請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24945完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥彬 | |
| dc.contributor.author | Chia-Chen Tai | en |
| dc.contributor.author | 戴佳貞 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:58:50Z | - |
| dc.date.copyright | 2007-08-13 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-06 | |
| dc.identifier.citation | Aerni, H. R., Cornett, D. S., and Caprioli, R. M. (2006). Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78, 827-834.
Ahram, M., Flaig, M. J., Gillespie, J. W., Duray, P. H., Linehan, W. M., Ornstein, D. K., Niu, S., Zhao, Y., Petricoin, E. F., 3rd, and Emmert-Buck, M. R. (2003). Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications. Proteomics 3, 413-421. Alkalay, I., Yaron, A., Hatzubai, A., Orian, A., Ciechanover, A., and Ben-Neriah, Y. (1995). Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 92, 10599-10603. Altomare, D. A., and Testa, J. R. (2005). Perturbations of the Akt signaling pathway in human cancer. Oncogene 24, 7455-7464. An, J., Sun, J. Y., Yuan, Q., Tian, H. Y., Qiu, W. L., Guo, W., and Zhao, F. K. (2004). Proteomics analysis of differentially expressed metastasis-associated proteins in adenoid cystic carcinoma cell lines of human salivary gland. Oral Oncol 40, 400-408. Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., and Mirzabekov, A. (2000). Protein microchips: use for immunoassay and enzymatic reactions. Anal Biochem 278, 123-131. Battifora, H. (1986). The multitumor (sausage) tissue block: novel method for immunohistochemical antibody testing. Lab Invest 55, 244-248. Bharti, A. C., Donato, N., Singh, S., and Aggarwal, B. B. (2003). Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053-1062. Bhattacharya, S. H., Gal, A. A., and Murray, K. K. (2003). Laser capture microdissection MALDI for direct analysis of archival tissue. J Proteome Res 2, 95-98. Bours, V., Dejardin, E., Goujon-Letawe, F., Merville, M. P., and Castronovo, V. (1994). The NF-kappa B transcription factor and cancer: high expression of NF-kappa B- and I kappa B-related proteins in tumor cell lines. Biochem Pharmacol 47, 145-149. Bunch, J., Clench, M. R., and Richards, D. S. (2004). Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionisation mass spectrometry. Rapid Commun Mass Spectrom 18, 3051-3060. Cahill, D. J. (2001). Protein and antibody arrays and their medical applications. J Immunol Methods 250, 81-91. Caldwell, R. L., and Caprioli, R. M. (2005). Tissue profiling by mass spectrometry: a review of methodology and applications. Mol Cell Proteomics 4, 394-401. Caprioli, R. M. (2005). Deciphering protein molecular signatures in cancer tissues to aid in diagnosis, prognosis, and therapy. Cancer Res 65, 10642-10645. Caprioli, R. M., Farmer, T. B., and Gile, J. (1997). Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69, 4751-4760. Cha, H. J., Jeong, M. J., and Kleinman, H. K. (2003). Role of thymosin β4 in tumor metastasis and angiogenesis. J Natl Cancer Inst 95, 1674-1680. Chant, I. D., Rose, P. E., and Morris, A. G. (1995). Analysis of heat-shock protein expression in myeloid leukaemia cells by flow cytometry. Br J Haematol 90, 163-168. Chaurand, P., DaGue, B. B., Ma, S., Kasper, S., and Caprioli, R. M. (2001). Strain-based sequence variations and structure analysis of murine prostate specific spermine binding protein using mass spectrometry. Biochemistry 40, 9725-9733. Chaurand, P., Fouchecourt, S., DaGue, B. B., Xu, B. J., Reyzer, M. L., Orgebin-Crist, M. C., and Caprioli, R. M. (2003). Profiling and imaging proteins in the mouse epididymis by imaging mass spectrometry. Proteomics 3, 2221-2239. Chaurand, P., Norris, J. L., Cornett, D. S., Mobley, J. A., and Caprioli, R. M. (2006). New developments in profiling and imaging of proteins from tissue sections by MALDI mass spectrometry. J Proteome Res 5, 2889-2900. Chaurand, P., Schwartz, S. A., Billheimer, D., Xu, B. J., Crecelius, A., and Caprioli, R. M. (2004). Integrating histology and imaging mass spectrometry. Anal Chem 76, 1145-1155. Chaurand, P., Schwartz, S. A., and Caprioli, R. M. (2002). Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and proteins in mammalian tissue sections. Curr Opin Chem Biol 6, 676-681. Chaurand, P., Schwartz, S. A., Reyzer, M. L., and Caprioli, R. M. (2005). Imaging mass spectrometry: principles and potentials. Toxicol Pathol 33, 92-101. Chaurand, P., Stoeckli, M., and Caprioli, R. M. (1999). Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem 71, 5263-5270. Chen, Z. J. (2005). Ubiquitin signalling in the NF-kappaB pathway. Nat Cell Biol 7, 758-765. Chung, C. S., Chen, C. H., Ho, M. Y., Huang, C. Y., Liao, C. L., and Chang, W. (2006). Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 80, 2127-2140. Cotter, R. J., Fancher, C., and Cornish, T. J. (1999). Miniaturized time-of-flight mass spectrometer for peptide and oligonucleotide analysis. J Mass Spectrom 34, 1368-1372. Crecelius, A. C., Cornett, D. S., Caprioli, R. M., Williams, B., Dawant, B. M., and Bodenheimer, B. (2005). Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom 16, 1093-1099. Crockett, D. K., Lin, Z., Vaughn, C. P., Lim, M. S., and Elenitoba-Johnson, K. S. (2005). Identification of proteins from formalin-fixed paraffin-embedded cells by LC-MS/MS. Lab Invest 85, 1405-1415. de Wildt, R. M., Mundy, C. R., Gorick, B. D., and Tomlinson, I. M. (2000). Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18, 989-994. DOH Report, D. o. H., Taiwan, Republic of China (2003). Cancer Registration Report. Dokter, W. H., Tuyt, L., Sierdsema, S. J., Esselink, M. T., and Vellenga, E. (1995). The spontaneous expression of interleukin-1 beta and interleukin-6 is associated with spontaneous expression of AP-1 and NF-kappa B transcription factor in acute myeloblastic leukemia cells. Leukemia 9, 425-432. Dutt, M. J., and Lee, K. H. (2000). Proteomic analysis. Curr Opin Biotechnol 11, 176-179. Feldman, A. L., Espina, V., Petricoin, E. F., 3rd, Liotta, L. A., and Rosenblatt, K. P. (2004). Use of proteomic patterns to screen for gastrointestinal malignancies. Surgery 135, 243-247. Fontaine, V., van der Meijden, E., de Graaf, J., ter Schegget, J., and Struyk, L. (2000). A functional NF-kappaB binding site in the human papillomavirus type 16 long control region. Virology 272, 40-49. Forastiere, A., Koch, W., Trotti, A., and Sidransky, D. (2001). Head and neck cancer. N Engl J Med 345, 1890-1900. Franzen, B., Linder, S., Alaiya, A. A., Eriksson, E., Fujioka, K., Bergman, A. C., Jornvall, H., and Auer, G. (1997). Analysis of polypeptide expression in benign and malignant human breast lesions. Electrophoresis 18, 582-587. Garden, R. W., and Sweedler, J. V. (2000). Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal Chem 72, 30-36. Geysen, H. M., Meloen, R. H., and Barteling, S. J. (1984). Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proc Natl Acad Sci U S A 81, 3998-4002. Grabsch, H., Takeno, S., Parsons, W. J., Pomjanski, N., Boecking, A., Gabbert, H. E., and Mueller, W. (2003). Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer--association with tumour cell proliferation. J Pathol 200, 16-22. Groseclose, M. R., Andersson, M., Hardesty, W. M., and Caprioli, R. M. (2007). Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom 42, 254-262. Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., and Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994-999. Haab, B. B., Dunham, M. J., and Brown, P. O. (2001). Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2, RESEARCH0004. He, Q. Y., Chen, J., Kung, H. F., Yuen, A. P., and Chiu, J. F. (2004). Identification of tumor-associated proteins in oral tongue squamous cell carcinoma by proteomics. Proteomics 4, 271-278. Herrmann, P. C., Liotta, L. A., and Petricoin, E. F., 3rd (2001). Cancer proteomics: the state of the art. Dis Markers 17, 49-57. Hochstrasser, M. (1996). Ubiquitin-dependent protein degradation. Annu Rev Genet 30, 405-439. Hood, B. L., Darfler, M. M., Guiel, T. G., Furusato, B., Lucas, D. A., Ringeisen, B. R., Sesterhenn, I. A., Conrads, T. P., Veenstra, T. D., and Krizman, D. B. (2005). Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics 4, 1741-1753. Hsieh, Y., Casale, R., Fukuda, E., Chen, J., Knemeyer, I., Wingate, J., Morrison, R., and Korfmacher, W. (2006). Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom 20, 965-972. Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., and Mann, M. (2005). Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4, 1265-1272. Jaremko, M., Justenhoven, C., Abraham, B. K., Schroth, W., Fritz, P., Brod, S., Vollmert, C., Illig, T., and Brauch, H. (2005). MALDI-TOF MS and TaqMan assisted SNP genotyping of DNA isolated from formalin-fixed and paraffin-embedded tissues (FFPET). Hum Mutat 25, 232-238. Johnson, E. S. (2002). Ubiquitin branches out. Nat Cell Biol 4, E295-298. Jurchen, J. C., Rubakhin, S. S., and Sweedler, J. V. (2005). MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 16, 1654-1659. Kim, E. S., Hong, W. K., and Khuri, F. R. (2002). Chemoprevention of aerodigestive tract cancers. Annu Rev Med 53, 223-243. Kok, S. H., Hong, C. Y., Lin, S. K., Lee, J. J., Chiang, C. P., and Kuo, M. Y. (2007). Establishment and characterization of a tumorigenic cell line from areca quid and tobacco smoke-associated buccal carcinoma. Oral Oncol 43, 639-647. Lebret, T., Watson, R. W., Molinie, V., O'Neill, A., Gabriel, C., Fitzpatrick, J. M., and Botto, H. (2003). Heat shock proteins HSP27, HSP60, HSP70, and HSP90: expression in bladder carcinoma. Cancer 98, 970-977. Lemaire, R., Desmons, A., Tabet, J. C., Day, R., Salzet, M., and Fournier, I. (2007). Direct analysis and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J Proteome Res 6, 1295-1305. Lemaire, R., Tabet, J. C., Ducoroy, P., Hendra, J. B., Salzet, M., and Fournier, I. (2006). Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem 78, 809-819. Luxembourg, S. L., McDonnell, L. A., Mize, T. H., and Heeren, R. M. (2005). Infrared mass spectrometric imaging below the diffraction limit. J Proteome Res 4, 671-673. Luxembourg, S. L., Mize, T. H., McDonnell, L. A., and Heeren, R. M. (2004). High-spatial resolution mass spectrometric imaging of peptide and protein distributions on a surface. Anal Chem 76, 5339-5344. Masumori, N., Thomas, T. Z., Chaurand, P., Case, T., Paul, M., Kasper, S., Caprioli, R. M., Tsukamoto, T., Shappell, S. B., and Matusik, R. J. (2001). A probasin-large T antigen transgenic mouse line develops prostate adenocarcinoma and neuroendocrine carcinoma with metastatic potential. Cancer Res 61, 2239-2249. McCombie, G., Staab, D., Stoeckli, M., and Knochenmuss, R. (2005). Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis. Anal Chem 77, 6118-6124. Mishra, A., Bharti, A. C., Varghese, P., Saluja, D., and Das, B. C. (2006). Differential expression and activation of NF-kappaB family proteins during oral carcinogenesis: Role of high risk human papillomavirus infection. Int J Cancer 119, 2840-2850. Miyamoto, S., Chiao, P. J., and Verma, I. M. (1994). Enhanced I kappa B alpha degradation is responsible for constitutive NF-kappa B activity in mature murine B-cell lines. Mol Cell Biol 14, 3276-3282. Mori, D., Nakafusa, Y., Miyazaki, K., and Tokunaga, O. (2005). Differential expression of Janus kinase 3 (JAK3), matrix metalloproteinase 13 (MMP13), heat shock protein 60 (HSP60), and mouse double minute 2 (MDM2) in human colorectal cancer progression using human cancer cDNA microarrays. Pathol Res Pract 201, 777-789. Mouledous, L., Hunt, S., Harcourt, R., Harry, J., Williams, K. L., and Gutstein, H. B. (2003). Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3, 610-615. Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet, R. J., Jr., and Sledge, G. W., Jr. (1997). Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol 17, 3629-3639. Nocito, A., Kononen, J., Kallioniemi, O. P., and Sauter, G. (2001). Tissue microarrays (TMAs) for high-throughput molecular pathology research. Int J Cancer 94, 1-5. Ondrey, F. G., Dong, G., Sunwoo, J., Chen, Z., Wolf, J. S., Crowl-Bancroft, C. V., Mukaida, N., and Van Waes, C. (1999). Constitutive activation of transcription factors NF-(kappa)B, AP-1, and NF-IL6 in human head and neck squamous cell carcinoma cell lines that express pro-inflammatory and pro-angiogenic cytokines. Mol Carcinog 26, 119-129. Ong, S. E., and Mann, M. (2006). A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1, 2650-2660. Palmer-Toy, D. E., Krastins, B., Sarracino, D. A., Nadol, J. B., Jr., and Merchant, S. N. (2005). Efficient method for the proteomic analysis of fixed and embedded tissues. J Proteome Res 4, 2404-2411. Palmer-Toy, D. E., Sarracino, D. A., Sgroi, D., LeVangie, R., and Leopold, P. E. (2000). Direct acquisition of matrix-assisted laser Desorption/Ionization time-of-flight mass spectra from laser capture microdissected tissues. Clin Chem 46, 1513-1516. Paweletz, C. P., Charboneau, L., Bichsel, V. E., Simone, N. L., Chen, T., Gillespie, J. W., Emmert-Buck, M. R., Roth, M. J., Petricoin, I. E., and Liotta, L. A. (2001a). Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20, 1981-1989. Paweletz, C. P., Trock, B., Pennanen, M., Tsangaris, T., Magnant, C., Liotta, L. A., and Petricoin, E. F., 3rd (2001b). Proteomic patterns of nipple aspirate fluids obtained by SELDI-TOF: potential for new biomarkers to aid in the diagnosis of breast cancer. Dis Markers 17, 301-307. Perrone, E. E., Theoharis, C., Mucci, N. R., Hayasaka, S., Taylor, J. M., Cooney, K. A., and Rubin, M. A. (2000). Tissue microarray assessment of prostate cancer tumor proliferation in African- American and white men. J Natl Cancer Inst 92, 937-939. Pickart, C. M. (2001). Ubiquitin enters the new millennium. Mol Cell 8, 499-504. Pierson, J., Norris, J. L., Aerni, H. R., Svenningsson, P., Caprioli, R. M., and Andren, P. E. (2004). Molecular profiling of experimental Parkinson's disease: direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry. J Proteome Res 3, 289-295. Prusty, B. K., Husain, S. A., and Das, B. C. (2005). Constitutive activation of nuclear factor -kB: preferntial homodimerization of p50 subunits in cervical carcinoma. Front Biosci 10, 1510-1519. Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002). Large-scale proteomic analysis of the human spliceosome. Genome Res 12, 1231-1245. Reyzer, M. L., Caldwell, R. L., Dugger, T. C., Forbes, J. T., Ritter, C. A., Guix, M., Arteaga, C. L., and Caprioli, R. M. (2004). Early changes in protein expression detected by mass spectrometry predict tumor response to molecular therapeutics. Cancer Res 64, 9093-9100. Reyzer, M. L., and Caprioli, R. M. (2007). MALDI-MS-based imaging of small molecules and proteins in tissues. Curr Opin Chem Biol 11, 29-35. Reyzer, M. L., Hsieh, Y., Ng, K., Korfmacher, W. A., and Caprioli, R. M. (2003). Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 38, 1081-1092. Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S. Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D.J. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154-1169. Rujoi, M., Estrada, R., and Yappert, M. C. (2004). In situ MALDI-TOF MS regional analysis of neutral phospholipids in lens tissue. Anal Chem 76, 1657-1663. Sanders, M. C., Goldstein, A. L., and Wang, Y. L. (1992). Thymosin β4 (Fx peptide) is a potent regulator of actin polymerization in living cells. Proc Natl Acad Sci U S A 89, 4678-4682. Saranath, D. (2000). Contemporary Issues in Oral Cancer). Schwartz, S. A., Reyzer, M. L., and Caprioli, R. M. (2003). Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38, 699-708. Schwartz, S. A., Weil, R. J., Johnson, M. D., Toms, S. A., and Caprioli, R. M. (2004). Protein profiling in brain tumors using mass spectrometry: feasibility of a new technique for the analysis of protein expression. Clin Cancer Res 10, 981-987. Schwartz, S. A., Weil, R. J., Thompson, R. C., Shyr, Y., Moore, J. H., Toms, S. A., Johnson, M. D., and Caprioli, R. M. (2005). Proteomic-based prognosis of brain tumor patients using direct-tissue matrix-assisted laser desorption ionization mass spectrometry. Cancer Res 65, 7674-7681. Shevchenko, A., Chernushevich, I., Ens, W., Standing, K. G., Thomson, B., Wilm, M., and Mann, M. (1997). Rapid 'de novo' peptide sequencing by a combination of nanoelectrospray, isotopic labeling and a quadrupole/time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 11, 1015-1024. Silva, J. C., Denny, R., Dorschel, C. A., Gorenstein, M., Kass, I. J., Li, G. Z., McKenna, T., Nold, M. J., Richardson, K., Young, P., and Geromanos, S. (2005). Quantitative proteomic analysis by accurate mass retention time pairs. Anal Chem 77, 2187-2200. Silva, J. C., Gorenstein, M. V., Li, G. Z., Vissers, J. P., and Geromanos, S. J. (2006). Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5, 144-156. Spafford, M. F., Koch, W. M., Reed, A. L., Califano, J. A., Xu, L. H., Eisenberger, C. F., Yip, L., Leong, P. L., Wu, L., Liu, S. X., Jer?nimo, C., Westra, W.H., and Sidransky, D. (2001). Detection of head and neck squamous cell carcinoma among exfoliated oral mucosal cells by microsatellite analysis. Clin Cancer Res 7, 607-612. Spengler, B., and Hubert, M. (2002). Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: instrumentation for sub-micrometer resolved LDI and MALDI surface analysis. J Am Soc Mass Spectrom 13, 735-748. Srivastava, D., Saxena, A., Dimaio, J. M., and Bock-Marquette, I. (2007). Thymosin {beta}4 is Cardioprotective After Myocardial Infarction. Ann N Y Acad Sci. Stoeckli, M., Chaurand, P., Hallahan, D. E., and Caprioli, R. M. (2001). Imaging mass spectrometry: a new technology for the analysis of protein expression in mammalian tissues. Nat Med 7, 493-496. Stoeckli, M., Farmer, T. B., and Caprioli, R. M. (1999). Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument. J Am Soc Mass Spectrom 10, 67-71. Stoeckli, M., Staab, D., Staufenbiel, M., Wiederhold, K. H., and Signor, L. (2002). Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem 311, 33-39. Sugiura, Y., Shimma, S., and Setou, M. (2006). Two-step matrix application technique to improve ionization efficiency for matrix-assisted laser desorption/ionization in imaging mass spectrometry. Anal Chem 78, 8227-8235. Tempez, A., Ugarov, M., Egan, T., Schultz, J. A., Novikov, A., Della-Negra, S., Lebeyec, Y., Pautrat, M., Caroff, M., Smentkowski, V. S., Wang, H.Y., Jackson, S.N., and Woods, A.S. (2005). Matrix implanted laser desorption ionization (MILDI) combined with ion mobility-mass spectrometry for bio-surface analysis. J Proteome Res 4, 540-545. Todd, P. J., Schaaff, T. G., Chaurand, P., and Caprioli, R. M. (2001). Organic ion imaging of biological tissue with secondary ion mass spectrometry and matrix-assisted laser desorption/ionization. J Mass Spectrom 36, 355-369. Turhani, D., Krapfenbauer, K., Thurnher, D., Langen, H., and Fountoulakis, M. (2006). Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis 27, 1417-1423. Vissers, J. P., Langridge, J. I., and Aerts, J. M. (2007). Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics 6, 755-766. Wang, W., Abbruzzese, J. L., Evans, D. B., Larry, L., Cleary, K. R., and Chiao, P. J. (1999). The nuclear factor-kappa B RelA transcription factor is constitutively activated in human pancreatic adenocarcinoma cells. Clin Cancer Res 5, 119-127. Wang, W. S., Chen, P. M., Hsiao, H. L., Ju, S. Y., and Su, Y. (2003). Overexpression of the thymosin beta-4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene 22, 3297-3306. Wang, W. S., Chen, P. M., Hsiao, H. L., Wang, H. S., Liang, W. Y., and Su, Y. (2004). Overexpression of the thymosin beta-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23, 6666-6671. Wulfkuhle, J. D., McLean, K. C., Paweletz, C. P., Sgroi, D. C., Trock, B. J., Steeg, P. S., and Petricoin, E. F., 3rd (2001). New approaches to proteomic analysis of breast cancer. Proteomics 1, 1205-1215. Xiao, X., Liu, D., Tang, Y., Guo, F., Xia, L., Liu, J., and He, D. (2003). Development of proteomic patterns for detecting lung cancer. Dis Markers 19, 33-39. Xu, B. J., Caprioli, R. M., Sanders, M. E., and Jensen, R. A. (2002). Direct analysis of laser capture microdissected cells by MALDI mass spectrometry. J Am Soc Mass Spectrom 13, 1292-1297. Yanagisawa, K., Shyr, Y., Xu, B. J., Massion, P. P., Larsen, P. H., White, B. C., Roberts, J. R., Edgerton, M., Gonzalez, A., Nadaf, S., Moore, J.H., Caprioli, R.M., and Carbone, D.P. (2003). Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 362, 433-439. Yao, X., Freas, A., Ramirez, J., Demirev, P. A., and Fenselau, C. (2001). Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73, 2836-2842. Yoganathan, N., Yee, A., Zhang, Z., Leung, D., Yan, J., Fazli, L., Kojic, D.L., Costello, P.C., Jabali, M., Dedhar, S., and Sanghera, J. (2002). Integrin-linked kinase, a promising cancer therapeutic target: biochemical and biological properties. Pharmacol Ther 93, 233-242. Zheng, Y., Xu, Y., Ye, B., Lei, J., Weinstein, M. H., O'Leary, M. P., Richie, J. P., Mok, S. C., and Liu, B. C. (2003). Prostate carcinoma tissue proteomics for biomarker discovery. Cancer 98, 2576-2582. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24945 | - |
| dc.description.abstract | Oral cancer is the sixth most frequent cancer in the world. Buccal mucosa originated squamous cell carcinoma (SCC) is one of the most aggressive oral cancers. It mainly occurs in Taiwan, Central and Southeast Asia, and is closely related to the practice of tobacco smoking and betel squid chewing.
The high recurrence and low survival rates of buccal SCC remained an important focus for us to understand the pathogenesis of the disease in order to design better therapeutic strategies. Here we applied novel proteomic technology to analyze oral cancer cell lines and paired N/T buccal SCC tissues to identify tumor-associated proteins as new oral cancer biomarkers or molecular targets. We further evaluated a novel cancer therapeutical compound deguelin global protein response in oral cancer cell line SAS. Our result showed a number of proteins were found to be significantly over-expressed or down-regulated in oral cancer cell lines and clinical samples. These increased proteins included glycolytic enzymes, heat-shock proteins, tumor antigens, cytoskeleton proteins, enzymes involved in detoxification and anti-oxidation systems, and proteins involved in mitochondrial and intracellular signaling pathways. These extensive protein variations indicate that multiple cellular pathways were involved in the process of tumorigenesis, and suggest that multiple protein molecules should be simultaneously targeted as an effective strategy to counter the disease. In our results, at least, we have identified Thymosin β4, ubiquitin, BUB3, in addition to several novel proteins are candidates for targeted proteins in oral cancers. Validation of Thymosin β4 protein expression in N/T paired oral cancer tissue array by immunohistochemistry analysis revealed that Thymosin β4 overexpression was found mainly in late clinical stage oral cancer samples. The thymosin β4/ILK/Akt pathway analysis also showed similar trend for the activation of this pathway in oral cancers. Altogether, the present findings also demonstrated that rich protein information can be produced by means of proteomic analysis for a better understanding of the oncogenesis and pathogenesis in a global way, which in turn is a basis for the rational designs of diagnostic and therapeutic methods in oral cancers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:58:50Z (GMT). No. of bitstreams: 1 ntu-96-R94450001-1.pdf: 9727908 bytes, checksum: 77b811cca2650165d9932f0327b05643 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Abbreviations (1)
中文摘要 (2) Abstract (3) Chapter 1 General Introduction (4) 1.1 Background and significance (5) 1.2 Specific aims (18) Chapter 2 Materials and Methods (19) Chapter 3 Results (29) 3.1 Oral cancer cell lines protein identification (30) 3.2 Potential protein markers of oral cancer cell lines (52) 3.3 MALDI-MS analysis of oral cancer tissues (57) 3.4 Proteomic study of deguelin cytotoxicity in oral cancer cells (69) 3.5 Tissue array for biomarker validation (74) Chapter 4 Discussion (83) Chapter 5 Future Perspectives (95) References (98) | |
| dc.language.iso | en | |
| dc.subject | 乙四型胸線蛋白 | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | 存活率 | zh_TW |
| dc.subject | 蛋白質體學 | zh_TW |
| dc.subject | 標的分子 | zh_TW |
| dc.subject | biomarker | en |
| dc.subject | Thymosin β4 | en |
| dc.subject | oral cancer | en |
| dc.subject | survival rate | en |
| dc.subject | proteomics | en |
| dc.title | 以蛋白質體學為基礎來尋找新的口腔癌腫瘤標記 | zh_TW |
| dc.title | Global Proteomic-based Identification and Validation of Novel Tumor Markers for Human Oral Cancers | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 蕭宏昇 | |
| dc.contributor.oralexamcommittee | 陳仲瑄,呂佩融 | |
| dc.subject.keyword | 口腔癌,存活率,蛋白質體學,標的分子,乙四型胸線蛋白, | zh_TW |
| dc.subject.keyword | oral cancer,survival rate,proteomics,biomarker,Thymosin β4, | en |
| dc.relation.page | 111 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-08-07 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 9.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
