請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24935完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃天偉(Tian-Wei Huang) | |
| dc.contributor.author | Wen-Ying Yu | en |
| dc.contributor.author | 游文瑩 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:58:39Z | - |
| dc.date.copyright | 2007-08-28 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-13 | |
| dc.identifier.citation | [1] http://www.gsmworld.com/index.shtml
[2] http://www.gps.gov/ [3] http://www.phsmou.or.jp/ [4] http://www.ieee802.org/11/ [5] http://www.bluetooth.com/bluetooth/ [6] http://www.ieee802.org/15/pub/TG3a.html [7] J. Ziller, “An Ultra-Wideband CMOS LNA for 3.1 to 10.6 GHz Wireless Receivers ,” ISSCC Dig. Tech. Paper, vol.1, pp. 384-385, Feb. 2004 [8] L. Williams et al., “Ultra-Wideband Radio Design for Multi-band OFDM 480 Mb/s Wireless USB” Ansoft Corporation DesignCon, 2005 [9] B. M. Ballweber, R. Gupta, and D. J. Allstot, “A frilly integrated 0.5-5.5-GHz CMOS distributed amplifier,” IEEE JSSC vol.35, pp. 231-239, Feb. 2000 [10] H. Ahn, D. J. Allstot, “A 0.5-8.5-GHz fully differential CMOS distributed amplifier,” IEEE JSSC vol. 37, pp.985-993, Aug. 2002 [11] P. F. Chen, et al, “Silicon-on-sapphire MOSFET distributed amplifier with coplanar waveguide matching,” IEEE RFIC Symp., pp. 161-164, 1998 [12] B. Kleveland, et al, “Monolithic CMOS distributed amplifier and oscillator,' IEEE ISSCC, pp. 70-71, 1999 [13] B. M. Frank, A. P. Freundorfer, and Y. M. M. Antar, “Performance of 1-10-GHz Traveling Wave Amplifiers in 0.18-μm CMOS, ” IEEE MWCL, vol. 12, pp. 327-329, Sep. 2002. [14] R. C. Liu, K. L. Deng, and H. Wang, “A 0.6-22-GHz Broadband CMOS Distributed Amplifier, ” IEEE RFIC Symp., pp. 103-106, 2003 [15] R. C. Liu, C. S. Lin, K. L. Deng, and H. Wang, “A 0.5-14-GHz 10.6-dB CMOS Cascode Distributed Amplifier, ” IEEE VLSI Circ. Symp., pp.139-140, 2003 [16] H. Shigematsu, M. Sato, T. Hirose, F. Brewer and M. Rodwell, “40Gb/s CMOS Distributed Amplifier for Fiber-Optic Communication Systems, ” IEEE ISSCC, pp.476-477, 2004 [17] R. E. Amaya, N. G. Tarr and C. Plett, “A 27 GHz fully integrated CMOS distributed amplifier using coplanar waveguide, ” IEEE RFIC Symp., pp. 193-196, 2004 [18] K. Kobayashi, etal., “A 2-50 GHz InAlAs/InGaAs-InP HBT distributed amplifier,” IEEE GaAs IC Sym., pp.207-210, Nov. 1996 [19] S. Masuda, et.al., “An over-110-GHz InP HEMT flip-chip distributed baseband amplifier with inverted microstripline structure for optical transmission systems, ” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp.1479-1484, Sept. 2003. [20] J. Carroll, et.al., “0.25um pHEMT 40Gb/s E/O modulator drivers, ” IEEE International Mircowave Sym., vol. 1, pp. 489-492, June 2002. [21] O. Wohlgemuth, et.al., “SiGe broadband amplifiers with up to 80 GHz bandwidth for optical applications at 43 Gbit/s and beyond, ” in IEEE 33rd European Microwave Conf. Dig., pp.1087-1090, 2003. [22] J. Kirn, et.al., “A 12dBm 320GHz GBW distributed amplifier in a 0.12jim SOI CMOS, ” ISSCC Dig. Tech. Papers, pp. 479-479, Feb. 2004. [23] R. C. Liu, et.al., “Design and analysis of DC-to-14-GHz and 22-GHz CMOS cascode distributed amplifiers, ” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1370-1374, Aug. 2004. [24] B.Y. Banyamin; M. Berwick “Analysis of the performance of four-cascaded single-stage distributed amplifiers,” Microwave Theory and Techniques, IEEE Transactions on Volume 48, Issue 12, Dec. 2000 Page(s):2657 – 2663 [25] http://www.rogerscorporation.com/mwu/pdf/5000data.pdf [26] http://www.cel.com/pdf/datasheets/ne32584.pdf [27]http://www.avagotech.com/products/product-detail.jsp?navId=H0,C1,C5230,C5010,C5088,P94033 [28] G. Gonzaley, “Microwave Transistor Amplifiers analysis and Design second edition ”, Prentice Hall. 1997 [29] R. G. Arnold, C. C. Faulkner and D. J. Pedder, “Silicon MCM-D Technology for RF Integration , ” IEEE Multichip Module Conference, 1997, pp. 340-344 [30] B. K. Ko and K. Lee. “ A New Simultaneous Noise and Input Power Matching Technique for Monolithic LNA's Using Cascode Feedback,” IEEE Trans. Microwave Theory Tech., Vol. 45, NO. 9, Sep 1997. [31] Y. C. Chen and S. S. Lu. “Analysis and Design of CMOS Broadband Amplifier with Dual Feedback Loops,” 2002 IEEE Asia-Pacific conference on Advanced System Integrated Circuit(AP-ASIC2002), pp.245-248 , Aug. 2002 [32] S.Vishwakarma, et al., “ Ultrawideband-CMOS low noise amplifier with active input matching,” Ultra Wideband Systems, 2004. Joint with Conference on Ultrawideband Systems and Technologies. Joint UWBST & IWUWBS. 2004 International Workshop, pp.415-419, May 2004 [33] W. M. Lim, et al., “A Broadband CMOS LNA for WLAN applications ,” 2003 IEEE Ultra Wideband Systems and Technologies Conference, pp.42-46, Nov. 2003. [34] J. Janssens, J. Crols and M. Steyaert, “A 10 mW inductorless, broadband CMOS low noise amplifier for 900 MHz wireless communications,” Proce. IEEE, Custom Integrated Circuits Conf., pp.75-78, May 1998 [35] A. Bevilacqua and A. Niknejad. “An Ultra-Wideband CMOS LNA for 3.1 to 10.6GHz Wireless Receivers,” ISSCC Dig. Tech. Papers, vol.1, pp. 384-385, Feb. 2004. [36] A.Ismail and A.Abidi, “A 3 to 10 GHz LNA using a wideband LC-ladder matching network,” ISSCC Dig. Tech. Papers, vol.1, pp. 382-383, Feb. 2004. [37] E. L. Ginzton, W. R. Hewlett, J. H. Jasberg, and J. D. Noe, “Distributed amplification ,” in Proc. Inst. Radio Eng., Aub. 1948, pp.956-969. [38] J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter, “MESFET distributed amplifier design guidelines ,” IEEE Trans. Microwave Theory Tech., vol. 32, pp. 248-275, Mar. 1984 [39] B. Agarwal, et al., “112-GHz, 157-GHz and 180-GHz InP HEMT traveling-wave amplifiers,” IEEE Trans. Microwave Theory and Techniques, vol. 46, pp.2553-2559, Dec. 1998. [40] J. B. Beyer, et al., “Wideband monolithic microwave amplifier study,” ONR Rep. NR243-033, Sept. 1983. [41] C. S. Aitchison, “The advantages of microwave distributed amplifier and associated circuits,” Proc. MIOP90, pp. 17-29, April 1990. [42] R. C. Liu, K. L. Deng, and H. Wang, “A 0.6-22-GHz Broadband CMOS Distributed Amplifier,” IEEE RFIC Symp., pp. 13-106, 2003. [43] B. Y. Banyamin, M. Berwick, “Analysis of the performance of four-cascaded single-stage distributed amplifiers,” IEEE T-MTT vol. 48, pp.2657-2663, Dec. 2000. [44] R. C. Liu, et.al., “Design and Analysis of DC-to-14-GHz and 22-GHz CMOS Cascode Distributed Amplifiers, ” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1370-1374, Aug. 2004 [45] S. S. Lu, C. C. Meng, T. W. Chen, and H. C. Chen, “The origin of the kink phenomenon of transistor scattering parameter S22, ” IEEE T-MTT vol. 49, pp.333-340, Feb. 2001. [46] P. R. Gray, P. J. Hurst, S. H. Lewis and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, Fourth Edition, John Wiley, pp. 202-205, 2001. [47] D. M. Pozar, “Microwave Engineering 3rd edition”, New York, John Wiley & Sons, 2004 [48] C. Doan, S. Emani, A. Nikejad, and R. Brodersen, “Millimeter-Wave CMOS Design,” IEEE J. Solid-state Circuits, vol.33 no. 5, pp. 743-752, May 1998. [49] C. P. Wen “Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device application,” IEEE Transactions on Microwave Theory and Techniques, vol.17, pp.1087-1090, December 1969. [50] F. J. Huang, O. K. Kenneth “Single-pole double-throw CMOS switches for 900-MHz and 2.4-GHz applications on p-silicon substrates,” IEEE J. Solid-State Circuits vol. 39, Issue 1, Jan. 2004 pp.35 - 41 [51] H. Mizutani, Y. Takayama, “A DC-60 GHz GaAs MMIC switch using novel distributed FET,” Microwave Symposium Digest, 1997., IEEE MTT-S International , pp.439 - 442 vol.2 ,8-13 June 1997 [52] M. C. Yeh, Z. M.. Tsai, K. Y. Lin, H. Wang, C. Y. Su, C. P. Chao, “A millimeter-wave wideband SPDT switch with traveling-wave concept using 0.13um CMOS process,” Microwave Symposium Digest, 2005 IEEE MTT-S International 12-17 June 2005 pp.4 [53] M. C. Yeh, Z. M. Tsai, H. Wang, “A miniature DC-to-50 GHz CMOS SPDT distributed switch,” 2005 European Microwave Conference vol. 3, 4-6 Oct. 2005 pp.4 [54] http://www.cic.org.tw [55] H. Mizutani, Y. Takayama, “DC-110-GHz MMIC traveling-wave switch,” Microwave Theory and Techniques, IEEE Transactions on, vol. 48 pp.840 – 845, Issue 5, May 2000 [56] M. D. Tsai; K. L. Deng; H. Wang; C. H. Chen; C. S. Chang, J.G.J. Chern, “A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier,” IEEE Microwave and Wireless Components Letters vol. 14 pp.554-556, Issue 12, Dec. 2004. [57] M. D. Tsai, H. Wang, J. F. Kuan; C. S. Chang, “A 70GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1 pp. 402 – 606, Feb. 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24935 | - |
| dc.description.abstract | 近年來,無線通訊快速發展,受到工業界及學術界的高度關注,紛紛發展新的技術和產品,6GHz以下的頻段已廣泛的使用在人們的生活中。由於資訊傳送量越來越大,運算處理速度越來越快,未來勢必走向寬頻的無線通訊。
本論文研究使用集總元件設計用於傳統收發機前端部份的寬頻放大器與切換器。第一部份是探討低雜訊放大器與單級串接分佈式放大器的設計,首先我們實現了一個2GHz的低雜訊放大器,所使用的是Avago的ATF-33143擬高速電子遷移率電晶體,電路操作在4V偏壓,以FR4印刷電路板當作載板,架構使用2級的有損匹配(lossy match),設計增益為21dB,輸出和輸入回饋損失為10dB,輸出功率1dB增益壓縮點(P1dB)為22dBm,功率增加效率為39.6%,雜訊參數為1.97dB。 而使用行進波的理論,可使放大器有寬的運作頻帶,製作了兩個電路,第一個電路實現了一個1GHz-5GHz的寬頻放大器,所使用的是NEC的NE32584C 異質接面場效電晶體,電路操作在2V偏壓,以FR4印刷電路板當作載板,架構使用微帶線的3級單級串接分佈式放大器(CSSDA),設計增益為25±3dB,輸出和輸入回饋損失為10dB,輸出功率1dB增益壓縮點(P1dB)為11.5dBm,雜訊指數約為8dB。 第二個電路實現了一個1GHz-6GHz的寬頻放大器,也使用NEC的NE32584C 異質接面場效電晶體,電路操作在2V偏壓,以FR4印刷電路板當作載板,架構使用共平面波導的3級單級串接分佈式放大器(CSSDA),設計增益為20±3dB,輸出和輸入回饋損失為10dB,輸出功率1dB增益壓縮點(P1dB)為11.5dBm,雜訊指數約為7.75dB。 第二部份是探討單刀雙擲行進波切換器,使用集總元件和FR4印刷電路板當載板,使用頻率為0.1GHz到4.8GHz,操作在0V與-3V,插入損失小於5dB,隔離度大於18.2dB,輸出輸入回饋損失大於7.5dB和9dB,輸出功率1dB增益壓縮點為15dBm,開啟和關閉狀態能很明顯地分辨,電路優點為低成本、容易製作。 | zh_TW |
| dc.description.abstract | With the rapid progress of wireless communication in recent years, it has received great attention from both the industry and the academic circle. As new products applying the technology are developed, applications utilizing frequency band below 6 GHz can be widely seen in our daily life. Because the amount of data transmission and processing speed increase, wide band will definitely become a trend in wireless communication in the future.
This thesis presents a systematic design approach to realize a broadband amplifier and switch in a conventional transmitter front-end using lumped elements. The first part treats the design of low noise amplifier and cascaded single-stage distributed amplifiers. We have implemented a 2GHz low noise amplifier at fisrt, which uses Avago ATF-33143 pHEMT operating with 4V supply on FR-4 printed circuit board. The architecture of this circuit is a 2-stages amplifier using lossy match. Measurement results reveal that the amplifier exhibits a small signal gain of about 21dB with input/output return loss of 10 dB. The 1-dB compression point(P1dB)is about 22dBm, power added efficiency is about 39%, noise figure is 1.97 dB. Using traveling-wave theory, this amplifier has the characteristic of wide operation bandwidth. We implemented two circuits. One of them is a 1GHz-5GHz broadband amplifier, which uses NEC NE32584C hetero-junction FETs operating with 2V supply on FR-4 printed circuit board. The architecture of this circuit is a 3-stages cascaded single-stage distributed amplifier (CSSDA) using microstrip line. Measurement results reveal that the amplifier exhibits a small signal gain of about 25±3dB with input/output return loss of 10dB. The 1-dB compression point(P1dB)is about 11.5dBm, noise figure is about 8dB. The other is a 1GHz-6GHz broadband amplifier, which also uses NEC NE32584C hetero-junction FETs operating with 2V supply on FR-4 printed circuit board. The architecture of this circuit is a 3-stages cascaded single-stage distributed amplifier (CSSDA) using coplanar waveguide. Measurement results reveal that the amplifier exhibits a small signal gain of about 20±3dB with input/output return loss of 10dB, stability factor of more than 98. The 1-dB compression point(P1dB)is about 11.5dBm, , noise figure is about 7.75dB. The second part of the thesis involves the design of single-pole double-throw(SPDT) traveling-wave switch, also implemented on FR-4 printed circuit board using lumped discrete components. The operating frequency of this switch is from 0.1GHz to 4.8GHz, using 0V and -3V switch supply voltage. The input and output return losses are better then 9dB and 7.5dB, respectively, while output 1-dB compression point(P1dB)is about 15dBm. On-state and off-state of the switch can be differentiated unambiguously. Advantages of circuits are low cost and easy implementation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:58:39Z (GMT). No. of bitstreams: 1 ntu-96-J94921032-1.pdf: 3265336 bytes, checksum: 318228dfe08427f91fd6de044e9c63bb (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 摘要……………………………………………………………………III
圖目錄……………………………………………………………………X 表目錄 …………………………………………………………………XV 第1章 緒論………………………………………………………………1 1.1 研究動機 ……………………………………………………1 1.2 文獻回顧 ……………………………………………………3 1.3 論文貢獻 ……………………………………………………5 1.4 論文概要 ……………………………………………………5 第2章 寬頻放大器種類與原理…………………………………………7 2.1 放大器設計考量 ……………………………………………7 2.1.1 散射參數(Scatter Parameters) ………………………7 2.1.2 阻抗匹配網路(Impedance Matching Network) ………9 2.1.3 穩定度(Stability) ……………………………………10 2.1.4 效率(Efficiency)………………………………………12 2.1.5 雙埠網路的增益……………………………………………13 2.1.6 雜訊指數(Noise Figure)………………………………15 2.2 非線性效應…………………………………………………16 2.2.1 諧波失真(Harmonic Distortion) ……………………16 2.2.2 增益壓縮點(Gain Compression)………………………17 2.2.3 互調失真(Inter-Modulation Distortion; IMD)……18 2.3 寬頻放大器的種類…………………………………………20 2.3.1 回授式放大器(Negative Feedback Amplifier) ……20 2.3.2 平衡式放大器(Balance Amplifier) …………………22 2.3.3 電阻性匹配放大器(Resistive Matching Amplifier) ………………………………………………………………23 2.3.4 主動匹配放大器(Active Matching Amplifier) ……23 2.3.5 交錯協調放大器(Stagger Tuning Amplifier)………25 2.3.6 電流重複使用放大器(Current Reuse Amplifier) ………………………………………………………………26 2.3.7 網路合成放大器(Network Synthesis Amplifier) ………………………………………………………………27 2.3.8 分佈式放大器(Distributed Amplifier) ……………28 2.4 總結…………………………………………………………29 第3章 分佈式放大器 …………………………………………………31 3.1 分佈式放大器(Distributed Amplifier) ……………31 3.1.1 元件選擇……………………………………………………34 3.1.2 電容性切割(Capacitive Division) …………………36 3.1.3 電感實現……………………………………………………37 3.2 串接單級分佈式放大器(Cascaded Single-Stage Distributed Amplifier) ………………………………………………………………38 3.2.1 串疊結構……………………………………………………41 3.3 串接多級分佈式放大器(Cascaded Multi-Stage Distributed Amplifier) ………………………………………………………………47 第4章 寬頻放大器設計與實驗 ………………………………………51 4.1 傳輸線(Transmission Line) …………………………51 4.1.1 微帶線(Microstrip line) ……………………………52 4.1.2 共平面波導(Coplanar Waveguide, CPW) ……………56 4.2 元件選擇……………………………………………………58 4.3 FR-4 (Flame Resistant 4)……………………………62 4.4 TRL校準 ……………………………………………………64 4.5 量測儀器……………………………………………………75 4.6 低雜訊放大器………………………………………………79 4.6.1 電路設計……………………………………………………79 4.6.2 模擬與量測…………………………………………………81 4.7 串接單級分佈式放大器(一)……………………………85 4.7.1 電路設計……………………………………………………85 4.7.2 模擬與量測…………………………………………………87 4.8 單級串接分佈式放大器(二)……………………………91 4.8.1 電路設計……………………………………………………91 4.8.2 模擬與量測…………………………………………………92 4.9 介面與寄生問題……………………………………………96 4.10 討論…………………………………………………………97 第5章 行進波切換器 …………………………………………………99 5.1 切換器架構…………………………………………………99 5.2 電路設計 …………………………………………………102 5.3 電路模擬、實做與量測 …………………………………103 5.4 討論 ………………………………………………………107 第6章 結論……………………………………………………………108 參考文獻………………………………………………………………110 | |
| dc.language.iso | zh-TW | |
| dc.subject | 切換器 | zh_TW |
| dc.subject | 集總 | zh_TW |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | 放大器 | zh_TW |
| dc.subject | lump | en |
| dc.subject | broadband | en |
| dc.subject | switch | en |
| dc.subject | amplifier | en |
| dc.title | 以集總元件設計之寬頻放大器與切換器 | zh_TW |
| dc.title | Design of the Broadband Amplifiers and the Switches Using Lumped Elements | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林坤佑(Kun-You Lin),蔡政翰(Jeng-Han Tsai) | |
| dc.subject.keyword | 集總,寬頻,放大器,切換器, | zh_TW |
| dc.subject.keyword | broadband,amplifier,switch,lump, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-08-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
