Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24942
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李存修
dc.contributor.authorHung-Chou Tsaien
dc.contributor.author蔡宏洲zh_TW
dc.date.accessioned2021-06-08T05:58:47Z-
dc.date.copyright2007-08-28
dc.date.issued2007
dc.date.submitted2007-08-08
dc.identifier.citationReferences
1.Becherer, D. (2003) Rational hedging and valuation of integrated risks under constant absolute risk aversion, Insurance: Mathematics and Economics 33, 1-28.
2.Csiszar, I. (1975) I-divergence geometry of probability distributions and minimization problems, Annals of Probability 3, 146-148.
3.Delbaen, F., Grandits, P., Rheinlander, T., Samperi, D., Schweizer, M., Stricker, C. (2002) Exponential hedging and entropic penalties, Mathematical Finance 12, 99-123.
4.Follmer, H., Schweizer, M. (1991) Hedging of contingent claims under incomplete information; in Applied Stochastic Analysis, Stochastic Monographs, Vol. 5, eds. M. H. Davis, and R. J. Elliott. London: Gordon and Breach.
5.Frittelli, M. (2000) The minimal entropy martingale measure and the valuation problem in incomplete markets, Mathematical Finance 10, 39-52.
6.Fujiwara, T., Miyahara, Y. (2003) The minimal entropy martingale measures for geometric Levy processes, Finance and Stochastics 7, 509-531.
7.Henderson, V., Hobson, D. (2004) Utility indifference pricing: An overview, Preprint.
8.Hodges, S., Neuberger, A. (1989) Optimal Replication of Contingent Claims under Transaction costs, Review of Futures Markets 8, 222-239.
9.Ihara, S. (1993) Information Theory. Singapore: World Scientific.
10.Mania, M., Schweizer, M. (2005) Dynamic exponential utility indifference valuation, Annals of Applied Probability 15, 2113-2143.
11.Miyahara, Y. (1996) Canonical martingale measures of incomplete asset market, Probability Theory and Mathematical Statistics: Proceedings of the Seven Japan-Russia Symposium, Tokyo, World Scientific, 343-352.
12.Musiela, M., Zariphopoulou, T. (2004a) An example of indifference prices under exponential preferences, Finance and Stochastics 8, 229-239.
13.Musiela, M., Zariphopoulou, T. (2004b) A valuation algorithm for indifference prices in incomplete markets, Finance and Stochastics 8, 399-414.
14.Rouge, R., EL Karoui, N. (2000) Pricing via utility maximization and entropy, Mathematical Finance 10, 259-276.
15.Schachermayer, W. ((2001) Optimal Investment in Incomplete Markets When Wealth May Become Negative, Annals of Applied Probability 11, 694-734.
16.Stricker, C. (2004) Indifference pricing with exponential utility, in Progress in Probability 58, 323-328.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24942-
dc.description.abstractThe main purpose of this dissertation is to investigate the problems of contingent claim valuation in incomplete markets, especially focused on the pricing measures for Levy processes. This dissertation is constituted by three essays and each essay is self-contained.
Essay 1 reviews some known results in an incomplete market in the case of exponential utility function. We also discuss the notion of utility indifference price for a contingent claim and investigate the asymptotic behavior of utility indifference price.
Essay 2 uses the Esscher transform to construct a martingale measure in the framework of geometric Levy process. By means of a relation between exponential Levy process and stochastic exponential of Levy process, we have shown that a Levy process is a martingale if and only if its stochastic exponential is a martingale. Using this result, we also define a necessary condition for the Esscher measure to be the minimal entropy martingale measure.
Essay 3 formulates an approach to computing the density process of the minimal entropy martingale measure for a jump-diffusion model and the stochastic volatility model by Barndorff-Nielsen and Shepherd. In addition, we also calculate the explicit forms of the minimal entropy martingale measure for those two models.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:58:47Z (GMT). No. of bitstreams: 1
ntu-96-D90723010-1.pdf: 694911 bytes, checksum: eda3cc0c566334e3fbaa0f3ae7f9ac76 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
Introduction 1
Essay 1. Minimal entropy martingale measure and utility indifference price 4
1. Introduction 4
2. The notion of minimal entropy martingale measure 5
3. The dual formulation on an exponential utility
function 11
4. Expressions for utility indifference prices 14
5. Conclusions 22
References 23
Essay 2. The pricing measure for geometric Levy processes under incomplete financial markets 25
1. Introduction 25
2. Levy processes and exponential Levy models 28
2.1 Levy process 28
2.2 Exponential Levy process and stochastic exponential of Levy process 32
3. Martingale measures for Levy processes 35
3.1 Girsanov theorem and Esscher measure 35
3.2 The Esscher measure for compound return process:
Exponential Levy process 40
3.3 The Esscher measure for simple return process:
Linear Levy process 44
4. Minimal entropy martingale measure for exponential Levy process 51
5. Conclusions 54
Appendix 55
References 58
Essay 3. The minimal entropy martingale measure for jump-diffusion models 60
1. Introduction 60
2. The jump-diffusion model 61
3. The minimal entropy martingale measure for jump-diffusion model 64
4. The minimal entropy martingale measure for the BN-S stochastic volatility model 72
5. Conclusions 79
Appendix 80
References 82
dc.language.isoen
dc.subject平賭zh_TW
dc.subject效用無差異價格zh_TW
dc.subject跳躍-擴散模型zh_TW
dc.subjectLevy processen
dc.subjectutility indifference priceen
dc.subjectminimal entropy martingale measureen
dc.subjectjump-diffusion modelen
dc.subjectEsscher measureen
dc.title不完全市場之下或有請求權評價之研究zh_TW
dc.titleThree Essays on Contingent Claim Valuation in Incomplete Marketsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.coadvisor何淮中
dc.contributor.oralexamcommittee許順吉,廖四郎,張傳章
dc.subject.keyword效用無差異價格,跳躍-擴散模型,平賭,zh_TW
dc.subject.keywordEsscher measure,jump-diffusion model,Levy process,minimal entropy martingale measure,utility indifference price,en
dc.relation.page83
dc.rights.note未授權
dc.date.accepted2007-08-09
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
678.62 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved