請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24940
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝豐舟(Fon-Jou Hsieh),杜永光(Yong-Kwang Tu),李鴻(Hung Li) | |
dc.contributor.author | Dar-Ming Lai | en |
dc.contributor.author | 賴達明 | zh_TW |
dc.date.accessioned | 2021-06-08T05:58:45Z | - |
dc.date.copyright | 2007-08-16 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-09 | |
dc.identifier.citation | 洪祖培:台灣地區二十六所教學醫院民國七十四年腦中風調查研究報告─調查概況及全般性結果(DOH76-0202-59)。行政院衛生署,1987: 2-20。
Adair, T.H., 2005. Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol 289, R283-R296. Aden, U., Lindstrom, K., Bona, E., Hagberg, H. and Fredholm, B.B., 1994. Changes in adenosine receptors in the neonatal rat brain following hypoxic ischemia. Brain Res Mol Brain Res 23, 354-358. Alzheimer, C., Sutor, B. and ten Bruggencate, G., 1993. Disinhibition of hippocampal CA3 neurons induced by suppression of an adenosine A1 receptor-mediated inhibitory tonus: pre- and postsynaptic components. Neuroscience 57, 565-575. Amiry-Moghaddam, M., Otsuka, T., Hurn, P.D., Traystman, R.J., Haug, F.M., Froehner, S.C., Adams, M.E., Neely, J.D., Agre, P., Ottersen, O.P. and Bhardwaj, A., 2003. An alpha-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain. Proc Natl Acad Sci U S A 100, 2106-2111. Andine, P., 1993. Involvement of adenosine in ischemic and postischemic calcium regulation. Mol Chem Neuropathol 18, 35-49. Ashton, K.J., Peart, J.N., Morrison, R.R., Matherne, G.P., Blackburn, M.R. and Headrick, J.P., 2007. Genetic modulation of adenosine receptor function and adenosine handling in murine hearts: insights and issues. J Mol Cell Cardiol 42, 693-705. Aspey, B.S., Cohen, S., Patel, Y., Terruli, M. and Harrison, M.J., 1998. Middle cerebral artery occlusion in the rat: consistent protocol for a model of stroke. Neuropathol Appl Neurobiol 24, 487-497. Bath, P., 2002. Anticoagulants and antiplatelet agents in acute ischaemic stroke. Lancet Neurol 1, 405. Beck, L., Jr. and D'Amore, P.A., 1997. Vascular development: cellular and molecular regulation. Faseb J 11, 365-373. Belayev, L., Busto, R., Zhao, W. and Ginsberg, M.D., 1996. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 739, 88-96. Benezra, R., 2001. Role of Id proteins in embryonic and tumor angiogenesis. Trends Cardiovasc Med 11, 237-241. Benezra, R., Rafii, S. and Lyden, D., 2001. The Id proteins and angiogenesis. Oncogene 20, 8334-8341. Bhatt, D.L., Fox, K.A., Hacke, W., Berger, P.B., Black, H.R., Boden, W.E., Cacoub, P., Cohen, E.A., Creager, M.A., Easton, J.D., Flather, M.D., Haffner, S.M., Hamm, C.W., Hankey, G.J., Johnston, S.C., Mak, K.H., Mas, J.L., Montalescot, G., Pearson, T.A., Steg, P.G., Steinhubl, S.R., Weber, M.A., Booth, J. and Topol, E.J., 2005. A global view of atherothrombosis: baseline characteristics in the Clopidogrel for High Atherothrombotic Risk and Ischemic Stabilization, Management, and Avoidance (CHARISMA) trial. Am Heart J 150, 401. Biber, K., Klotz, K.N., Berger, M., Gebicke-Harter, P.J. and van Calker, D., 1997. Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. J Neurosci 17, 4956-4964. Bischofberger, N., Jacobson, K.A. and von Lubitz, D.K., 1997. Adenosine A1 receptor agonists as clinically viable agents for treatment of ischemic brain disorders. Ann N Y Acad Sci 825, 23-29. Boison, D., 2006. Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27, 652-658. Bomsta, B.D., Bridgewater, L.C. and Seegmiller, R.E., 2006. Premature osteoarthritis in the Disproportionate micromelia (Dmm) mouse. Osteoarthritis Cartilage 14, 477-485. Bouley, J., Fisher, M. and Henninger, N., 2007. Comparison between coated vs. uncoated suture middle cerebral artery occlusion in the rat as assessed by perfusion/diffusion weighted imaging. Neurosci Lett 412, 185-190. Bousser, M.G. and Kittner, S.J., 2000. Oral contraceptives and stroke. Cephalalgia 20, 183-189. Brenner, M. and Messing, A., 1996. GFAP Transgenic Mice. Methods 10, 351-364. Camenisch, G., Pisabarro, M.T., Sherman, D., Kowalski, J., Nagel, M., Hass, P., Xie, M.H., Gurney, A., Bodary, S., Liang, X.H., Clark, K., Beresini, M., Ferrara, N. and Gerber, H.P., 2002. ANGPTL3 stimulates endothelial cell adhesion and migration via integrin alpha vbeta 3 and induces blood vessel formation in vivo. J Biol Chem 277, 17281-17290. Carmeliet, P., Moons, L., Dewerchin, M., Mackman, N., Luther, T., Breier, G., Ploplis, V., Muller, M., Nagy, A., Plow, E., Gerard, R., Edgington, T., Risau, W. and Collen, D., 1997. Insights in vessel development and vascular disorders using targeted inactivation and transfer of vascular endothelial growth factor, the tissue factor receptor, and the plasminogen system. Ann N Y Acad Sci 811, 191-206. Carmichael, S.T., 2005. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2, 396-409. Castillo, J., 2000. [Physiopathology of cerebral ischemia]. Rev Neurol 30, 459-464. Cazes, A., Galaup, A., Chomel, C., Bignon, M., Brechot, N., Le Jan, S., Weber, H., Corvol, P., Muller, L., Germain, S. and Monnot, C., 2006. Extracellular Matrix-Bound Angiopoietin-Like 4 Inhibits Endothelial Cell Adhesion, Migration, and Sprouting and Alters Actin Cytoskeleton. Circ Res. Chen, T.Y., Goyagi, T., Toung, T.J., Kirsch, J.R., Hurn, P.D., Koehler, R.C. and Bhardwaj, A., 2004. Prolonged opportunity for ischemic neuroprotection with selective kappa-opioid receptor agonist in rats. Stroke 35, 1180-1185. Cheung, W.M., Wang, C.K., Kuo, J.S. and Lin, T.N., 1999. Changes in the level of glial fibrillary acidic protein (GFAP) after mild and severe focal cerebral ischemia. Chin J Physiol 42, 227-235. Chiquet-Ehrismann, R. and Tucker, R.P., 2004. Connective tissues: signalling by tenascins. Int J Biochem Cell Biol 36, 1085-1089. Chu, X., Bai, Y. and Yuan, J., 1994. [Site-directed mutagenesis of Lac Z gene in Escherichia coli and the kinetic properties of the mutated enzymes]. Wei Sheng Wu Xue Bao 34, 206-212. Connolly, E.S., Jr., Winfree, C.J., Stern, D.M., Solomon, R.A. and Pinsky, D.J., 1996. Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery 38, 523-531; discussion 532. Costa, F. and Biaggioni, I., 1998. Role of nitric oxide in adenosine-induced vasodilation in humans. Hypertension 31, 1061-1064. Deckert, J. and Jorgensen, M.B., 1988. Evidence for pre- and postsynaptic localization of adenosine A1 receptors in the CA1 region of rat hippocampus: a quantitative autoradiographic study. Brain Res 446, 161-164. Dhanabal, M., Jeffers, M., LaRochelle, W.J. and Lichenstein, H.S., 2005. Angioarrestin: a unique angiopoietin-related protein with anti-angiogenic properties. Biochem Biophys Res Commun 333, 308-315. Dhanabal, M., LaRochelle, W.J., Jeffers, M., Herrmann, J., Rastelli, L., McDonald, W.F., Chillakuru, R.A., Yang, M., Boldog, F.L., Padigaru, M., McQueeney, K.D., Wu, F., Minskoff, S.A., Shimkets, R.A. and Lichenstein, H.S., 2002. Angioarrestin: an antiangiogenic protein with tumor-inhibiting properties. Cancer Res 62, 3834-3841. Ding, H., Roncari, L., Wu, X., Lau, N., Shannon, P., Nagy, A. and Guha, A., 2001. Expression and hypoxic regulation of angiopoietins in human astrocytomas. Neuro-oncol 3, 1-10. Dittmar, M., Spruss, T., Schuierer, G. and Horn, M., 2003. External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke 34, 2252-2257. Elkind, M.S. and Sacco, R.L., 1998. Stroke risk factors and stroke prevention. Semin Neurol 18, 429-440. Ellerby, H.M., Arap, W., Ellerby, L.M., Kain, R., Andrusiak, R., Rio, G.D., Krajewski, S., Lombardo, C.R., Rao, R., Ruoslahti, E., Bredesen, D.E. and Pasqualini, R., 1999. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med 5, 1032-1038. Feeney, S.A., Simpson, D.A., Gardiner, T.A., Boyle, C., Jamison, P. and Stitt, A.W., 2003. Role of vascular endothelial growth factor and placental growth factors during retinal vascular development and hyaloid regression. Invest Ophthalmol Vis Sci 44, 839-847. Fiebich, B.L., Biber, K., Gyufko, K., Berger, M., Bauer, J. and van Calker, D., 1996. Adenosine A2b receptors mediate an increase in interleukin (IL)-6 mRNA and IL-6 protein synthesis in human astroglioma cells. J Neurochem 66, 1426-1431. Folkman, J. and Klagsbrun, M., 1987. Angiogenic factors. Science 235, 442-447. Ford, G., Xu, Z., Gates, A., Jiang, J. and Ford, B.D., 2006. Expression Analysis Systematic Explorer (EASE) analysis reveals differential gene expression in permanent and transient focal stroke rat models. Brain Res 1071, 226-236. Fredholm, B.B., 1997. Adenosine and neuroprotection. Int Rev Neurobiol 40, 259-280. Furuya, K., Kawahara, N., Kawai, K., Toyoda, T., Maeda, K. and Kirino, T., 2004. Proximal occlusion of the middle cerebral artery in C57Black6 mice: relationship of patency of the posterior communicating artery, infarct evolution, and animal survival. J Neurosurg 100, 97-105. Galaup, A., Cazes, A., Le Jan, S., Philippe, J., Connault, E., Le Coz, E., Mekid, H., Mir, L.M., Opolon, P., Corvol, P., Monnot, C. and Germain, S., 2006. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci U S A 103, 18721-18726. Garcia, J.H., Wagner, S., Liu, K.F. and Hu, X.J., 1995. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26, 627-634; discussion 635. Garlanda, C., Berthier, R., Garin, J., Stoppacciaro, A., Ruco, L., Vittet, D., Gulino, D., Matteucci, C., Mantovani, A., Vecchi, A. and Dejana, E., 1997. Characterization of MEC 14.7, a new monoclonal antibody recognizing mouse CD34: a useful reage for identifying and characterizing blood vessels and hematopoietic precursors. Eur J Cell Biol 73, 368-377. Gerriets, T., Stolz, E., Walberer, M., Muller, C., Kluge, A., Bachmann, A., Fisher, M., Kaps, M. and Bachmann, G., 2004. Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke 35, 566-571. Ginsberg, M.D., 2003. Adventures in the pathophysiology of brain ischemia: penumbra, gene expression, neuroprotection: the 2002 Thomas Willis Lecture. Stroke 34, 214-223. Greenberg, D.A. and Jin, K., 2005. From angiogenesis to neuropathology. Nature 438, 954-959. Guieu, R., Couraud, F., Pouget, J., Sampieri, F., Bechis, G. and Rochat, H., 1996. Adenosine and the nervous system: clinical implications. Clin Neuropharmacol 19, 459-474. Hagberg, H., Andersson, P., Lacarewicz, J., Jacobson, I., Butcher, S. and Sandberg, M., 1987. Extracellular adenosine, inosine, hypoxanthine, and xanthine in relation to tissue nucleotides and purines in rat striatum during transient ischemia. J Neurochem 49, 227-231. Hawkins, B.T., Brown, R.C. and Davis, T.P., 2002. Smoking and ischemic stroke: a role for nicotine? Trends Pharmacol Sci 23, 78-82. Hayashi, T., Noshita, N., Sugawara, T. and Chan, P.H., 2003. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab 23, 166-180. Hermann, L.M., Pinkerton, M., Jennings, K., Yang, L., Grom, A., Sowders, D., Kersten, S., Witte, D.P., Hirsch, R. and Thornton, S., 2005. Angiopoietin-like-4 is a potential angiogenic mediator in arthritis. Clin Immunol 115, 93-101. Hu, H.H., Chu, F.L., Chiang, B.N., Lan, C.F., Sheng, W.Y., Lo, Y.K., Wong, W.J. and Luk, Y.O., 1989. Prevalence of stroke in Taiwan. Stroke 20, 858-863. Ikeda-Matsuo, Y., Ota, A., Fukada, T., Uematsu, S., Akira, S. and Sasaki, Y., 2006. Microsomal prostaglandin E synthase-1 is a critical factor of stroke-reperfusion injury. Proc Natl Acad Sci U S A 103, 11790-11795. Ingber, D.E., 2002. Cancer as a disease of epithelial-mesenchymal interactions and extracellular matrix regulation. Differentiation 70, 547-560. Jakovljevic, D., Sarti, C., Sivenius, J., Torppa, J., Mahonen, M., Immonen-Raiha, P., Kaarsalo, E., Alhainen, K., Kuulasmaa, K., Tuomilehto, J., Puska, P. and Salomaa, V., 2001. Socioeconomic status and ischemic stroke: The FINMONICA Stroke Register. Stroke 32, 1492-1498. Jarvis, M.F. and Williams, M., 1988. Differences in adenosine A-1 and A-2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice. Pharmacol Biochem Behav 30, 707-714. Ji, X.D., Gallo-Rodriguez, C. and Jacobson, K.A., 1994. A selective agonist affinity label for A3 adenosine receptors. Biochem Biophys Res Commun 203, 570-576. Kalaria, R.N. and Harik, S.I., 1986. Adenosine receptors of cerebral microvessels and choroid plexus. J Cereb Blood Flow Metab 6, 463-470. Kanemitsu, H., Nakagomi, T., Tamura, A., Tsuchiya, T., Kono, G. and Sano, K., 2002. Differences in the extent of primary ischemic damage between middle cerebral artery coagulation and intraluminal occlusion models. J Cereb Blood Flow Metab 22, 1196-1204. Katoh, Y. and Katoh, M., 2006. Comparative integromics on Angiopoietin family members. Int J Mol Med 17, 1145-1149. Kaufman, M., The atlas of mouse development, Academic press, An imprint of Elsevier, San Diego 2003. Keyvani, K., Witte, O.W. and Paulus, W., 2002. Gene expression profiling in perilesional and contralateral areas after ischemia in rat brain. J Cereb Blood Flow Metab 22, 153-160. Kim, I., Kwak, H.J., Ahn, J.E., So, J.N., Liu, M., Koh, K.N. and Koh, G.Y., 1999a. Molecular cloning and characterization of a novel angiopoietin family protein, angiopoietin-3. FEBS Lett 443, 353-356. Kim, I., Moon, S.O., Koh, K.N., Kim, H., Uhm, C.S., Kwak, H.J., Kim, N.G. and Koh, G.Y., 1999b. Molecular cloning, expression, and characterization of angiopoietin-related protein. angiopoietin-related protein induces endothelial cell sprouting. J Biol Chem 274, 26523-26528. Kis, B., Chen, L., Ueta, Y. and Busija, D.W., 2006. Autocrine peptide mediators of cerebral endothelial cells and their role in the regulation of blood-brain barrier. Peptides 27, 211-222. Koster, A., Chao, Y.B., Mosior, M., Ford, A., Gonzalez-DeWhitt, P.A., Hale, J.E., Li, D., Qiu, Y., Fraser, C.C., Yang, D.D., Heuer, J.G., Jaskunas, S.R. and Eacho, P., 2005. Transgenic angiopoietin-like (angptl)4 overexpression and targeted disruption of angptl4 and angptl3: regulation of triglyceride metabolism. Endocrinology 146, 4943-4950. Koszalka, P., Ozuyaman, B., Huo, Y., Zernecke, A., Flogel, U., Braun, N., Buchheiser, A., Decking, U.K., Smith, M.L., Sevigny, J., Gear, A., Weber, A.A., Molojavyi, A., Ding, Z., Weber, C., Ley, K., Zimmermann, H., Godecke, A. and Schrader, J., 2004. Targeted disruption of cd73/ecto-5'-nucleotidase alters thromboregulation and augments vascular inflammatory response. Circ Res 95, 814-821. Kroll, K., Decking, U.K., Dreikorn, K. and Schrader, J., 1993. Rapid turnover of the AMP-adenosine metabolic cycle in the guinea pig heart. Circ Res 73, 846-856. Kubota, Y., Oike, Y., Satoh, S., Tabata, Y., Niikura, Y., Morisada, T., Akao, M., Urano, T., Ito, Y., Miyamoto, T., Nagai, N., Koh, G.Y., Watanabe, S. and Suda, T., 2005a. Cooperative interaction of Angiopoietin-like proteins 1 and 2 in zebrafish vascular development. Proc Natl Acad Sci U S A 102, 13502-13507. Kubota, Y., Oike, Y., Satoh, S., Tabata, Y., Niikura, Y., Morisada, T., Akao, M., Urano, T., Ito, Y., Miyamoto, T., Watanabe, S. and Suda, T., 2005b. Isolation and expression patterns of genes for three angiopoietin-like proteins, Angptl1, 2 and 6 in zebrafish. Gene Expr Patterns 5, 679-685. LaManna, J.C., Kuo, N.T. and Lust, W.D., 1998. Hypoxia-induced brain angiogenesis. Signals and consequences. Adv Exp Med Biol 454, 287-293. Lee, C.W., Stabile, E., Kinnaird, T., Shou, M., Devaney, J.M., Epstein, S.E. and Burnett, M.S., 2004. Temporal patterns of gene expression after acute hindlimb ischemia in mice: insights into the genomic program for collateral vessel development. J Am Coll Cardiol 43, 474-482. Li, Y., Chopp, M., Jiang, N., Zhang, Z.G. and Zaloga, C., 1995. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats. Stroke 26, 1252-1257; discussion 1257-1258. Li, Y., Lu, Z.Y., Ogle, M. and Wei, L., 2007. Erythropoietin Prevents Blood Brain Barrier Damage Induced by Focal Cerebral Ischemia in Mice. Neurochem Res. Lin, T.N., Kim, G.M., Chen, J.J., Cheung, W.M., He, Y.Y. and Hsu, C.Y., 2003. Differential regulation of thrombospondin-1 and thrombospondin-2 after focal cerebral ischemia/reperfusion. Stroke 34, 177-186. Lin, T.N., Wang, C.K., Cheung, W.M. and Hsu, C.Y., 2000. Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 20, 387-395. Liu, H., Honmou, O., Harada, K., Nakamura, K., Houkin, K., Hamada, H. and Kocsis, J.D., 2006. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 129, 2734-2745. Logan, M. and Sweeney, M.I., 1997. Adenosine A1 receptor activation preferentially protects cultured cerebellar neurons versus astrocytes against hypoxia-induced death. Mol Chem Neuropathol 31, 119-133. Maeda, K., Hata, R. and Hossmann, K.A., 1999. Regional metabolic disturbances and cerebrovascular anatomy after permanent middle cerebral artery occlusion in C57black/6 and SV129 mice. Neurobiol Dis 6, 101-108. Mahan, L.C., McVittie, L.D., Smyk-Randall, E.M., Nakata, H., Monsma, F.J., Jr., Gerfen, C.R. and Sibley, D.R., 1991. Cloning and expression of an A1 adenosine receptor from rat brain. Mol Pharmacol 40, 1-7. Marti, H.J., Bernaudin, M., Bellail, A., Schoch, H., Euler, M., Petit, E. and Risau, W., 2000. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156, 965-976. Mauger, A., Kieny, M. and Goetinck, P.F., 1984. Immunofluorescent localization of extracellular matrix components during muscle morphogenesis. II. In chick embryos with hereditary muscular dysgenesis (cn/cn). J Exp Zool 232, 343-358. McColl, B.W., Carswell, H.V., McCulloch, J. and Horsburgh, K., 2004. Extension of cerebral hypoperfusion and ischaemic pathology beyond MCA territory after intraluminal filament occlusion in C57Bl/6J mice. Brain Res 997, 15-23. Minematsu, K., Fisher, M., Li, L., Davis, M.A., Knapp, A.G., Cotter, R.E., McBurney, R.N. and Sotak, C.H., 1993. Effects of a novel NMDA antagonist on experimental stroke rapidly and quantitatively assessed by diffusion-weighted MRI. Neurology 43, 397-403. Nag, S., 2002. The blood-brain barrier and cerebral angiogenesis: lessons from the cold-injury model. Trends Mol Med 8, 38-44. Ogunshola, O.O., Stewart, W.B., Mihalcik, V., Solli, T., Madri, J.A. and Ment, L.R., 2000. Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res Dev Brain Res 119, 139-153. Ohira, T., Shahar, E., Chambless, L.E., Rosamond, W.D., Mosley, T.H., Jr. and Folsom, A.R., 2006. Risk factors for ischemic stroke subtypes: the Atherosclerosis Risk in Communities study. Stroke 37, 2493-2498. Oike, Y., Akao, M., Kubota, Y. and Suda, T., 2005. Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med 11, 473-479. Oike, Y., Ito, Y., Maekawa, H., Morisada, T., Kubota, Y., Akao, M., Urano, T., Yasunaga, K. and Suda, T., 2004a. Angiopoietin-related growth factor (AGF) promotes angiogenesis. Blood 103, 3760-3765. Oike, Y., Yasunaga, K., Ito, Y., Matsumoto, S., Maekawa, H., Morisada, T., Arai, F., Nakagata, N., Takeya, M., Masuho, Y. and Suda, T., 2003. Angiopoietin-related growth factor (AGF) promotes epidermal proliferation, remodeling, and regeneration. Proc Natl Acad Sci U S A 100, 9494-9499. Oike, Y., Yasunaga, K. and Suda, T., 2004b. Angiopoietin-related/angiopoietin-like proteins regulate angiogenesis. Int J Hematol 80, 21-28. Olsson, R.A. and Pearson, J.D., 1990. Cardiovascular purinoceptors. Physiol Rev 70, 761-845. Paris, D., Patel, N., DelleDonne, A., Quadros, A., Smeed, R. and Mullan, M., 2004. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci Lett 366, 80-85. Phillis, J.W., Smith-Barbour, M., O'Regan, M.H. and Perkins, L.M., 1994. Amino acid and purine release in rat brain following temporary middle cerebral artery occlusion. Neurochem Res 19, 1125-1130. Plate, K.H., 1999. Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58, 313-320. Plate, K.H., Beck, H., Danner, S., Allegrini, P.R. and Wiessner, C., 1999. Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion model of cerebral infarct. J Neuropathol Exp Neurol 58, 654-666. Prince, D.A. and Stevens, C.F., 1992. Adenosine decreases neurotransmitter release at central synapses. Proc Natl Acad Sci U S A 89, 8586-8590. Ramkumar, V., Pierson, G. and Stiles, G.L., 1988. Adenosine receptors: clinical implications and biochemical mechanisms. Prog Drug Res 32, 195-247. Reppert, S.M., Weaver, D.R., Stehle, J.H. and Rivkees, S.A., 1991. Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol 5, 1037-1048. Risau, W., 1997. Mechanisms of angiogenesis. Nature 386, 671-674. Ronnback, A., Dahlqvist, P., Svensson, P.A., Jernas, M., Carlsson, B., Carlsson, L.M. and Olsson, T., 2005. Gene expression profiling of the rat hippocampus one month after focal cerebral ischemia followed by enriched environment. Neurosci Lett 385, 173-178. Sacco, R.L., 2001. Newer risk factors for stroke. Neurology 57, S31-34. Sasaki, H., Moriyama, S., Sekimura, A., Mizuno, K., Yukiue, H., Konishi, A., Yano, M., Kaji, M., Fukai, I., Yamakawa, Y. and Fujii, Y., 2003. Angioarrestin mRNA expression in early-stage lung cancers. Eur J Surg Oncol 29, 649-653. Schiffmann, S.N., Libert, F., Vassart, G. and Vanderhaeghen, J.J., 1991. Distribution of adenosine A2 receptor mRNA in the human brain. Neurosci Lett 130, 177-181. Schoch, H.J., Fischer, S. and Marti, H.H., 2002. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain 125, 2549-2557. Schubert, P., Rudolphi, K.A., Fredholm, B.B. and Nakamura, Y., 1994. Modulation of nerve and glial function by adenosine--role in the development of ischemic damage. Int J Biochem 26, 1227-1236. Sciotti, V.M., Roche, F.M., Grabb, M.C. and Van Wylen, D.G., 1992. Adenosine receptor blockade augments interstitial fluid levels of excitatory amino acids during cerebral ischemia. J Cereb Blood Flow Metab 12, 646-655. Sharp, F.R. and Bernaudin, M., 2004. HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5, 437-448. Shimamura, N., Matchett, G., Tsubokawa, T., Ohkuma, H. and Zhang, J., 2006. Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model. J Neurosci Methods 156, 161-165. Shimizugawa, T., Ando, Y. and Ono, M., 2004. [Angptl3(angiopoietin-like 3)]. Nippon Rinsho 62, 1170-1174. Shum, L. and Nuckolls, G., 2002. The life cycle of chondrocytes in the developing skeleton. Arthritis Res 4, 94-106. Siniscalchi, A., Rodi, D., Gessi, S., Campi, F. and Borea, P.A., 1999. Early changes in adenosine A1 receptors in cerebral cortex slices submitted to in vitro ischemia. Neurochem Int 34, 517-522. Song, L., Ge, S. and Pachter, J.S., 2007. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood 109, 1515-1523. Sparks, H.V., Jr. and Bardenheuer, H., 1986. Regulation of adenosine formation by the heart. Circ Res 58, 193-201. Stone, T.W., 2005. Adenosine, neurodegeneration and neuroprotection. Neurol Res 27, 161-168. Su, M., Hu, H., Lee, Y., d'Azzo, A., Messing, A. and Brenner, M., 2004. Expression specificity of GFAP transgenes. Neurochem Res 29, 2075-2093. Suter, P.M. and Vetter, W., 1999. Alcohol and ischemic stroke. Nutr Rev 57, 310-314. Swanson, R.A. and Sharp, F.R., 1994. Infarct measurement methodology. J Cereb Blood Flow Metab 14, 697-698. Sydserff, S.G., Borelli, A.R., Green, A.R. and Cross, A.J., 2002. Effect of NXY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat; studies on dose, plasma concentration and therapeutic time window. Br J Pharmacol 135, 103-112. Thurston, G., Rudge, J.S., Ioffe, E., Zhou, H., Ross, L., Croll, S.D., Glazer, N., Holash, J., McDonald, D.M. and Yancopoulos, G.D., 2000. Angiopoietin-1 protects the adult vasculature against plasma leakage. Nat Med 6, 460-463. Tsao, P.N., Li, H., Wei, S.C., Ko, M.L., Chou, H.C., Hsieh, W.S. and Hsieh, F.J., 2004. Expression of angiogenic factors and their receptors in postnatal mouse developing lung. J Formos Med Assoc 103, 137-143. van Bruggen, N., Thibodeaux, H., Palmer, J.T., Lee, W.P., Fu, L., Cairns, B., Tumas, D., Gerlai, R., Williams, S.P., van Lookeren Campagne, M. and Ferrara, N., 1999. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 104, 1613-1620. Vates, G.E., Hashimoto, T., Young, W.L. and Lawton, M.T., 2005. Angiogenesis in the brain during development: the effects of vascular endothelial growth factor and angiopoietin-2 in an animal model. J Neurosurg 103, 136-145. Von Lubitz, D.K., 1999. Adenosine and cerebral ischemia: therapeutic future or death of a brave concept? Eur J Pharmacol 365, 9-25. Von Lubitz, D.K., Lin, R.C., Bischofberger, N., Beenhakker, M., Boyd, M., Lipartowska, R. and Jacobson, K.A., 1999. Protection against ischemic damage by adenosine amine congener, a potent and selective adenosine A1 receptor agonist. Eur J Pharmacol 369, 313-317. Wang, Y., Kilic, E., Kilic, U., Weber, B., Bassetti, C.L., Marti, H.H. and Hermann, D.M., 2005. VEGF overexpression induces post-ischaemic neuroprotection, but facilitates haemodynamic steal phenomena. Brain 128, 52-63. White, P.J., Rose'Meyer, R.B. and Hope, W., 1996. Functional characterization of adenosine receptors in the nucleus tractus solitarius mediating hypotensive responses in the rat. Br J Pharmacol 117, 305-308. Xu, A., Lam, M.C., Chan, K.W., Wang, Y., Zhang, J., Hoo, R.L., Xu, J.Y., Chen, B., Chow, W.S., Tso, A.W. and Lam, K.S., 2005. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc Natl Acad Sci U S A 102, 6086-6091. Yancopoulos, G.D., Klagsbrun, M. and Folkman, J., 1998. Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93, 661-664. Yang, G., Kitagawa, K., Matsushita, K., Mabuchi, T., Yagita, Y., Yanagihara, T. and Matsumoto, M., 1997. C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Res 752, 209-218. Yrjanheikki, J., Tikka, T., Keinanen, R., Goldsteins, G., Chan, P.H. and Koistinaho, J., 1999. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 96, 13496-13500. Zacharek, A., Chen, J., Cui, X., Li, A., Li, Y., Roberts, C., Feng, Y., Gao, Q. and Chopp, M., 2007. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab. Zeng, L., Dai, J., Ying, K., Zhao, E., Jin, W., Ye, Y., Dai, J., Xu, J., Xie, Y. and Mao, Y., 2003. Identification of a novel human angiopoietin-like gene expressed mainly in heart. J Hum Genet 48, 159-162. Zhang, C.C., Kaba, M., Ge, G., Xie, K., Tong, W., Hug, C. and Lodish, H.F., 2006. Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12, 240-245. Zhang, Z.G., Zhang, L., Croll, S.D. and Chopp, M., 2002a. Angiopoietin-1 reduces cerebral blood vessel leakage and ischemic lesion volume after focal cerebral embolic ischemia in mice. Neuroscience 113, 683-687. Zhang, Z.G., Zhang, L., Jiang, Q., Zhang, R., Davies, K., Powers, C., Bruggen, N. and Chopp, M., 2000. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 106, 829-838. Zhang, Z.G., Zhang, L., Tsang, W., Soltanian-Zadeh, H., Morris, D., Zhang, R., Goussev, A., Powers, C., Yeich, T. and Chopp, M., 2002b. Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab 22, 379-392. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24940 | - |
dc.description.abstract | 在腦中風時,腦部組織缺血,腦血流中血紅素帶氧量降低。由於腦神經氧氣供應不足,因此腦血管產生立即反應,包括血管擴張、腦血流量增加等現象,同時腦部即誘發一連串基因或蛋白質的變化,其中許多血管相關基因會相對增加,而一些離子閥、輸送相關基因則可能降低。目前一些實驗室已成功藉調控某些血管生成蛋白的量,使中風模式後老鼠腦壞死範圍縮小。然而由於血管作用蛋白很多,彼此間又會相互作用,因此了解個別的、各種新的相關蛋白的作用為相當重要的課題。
血管生成素相似蛋白1(Angptl1),為新近發現血管生成素相似蛋白質族中之一員 (Kim, et al., 1999b),可調控血管增生,目前對其於生理上所扮演的角色,我們所知仍不多。我們發現在正常老鼠腦缺血後第七天,angptl1的表現量有增加的現象。 為了瞭解angptl1於腦中風所扮演的角色,我們在膠質原纖維酸性蛋白(GFAP)啟動子-angptl1基因轉殖小鼠及正常小鼠上,分別引發局部腦缺血。在未引發缺血之基因轉殖鼠中,angptl1大量於腦部表現,使得大腦皮層微小血管密度有上升之情形。雖然基因轉殖鼠及原生型小鼠在發生局部腦缺血後,其中風範圍大小相同,基因轉殖鼠腦水腫的程度則較同一胎原生型之小鼠為小。我們認為這可能是因為基因轉殖鼠的血腦障壁被破壞程度較原生型小鼠小,藉由中風後早期進行伊文斯藍滲漏實驗,我們證明基因轉殖鼠滲漏的程度較為減少。所以我們相信在局部腦缺血後,angptl1具有保護並維持血管完整性之功用。 Angptl1在胚胎發育或個體血管生成過程中所可能扮演的角色,目前我們所知的仍舊很少。為確定angptl1在胚胎生成過程中所扮演的角色以及表現的部位,我們利用基因標靶以生殖出缺乏angptl1但同時帶有nLacZ品系之小鼠。取樣自E9.5天至六個月大的小鼠,進行ß-乳糖水解酶之染色後發現,angptl1最初會在旁軸的中胚層中表現。之後會轉至肌間質之結締組織(筋膜)、關節囊及軟骨膜(喉頭-氣管,肋骨及長骨)等處表現,但肌肉則無。血管系統、中央及週邊神經系統、消化、呼吸及其他主要器官系統中,並沒有任何angptl1之表現。根據所表現的位置可推測angptl1與結締組織及軟骨的發育有關。突變型小鼠沒有明顯的表現型,有可能是因為其功能仍受許多相關的因子之影響。 Adenosine為一血管擴張、新生物質,既往文獻有提到adenosine系統在腦缺血之生理變化佔有重要的角色。為了解adenosine A1受體於腦缺血模式中所扮演的角色,我們以Wistar大鼠作為實驗動物,阻斷其兩側頸動脈與中大腦動脈的血流,造成腦缺血現象。腦缺血的大鼠中,其大腦皮層內的adenosine A1受體之基因表現量,與經過sham作為控制組,以及在暫時缺血後恢復原先的血流的大鼠相比之下,腦缺血的大鼠,其大腦皮層的adenosine A1受體於核醣核酸(RNA)表現量,有明顯上升之趨勢;而經過暫時缺血又再灌流恢復血流的大鼠,adenosine A1受體於核醣核酸中的表現量與控制組的大鼠幾乎相同,並沒有明顯之提升。另外腦缺血後大鼠其adenosine A1受體蛋白質的表現,結果幾乎與RNA表現相同。由這些實驗數據,我們推測因缺血後,腦內會有補償反應的發生,導致adenosine A1受體的基因表現量增加,而adenosine A1受體的增加,推想是受傷的組織中產生出來之一種保護性角色。 | zh_TW |
dc.description.abstract | Angiopoietin-like protein (Angptl) 1, a member of the angiopoietin-related protein family, modulates angiogenesis but little else is known of its physiological role. We found that angptl1 was upregulated at the 7th day after focal cerebral ischemia in normal mice. In order to understand the role of angptl1 in cerebral infarction, we induced focal cerebral ischemia in normal and glial fibrillary acidic protein promoter-angptl1 transgenic mice. In the transgenic mice without ischemia, overexpression of angptl1 in the whole brain led to a decrease in cortical microvascular density. Following focal cerebral ischemia, edema, but not infarct size, was less in transgenic mice relative to wild type littermates. This effect might be due to a reduction in the blood brain barrier breakdown, as confirmed by a decrease in Evans Blue leakage in the early post-ischemic phase. We conclude that angptl1 may have a beneficial role in the preservation of vascular integrity following focal cerebral ischemia.
Little is known of angptl1’s potential role in other processes. To identify the expression pattern and possible role of angptl1 during embryogenesis, we used gene targeting to generate angptl1 deficient, nLacZ knock-in mice. Staining for ß-galactosidase from embryonic day 9.5 to 6 months of age revealed that angptl1 was initially expressed in the paraxial mesoderm. Expression then shifted to intermuscular connective tissue (fascial plane), joint capsules and perichondrium (laryngo-trachea, ribs and long bones) but not the muscles. The vasculature, central and peripheral nervous systems, digestive, respiratory and other major organ systems did not show any angptl1 expression. This expression pattern suggests that angptl1 is related to development of the connective tissue and cartilage. Lack of phenotype in mutant mice may be due to a functional redundancy from other related factors. In an attempt to know the role of adenosine A1 receptor in cerebral ischemia, the present study employed the ligation of bilateral carotid arteries to induce ischemia in Wistar rats. Changes of gene expression of adenosine A1 receptor in cerebral cortex of ischemic rats were compared with normal sham control and reperfusion group that received regular blood flow after a transient ischemia. The mRNA level of adenosine A1 receptor in cerebral cortex was markedly raised by this artificial ischemia. Also, reperfusion reversed this elevation to a level near the control. This change was also observed at the protein level using Western blot analysis of adenosine A1 receptor. The raised protein level of adenosine A1 receptor by ischemia was reversed to normal level after reperfusion. These data suggest that the gene expression of adenosine A1 receptor was increased by ischemia probably due to the compensative response of brain. The raised adenosine A1 receptor may play a protective role in these damaged tissues. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:58:45Z (GMT). No. of bitstreams: 1 ntu-96-D87421101-1.pdf: 9105109 bytes, checksum: 1053bffae1debf4c986ae07f8aa06f87 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 縮寫表……………………………………………………………………6
附圖目錄…………………………………………………………………7 中文摘要…………………………………………………………………9 英文摘要………………………………………………………………11 齧齒類腦缺血性中風模式進行腦部血管相關基因之研究…………13 第一章 總論……………………………………………………………13 壹、腦中風之臨床概況………………………………………………13 一、腦中風之概述……………………………………………………13 二、腦中風之致病機轉………………………………………………14 三、腦中風之治療現況………………………………………………14 貳、腦中風之動物實驗模式簡介……………………………………15 一、中風之動物模式概論……………………………………………15 二、頸部導入縫線中大腦動脈栓塞模式……………………………16 三、中大腦動脈栓塞模式導出之腦部病變…………………………16 四、小鼠頸部塞線中大腦動脈栓塞模式……………………………17 參、中風後基因變化與血管新生的情形……………………………18 一、腦部缺血後之基因變化…………………………………………18 二、腦部缺血後之血管新生情形……………………………………18 第二章 血管生成素相似蛋白1(Angiopoietin-related protein 1)在腦中風後表現量之變化,與在發育時,中風時可能代表意義之研究………20 壹、血管生成素相似蛋白1概論………………………………………20 貳、假說一:血管生成素相似蛋白1對腦血管有減少傷害的作用…21 參、假說二:血管生成素相似蛋白1會影響胚胎之血管發育,且其表現位置可以反映其影響血管成熟功能的特性………………………21 肆、實驗材料與方法…………………………………………………21 一、取得含有全長小鼠Angptl1 cDNA之質體………………………21 二、篩選含有Angptl1 genomic DNA片段的噬菌體菌落……………22 1.探針的製備…………………………………………………………22 2.篩選含angptl1 genomic DNA的噬菌體菌落………………………22 三、利用電腦軟體及資料庫分析Angptl1基因………………………22 四、RNA的純化…………………………………………………………23 五、北方墨點法(Northern blot) …………………………………23 六、反轉錄聚合酶鏈反應(RT-PCR) …………………………………23 七、Angptl1融合蛋白質的表現及純化………………………………24 1.Angptl1融合蛋白質的表現…………………………………………24 2.質體DNA的轉染(transfection) …………………………………24 八、西方墨點法(Western Blot) ……………………………………25 九、免疫螢光分析法(Immunofluorescence analysis) …………25 十、GFAP-angptl1基因轉殖鼠的衍生及品系鑑定…………………25 十一、原位雜交法……………………………………………………26 十二、微血管密度測定………………………………………………27 十三、小鼠缺血性腦中風模式………………………………………27 十四、神經學測定……………………………………………………28 十五、中風範圍測定…………………………………………………28 十六、Angptl1基因剔除小鼠(knockout mice)產製………………28 1.剔除載體之設計與建構……………………………………………28 2.基因剔除載體轉殖至胚胎幹細胞(Embryonic Stem Cell) ……29 3.PCR篩選與南方墨點法………………………………………………29 十七、小鼠基因組鑑定(genome typing) …………………………30 十八、生化分析………………………………………………………30 十九、旋轉滾輪測試…………………………………………………30 二十、以小鼠胚胎及成鼠進行β-半乳糖苷酶染色…………………30 二十一、骨骼分析及血管攝影………………………………………31 二十二、組織病理分析………………………………………………31 二十三、腦及肌肉之血管增生評定…………………………………31 伍、第一部分實驗結果………………………………………………32 一、原生型FVB小鼠MCAO阻塞後Angptl1表現量的變化……………32 二、受GFAP調控之angptl1基因轉殖鼠之表現型及生殖能力………32 三、Angptl1基因轉殖鼠之微血管密度………………………………33 四、以2,3,5-氯化三苯基四唑染色…………………………………33 五、血腦障壁破壞程度評估…………………………………………33 陸、第二部分實驗結果………………………………………………34 一、原生型成鼠中各器官Angptl1之表現量…………………………34 二、Angptl1基因剔除同時帶有nLacZ基因品系小鼠之製造………34 三、缺乏Angptl1基因小鼠具有正常之表現型及生殖能力…………35 四、結締組織及軟骨中Angptl1表現的組織部位及時間點…………35 五、組織分析缺乏Angptl1基因同時帶有nLacZ突變型小鼠並無異常外觀……………………………………………………………………36 六、Angptl1基因剔除同時帶有nLacZ基因品系小鼠於血管發育上並無異常…………………………………………………………………36 七、Angptl1基因剔除同時帶有nLacZ基因品系小鼠並無早期關節退化跡象…………………………………………………………………36 柒、討論………………………………………………………………37 一、Angptl1基因在腦中風後呈現向上調控的趨勢…………………37 二、GFAP啟動子導引Angptl1基因在腦部表現增加,而此蛋白之過度表現對這些基因轉殖鼠沒有可見之生命威脅………………………38 三、GFAP啟動子導引Angptl1基因轉殖鼠的大腦皮層微血管只有稍微減少的現象……………………………………………………………38 四、GFAP啟動子導引Angptl1基因轉殖鼠在中風後腦水腫情形較野生型小鼠少,其原因可能導自於angptl1對微血管內皮細胞的保護功能………………………………………………………………………39 五、Angptl1基因功能之文獻回顧……………………………………40 六、Angptl1基因在胚胎時期表現部位分析…………………………41 七、成鼠Angptl1基因表現部位分析,符合其與肌肉間質結締組織、關節軟骨發育之相關性………………………………………………42 八、成鼠Angptl1基因剔除並不顯示出微血管或軀體大血管之發育障礙………………………………………………………………………43 第三章 腺甘酸(Adenosine)A1受體在腦中風初期所扮演角色的分析………………………………………………………………………45 壹、細胞間腺甘酸(Adenosine)的形成……………………………45 貳、腺甘酸受器………………………………………………………45 參、A1腺甘酸受器的生理作用………………………………………46 肆、腦缺血時A1腺甘酸受器的生理變化……………………………46 伍、材料與方法………………………………………………………47 陸、實驗結果與討論…………………………………………………48 第四章 展望…………………………………………………………50 壹、血管生成素相似蛋白1在臨床上的重要性………………………50 一、血管生成素相似蛋白1在血管發育上的重要性…………………50 二、血管生成素相似蛋白1在中風上的重要性………………………51 三、血管生成素相似蛋白1在腫瘤治療上的重要性…………………52 貳、分析中風後基因變化以找出重要的治療標的-腺苷酸治療缺血性中風…………………………………………………………………53 參、人類血管生成素相似蛋白1與腫瘤相關性實驗方法與設計……53 一、Bromodeoxyuridin (BrdU) 細胞增生分析……………………53 二、細胞移動分析……………………………………………………54 三、細胞侵犯分析……………………………………………………54 四、Soft agar colony formation assay…………………………54 五、腦部腫瘤種植……………………………………………………54 六、基因剔除小鼠腫瘤種植實驗……………………………………55 七、腫瘤微血管密度分析……………………………………………55 肆、初步結果…………………………………………………………55 伍、結論………………………………………………………………56 論文英文簡述…………………………………………………………57 圖表備註………………………………………………………………81 參考資料………………………………………………………………113 附錄……………………………………………………………………123 | |
dc.language.iso | zh-TW | |
dc.title | 以齧齒類缺血性腦中風模式進行腦部血管相關基因之研究 | zh_TW |
dc.title | Studies of Vascular Related Genes in Rodent Stroke Model | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 楊偉勛(Wei-Shiung Yang),高明見(Ming-Chien Kao),郭明良(Min-Liang Kuo) | |
dc.subject.keyword | 缺血性腦中風,血管生成素相似蛋白1,腺甘酸, | zh_TW |
dc.subject.keyword | Stroke,Angptl1,Adenosine, | en |
dc.relation.page | 122 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-08-09 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 8.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。