,1996。
2. 仇士元,「加總模型的預測效果-以台灣地區汽車銷售量資料為例」,長庚大學企業管理研究所碩士論文,2003。
3. 周文賢,「行銷管理:市場分析與策略規劃」,臺北:智勝文化,1999。
4. 徐佳豪,「需求之聚合與預測策略研究」,國立台灣大學工業工程研究所碩士論文,2001。
5. 徐桂祥,「灰色系統在商情預測上之研究」,國立雲林技術學院資訊管理技術研究所碩士論文,1997。
6. 張晴翔,「產品生命週期策略性預測系統」,東海大學工業工程研究所碩士論文,1999。
7. 黃協鵬,「考慮產品層級關係之需求規劃分析系統」,國立台灣大學工業工程研究所碩士論文,2003。
8. 歐嘉瑞,「台灣地區小汽車供需模型之研究」,國立交通大學運輸管理研究所博士論文,1994。
9. 盧舜年、鄒坤霖,「供應鏈管理的第一本書」,臺北:商周出版,2002。
10. 薛國強,「應用類神經網路與模糊神經網路於智慧型銷售量預測系統建立之研究」,高雄工學院管理科學研究所碩士論文,1996。
11. 魏銘佐,「企業預測理論與實證研究」,國立中興大學企業管理研究所碩士論文,1999。
12. 周文賢,「多變量統計分析」,臺北:智勝文化,2002年5月。
13. 林欣怡,「利用聚合與分解策略於需求預測效能提升之研究」,國立台灣大學商學研究所碩士論文,2002。
14. 盧舜年、鄒坤霖,「供應鏈管理的第一本書」,臺北:商周出版,2002。
15. 羅心蓮,「層級式預測方法論─以液晶監視器為例」,國立清華大學工業工程與工程管理研究所碩士論文,2005。
16. 翁世昕,「筆記型電腦液晶面板出貨量層級式預測之研究」,國立台灣科技大學工業管理研究所碩士論文,2006。
17. 辜莉婷,「應用層級式預測理論於電視購物銷售量預測」,國立台灣大學商學研究所碩士論文,2006。
18. 林聰明、吳水丞,「指數平滑法之選擇與應用」,華泰,1981。
19. 葉小蓁,「時間序列分析與應用」,1998。
20. Aigner, D. J. and Goldfeld, S. M., “Estimation and Prediction from Aggregate Data when Aggregates are Measured More Accurately than their Components”, Econometrica, Vol. 42, No. 1, p. 113-134, 1974.
21. Box, G. E. P., Jenkins, G. M., and Reinsel, G. C., “Time Series Analysis: Forecasting and Control”, NJ: Prentice-Hall, Englewood Cliffs, 1994.
22. Chamber, J. C., Mullick, S. K., and Smith, D. D., “How to Choose the Right Forecasting Technique”, Harvard Business Review, July - Aug., 1971.
23. Chang, Sue L., “The Role of Marketing Research in Forecasting at Lennox Industries”, The Journal of Business Forecasting, Vol. 12, No. 2, p. 23, Summer, 1993.
24. Chase, C. W., “Selecting the Appropriate Forecasting Method”, The Journal of Business Forecasting, Vol. 16, No. 3, p. 2, Fall, 1997.
25. Dalrymple, D. J., “Results from a 1983 United States Survey”, International Journal of Forecasting, Vol. 3, No. 3, p. 379-391, 1987.
26. Dangerfield, B. J. and Morris, J. S., “An Empirical Evaluation of Top-down and Bottom-up Forecasting Strategies”, Proceedings of the 1988 Meeting of Weatern Decision Sciences Institute, p. 322-324, 1988.
27. Dangerfield, B. J. and Morris, J. S., “Top-down or bottom-up: Aggregate versus disaggregate extrapolations”, International Journal of Forecasting, Vol. 8, No. 2, p. 233-241, 1992.
28. Dekker, M., Karel, van Donselaar, and Pim, Ouwehand, “How to Use Aggregation and Combined Forecasting to Improve Seasonal Demand Forecasts”, International Journal of Production Economics, Vol. 90, No. 2, p. 151-167, 2004.
29. Douglas, C. M. and Elizabeth, A. P., “Introduction to Linear Regression Analysis”, Wiley Inter. Science, New York, 1992.
30. Dunn, D. M., Williams, W. H., and Spiney, W. A., “Analysis and Prediction of Telephone Demand in Local Geographic Areas”, The Bell Journal of Economics and Management Science, Vol. 2, No. 2, p. 561-576, 1971.
31. Dunn, D. M., Williams, W. H., and DeChaine, T. L. “Aggregate versus Subaggregate Models in Local Area Forecasting”, Journal of the American Statistical Association, Vol. 71, No. 1, p. 68-71, 1976.
32. Edwards, J. B. and Orcutt, G. H., “Should Aggregation prior to Estimation be the Rule? ”, Review of Economics and Statistics, Vol. 51, No. 4, p. 409-420, 1969.
33. Fayyad, U. M., Piatetsky-Shapiro, G., and Smyth P. , “The KDD Process for Extracting Useful Knowledge from Volumes of Data,” Communications of the ACM , Vol.39, No.11, p. 27-34, 1996.
34. Fliedner, E. B. and Lawrence, B., “Forecasting System Parent Group Formulation: an Empirical Application of Cluster Analysis”, Journal of Operations Management, Vol. 12, No. 2, p. 119-130, 1995.
35. Fliedner, E. B. and Mabert, V. A., “Constrained Forecasting: Some Implementation Guidelines”, Decision Sciences, Vol. 23, No. 5, p. 1143-1161, 1992.
36. Fliedner, G., “An Investigation of Aggregate Variable Time Series Forecast Strategies with Specific Subaggregate Time Series Statistical Correlation”, Computer and Operations Research, Vol. 26, No. 11, p. 1133-1149, 1999.
37. Fliedner, G., “Hierarchical Forecasting: Issues and Use Guidelines”, Industrial Management and Data Systems, Vol. 101, No. 1, p. 5-12, 2001.
38. Fogarty, D. W. and Hoffman, T. R., “Production and Inventory Management”, Cincinnati: South-Western, 1984.
39. Granger, C. W. J. and Newbold, P., “Forecasting Economic Time Series”, New York: Academic Press, 1977.
40. Gross, C. W. and Sohl, J. E., “Disaggregation Methods to Expedite Product Line Forecasting”, Journal of Forecasting, Vol. 9, No. 3, p. 233-254, 1990.
41. Herbig, P. A., Milewicz, J., and Golden, J. E., “The Dos and Don’ts of Sales Forecasting”, Industrial Marketing Management, Vol. 22, No. 1, p. 49-57, 1993.
42. Kohn, R., “When is an Aggregate of a Time Series Efficiently Forecast by its Past? ”, Journal of Econometrics, Vol. 18, No. 3, p. 337-349, 1982.
43. Lee, H. L., Padmanabhan, V., and Whang, S., “The Bullwhip Effect in Supply Chains”, Sloan Management Review, Spring, 1997.
44. Lee, H. L., Padmanabhan, V., and Whang, S., “Information Distortion in a Supply Chain: Bullwhip Effect”, Management Science, Vol. 43, No. 4, p. 546-558, 1997.
45. Lewis, C. D., “Industrial and Business Forecasting Methods”, London: Butterworths, 1982.
46. Lutkepohl, H., “Forecasting Contemporaneously Aggregated Vector ARMA Processes”, Journal of Business and Economic Statistics, Vol. 2, No. 3, p. 201-214, 1984.
47. Makridakis, S., Wheelwright, S. C., and McGee, V. E., “Forecasting: Methods and Applications”, New York: Wiley, 1983.
48. Mathews, B. and Diamantopoulos, A., “Managerial Intervention in Forecasting: an Empirical Investigation of Forecast Manipulation”, International Journal of Research in Marketing, No. 3, Fall, p. 3-10, 1986.
49. McLeavey, D. W. and Narasimhan, S. L., “Production and Inventory Control”, Newton: Allyn and Bacon, 1985.
50. Miller, J. G., Berry, W., and Lai, C.-Y.F., “A Comparison of Alternative Forecasting Strategies for Multi-stage Production Inventory Systems”, Decision Sciences, Vol. 7, No. 4, p. 714-724, 1976.
51. Muir, J.W., “The Pyramid Principle”, Proceedings of 22nd Annual Conference, American Production and Inventory Control Society, p. 105-107, 1979.
52. Newbold, P. and Granger, C. W. J., “Experience with Forecasting Univariate Time Series and the Combination of Forecasts”, Journal of the Royal Statistical Society, Series A, Vol. 137, No. 2, p. 131-165, 1974.
53. Orcutt, G. H., Watts, H. W., and Edwards, J. B., “Data Aggregation and Information Loss”, American Economics Review, Vol. 58, No. 4, p. 773-787, 1968.
54. Pindyck, R. S. and Rubinfeld, D. L., “Econometric Models and Economic Forecasts”, 4th edition, Irwin: McGraw-Hill , 1997.
55. Plossl, G. W., “Getting the Most from Forecasts”, Production and Inventory Management, Vol. 14, No. 1, p. 1-16, 1973.
56. Rose, D. E., “Forecasting Aggregates of Independent ARIMA Processes”, Journal of Econometrics, Vol. 5, No. 3, p. 323-345, 1977.
57. Schwartzkopf, A. B., Tersine, R. J., and Morris, J. S., “Top-down vs. Bottom-up Forecasting Strategies”, International Journal of Production Research, Vol. 26, No. 11, p. 1833-1843, 1988.
58. Shlifer, E. and Wolff, R. W., “Aggregation and Proration in Forecasting”, Management Science, Vol. 25, No. 6, p. 594-603, 1979.
59. Stratton, W. B., “How to Design a Viable Forecasting System”, Production and Inventory Management, Vol. 20, No. 1, p. 17-27, 1979.
60. Theil, H., “Linear Aggregation of Economic Relations”, Amsterdam: North-Holland, 1954.
61. Tiao, G. C. and Guttman, I., “Forecasting Contemporal Aggregates of Multiple Time Series”, Journal of Econometrics, Vol. 12, No. 2, p. 219-230, 1980.
62. Vollmann, T. E., Berry, W. L., and Whybark, D. C., “Manufacturing Planning and Control Systems”, 4th Edition, Irwin: McGraw-Hill, 1997.
63. Wang, George, C.S., “What You Should Know About Regression Based Forecasting”, The Journal of Business Forecasting, Vol. 12, No. 4, p.15-21, 1993.
64. Weatherby, G., “Aggregation, Disaggregation, and Combination of Forecasts”, unpublished PhD Dissertation, Georgia Institute of Technology, 1984.
65. Wei, W. W. S. and Bovas, A., “Forecasting Contemporal Time Series Aggregates”, Communications in Statistics, Vol. 10, No.13, p. 1335-1344, 1981
66. Wheelwright, S. C. and Makridakis, S., “Examination of the Use of Adpative Filtering in Forecasting,” Operational Research Quarterly, Vol. 24, No.1, p. 55-64, 1973.
67. Wilkinson, F., “How Forecasting Model is Chosen”, The Journal of Business Forecasting, Vol. 8, No.2, p. 7, Summer, 1989.
68. Wilson, J. H., and Deborah, A. K., “Combining Subjective and Objective Forecasts Improve Results”, The Journal of Business Forecasting, Vol. 11, No. 3, p. 3, Fall, 1992.
69. Withycombe, R., “Forecasting with Combined Seasonal indices”, International Journal of Forecasting, Vol. 5, No. 4, p. 547-552, 1989.
70. Zellner, A., “On the Aggregation Problem: A New Approach to a Troublesome Problem”, in: K.A. Fox et al., eds., Economic Models, Estimation, and Risk Programming, New York: Springer-Verlag, p. 365-374, 1969.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24959-
dc.description.abstract需求規劃的結果高度影響著供應鏈整體網路規劃決策的品質,顯示出需求規劃在企業營運活動中扮演著舉足輕重的角色。然而,需求資訊往往在經過供應鏈層層傳遞後逐漸被扭曲,這種上下游間不對稱的需求資訊將嚴重傷害供應鏈規劃的品質。隨著產品多樣化及其生命週期愈益縮短,若對每一產品細項皆進行預測,其所需之實質成本與時間成本不僅龐大,也未必能得到較準確的預測結果。然而,聚合的預測雖然較為準確,但其所提供的資訊有限,無法因應企業中更為細部之規劃及作業層級之決策。因此企業為了提升需求預測的效益,應有效運用聚合與分解策略進行預測。本研究將以季節性資料—冷氣機製造商之冷氣月出庫量需求為實證分析對象,利用層級式預測方法,將各層級間資料聚合與分解,建立一套有效之預測模型,進而提高預測準確度。
本研究利用時間序列方法中的季節性ARIMA轉換函數模型,配合產品層級架構分類,先分別預測出產品不同層級之銷量,並利用Top-down、Middle-out及Bottom-up預測方式,由各產品階層向上聚合或依比例向下分解至其他階層,最終獲得產品層級架構中所有分類項目之預測值,建構出一套完整之季節性資料層級式預測模型,接著再進行不同預測方式間預測能力之比較,以找出最適預測階層以及預測方式。
經比較Top-down、Middle-out及Bottom-up三種預測方法之後,本研究發現Bottom-up為冷氣機出庫量之最適預測方法,並將預測結果依不同之層級類別作呈現,可提供不同作業層級之決策依據。如此所建構出之預測模型,不僅改善了廠商原先所利用的預測準則,亦能掌握出庫量時間序列之變動型態,使廠商未來於產品規劃及通路出貨量配置時能更有效掌握相關資訊,做出正確決策考量。
zh_TW
dc.description.abstractThe results of demand planning highly influence the quality of supply chain network planning. It reveals that demand planning plays a very important role in business operations. However, demand information is often distorted through supply chain. The phenomenon of asymmetric demand information seriously harms the quality of supply chain planning. As a result of product diversity and shorter product life cycle, forecasting for every single product item will cost too much in physical and time aspect, and also unlikely obtain accurate forecasts. Although forecasting for aggregating demand is more accurate, it has difficulty to handle operations planning and decisions in more details.. In order to enhance the benefits of demand forecasting, managers must take advantage of aggregation and disaggregation strategies in demand forecasting. This research takes seasonal data from monthly sales data of an air conditioner manufacturer in last four years as an example. We apply hierarchical forecasting methodology with seasonal ARIMA transfer function to aggregate and disaggregate data between product levels, and come up a effective forecasting model.
At first, we forecast for sales at different levels respectively, and then aggregate upwards or disaggregate downwards to other levels by using Top-down, Middle-out and Bottom-up approaches. Finally, we obtain forecasts of all items in the hierarchical product structure. After establishing this complete hierarchical forecasting model of seasonal data, we compare forecast predictability generated by different forecasting approaches in order to find the most suitable forecasting approach.
After comparing three forecasting approaches, Top-down, Middle-out and Bottom- up, we find that Bottom-up is the most suitable forecasting approach for sales of air conditioner. The forecasting model we build up not only improves the forecasting predictability of the firm but also gets a grip of the pattern of sales series such that the firm can make accurate decision in product planning and shipment allocation.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:59:06Z (GMT). No. of bitstreams: 1
ntu-96-R94741045-1.pdf: 2907702 bytes, checksum: 37eabba81e9ccd2382dfe7d6e5ea2c20 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
致謝 I
論文摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 IX
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 論文架構 4
第二章 文獻探討 6
2.1 預測相關理論 6
2.1.1 預測定義 6
2.1.2 預測分類 8
2.1.2.1 預測之大分類 8
2.1.2.2 依預測期間之分類 9
2.1.3 預測相關理論 9
2.1.3.1 定性分析法 10
2.1.3.2 迴歸模式 10
2.1.3.3 計量經濟模型 11
2.1.3.4 人工智慧法 12
2.1.3.5 時間序列預測 12
2.1.3.6 層級式預測方法 13
2.1.4 預測目的與架構 15
2.2 層級式預測 18
2.2.1 層級式預測說明 18
2.2.2 層級式預測分類 19
2.2.3 比例分配方法 20
2.2.4 影響層級式預測績效之因素 22
2.2.5 層級式預測方式之比較 22
2.3 小結 24
第三章 研究方法 25
3.1 研究架構與基本說明 25
3.2 層級架構之建立 27
3.2.1 市場分類方法 27
3.2.2 Friedman檢定法 27
3.2.3 Hollander-Wolfe之多重比較 29
3.3 外部驅動變數分析 30
3.3.1 總體面外部驅動變數介紹 30
3.3.2 季節性資料外部驅動變數之選擇 33
3.3.2.1 變數型態之考量 33
3.3.2.2 資料型態之考量 33
3.3.2.3 外部驅動變數之選擇 34
3.4 預測模型建構 35
3.4.1 資料型態與統計方法選擇 35
3.4.2 時間序列模式 40
3.4.2.1 趨勢預測 40
3.4.2.2 指數平滑模式 41
3.4.2.3 時間序列分解模式 41
3.4.2.4 ARIMA模式 42
3.4.3 SARIMA與SARIMAT模型介紹與預測流程 44
3.4.3.1 SARIMA模型介紹 45
3.4.3.2 SARIMAT模型介紹 51
3.4.4 各階層預測模型 54
3.4.4.1 Top-level之預測模型 54
3.4.4.2 Middle-level之預測模型 54
3.4.4.3 Bottom-level之預測模型 55
3.5 各階層預測值產生 56
3.5.1 Top-down 56
3.5.2 Middle-out 57
3.5.3 Bottom-up 58
3.6 預測績效評估 59
3.6.1 預測誤差計算方法 59
3.6.2 各階層不同預測方法之比較 61
第四章 實證研究 62
4.1 研究樣本描述 62
4.2 產品層級架構 64
4.3 外部驅動變數之決定與預測模型 67
4.3.1 外部驅動變數之決定 67
4.3.2外部驅動變數與反應變量之預測模型 68
4.3.3月均溫之預測模型 69
4.4 Top level冷氣出庫量預測 72
4.4.1 預測變數說明 72
4.4.2 預測模型建構 72
4.4.2.1 研究流程 72
4.4.2.2 模式及意涵 73
4.4.3 預測結果分析 75
4.5 Middle level冷氣出庫量預測 76
4.5.1 預測變數說明 76
4.5.2 預測模型建構 76
4.5.2.1 研究流程 76
4.5.2.2 模式及意涵 77
4.5.3 預測結果分析 85
4.6 Bottom level冷氣出庫量預測 86
4.6.1 預測變數說明 86
4.6.2 預測模型建構 86
4.6.2.1 研究流程 86
4.6.2.2 模式及意涵 87
4.6.3 預測結果分析 103
4.7 預測方法比較 104
第五章 結論與建議 105
5.1 研究結論與貢獻 105
5.2 管理上之建議與應用 108
5.3 未來研究方向 109
參考文獻 111
dc.language.isozh-TW
dc.subject季節性ARIMA轉換函數模型zh_TW
dc.subject層級式預測方法zh_TW
dc.subjecthierarchical forecasting methodologyen
dc.subjectseasonal ARIMA transfer functionen
dc.title應用層級式預測方法於季節性資料分析之研究─以家電製造商之出貨量為例zh_TW
dc.titleApplying Hierarchical Forecasting Methodology to Seasonal Sales Forecasting in Appliance Industryen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor郭瑞祥
dc.contributor.oralexamcommittee王福琨,葉小蓁
dc.subject.keyword層級式預測方法,季節性ARIMA轉換函數模型,zh_TW
dc.subject.keywordhierarchical forecasting methodology,seasonal ARIMA transfer function,en
dc.relation.page117
dc.rights.note未授權
dc.date.accepted2007-08-01
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept商學研究所zh_TW
顯示於系所單位:商學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved