Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24903
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊啟伸(Chii-Shen Yang)
dc.contributor.authorJi-Chau Changen
dc.contributor.author張智超zh_TW
dc.date.accessioned2021-06-08T05:58:07Z-
dc.date.copyright2007-09-03
dc.date.issued2007
dc.date.submitted2007-08-29
dc.identifier.citation參考文獻
1.Orphanides, G., T. Lagrange, and D. Reinberg, The general transcription factors of RNA polymerase II. Genes Dev, 1996. 10(21): p. 2657-83.
2.Lue, N.F. and R.D. Kornberg, Accurate initiation at RNA polymerase II promoters in extracts from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A, 1987. 84(24): p. 8839-43.
3.Cramer, P., D.A. Bushnell, and R.D. Kornberg, Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science, 2001. 292(5523): p. 1863-76.
4.Conaway, R.C. and J.W. Conaway, General initiation factors for RNA polymerase II. Annu Rev Biochem, 1993. 62: p. 161-90.
5.Reinberg, D., et al., The RNA polymerase II general transcription factors: past, present, and future. Cold Spring Harb Symp Quant Biol, 1998. 63: p. 83-103.
6.Hampsey, M., Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol Mol Biol Rev, 1998. 62(2): p. 465-503.
7.Dahmus, M.E., Reversible phosphorylation of the C-terminal domain of RNA polymerase II. J Biol Chem, 1996. 271(32): p. 19009-12.
8.Murray, S., et al., Phosphorylation of the RNA polymerase II carboxy-terminal domain by the Bur1 cyclin-dependent kinase. Mol Cell Biol, 2001. 21(13): p. 4089-96.
9.Hengartner, C.J., et al., Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell, 1998. 2(1): p. 43-53.
10.Feaver, W.J., et al., CTD kinase associated with yeast RNA polymerase II initiation factor b. Cell, 1991. 67(6): p. 1223-30.
11.Chambers, R.S., et al., The activity of COOH-terminal domain phosphatase is regulated by a docking site on RNA polymerase II and by the general transcription factors IIF and IIB. J Biol Chem, 1995. 270(25): p. 14962-9.
12.Proudfoot, N.J., A. Furger, and M.J. Dye, Integrating mRNA processing with transcription. Cell, 2002. 108(4): p. 501-12.
13.Edwards, A.M., et al., Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J Biol Chem, 1991. 266(1): p. 71-5.
14.Woychik, N.A. and M. Hampsey, The RNA polymerase II machinery: structure illuminates function. Cell, 2002. 108(4): p. 453-63.
15.Chen, B.S., S.S. Mandal, and M. Hampsey, High-resolution protein-DNA contacts for the yeast RNA polymerase II general transcription machinery. Biochemistry, 2004. 43(40): p. 12741-9.
16.Cramer, P., et al., Architecture of RNA polymerase II and implications for the transcription mechanism. Science, 2000. 288(5466): p. 640-9.
17.Orlicky, S.M., et al., Dissociable Rpb4-Rpb7 subassembly of rna polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J Biol Chem, 2001. 276(13): p. 10097-102.
18.Armache, K.J., H. Kettenberger, and P. Cramer, Architecture of initiation-competent 12-subunit RNA polymerase II. Proc Natl Acad Sci U S A, 2003. 100(12): p. 6964-8.
19.Craighead, J.L., W.H. Chang, and F.J. Asturias, Structure of yeast RNA polymerase II in solution: implications for enzyme regulation and interaction with promoter DNA. Structure, 2002. 10(8): p. 1117-25.
20.Bushnell, D.A., et al., Structural basis of transcription: an RNA polymerase II-TFIIB cocrystal at 4.5 Angstroms. Science, 2004. 303(5660): p. 983-8.
21.Hahn, S., Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol, 2004. 11(5): p. 394-403.
22.Kettenberger, H., K.J. Armache, and P. Cramer, Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol Cell, 2004. 16(6): p. 955-65.
23.Hartzog, G.A., J.L. Speer, and D.L. Lindstrom, Transcript elongation on a nucleoprotein template. Biochim Biophys Acta, 2002. 1577(2): p. 276-86.
24.Braddock, M., et al., Blocking of Tat-dependent HIV-1 RNA modification by an inhibitor of RNA polymerase II processivity. Nature, 1991. 350(6317): p. 439-41.
25.Marshall, N.F. and D.H. Price, Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J Biol Chem, 1995. 270(21): p. 12335-8.
26.Orphanides, G., et al., FACT, a factor that facilitates transcript elongation through nucleosomes. Cell, 1998. 92(1): p. 105-16.
27.Fish, R.N. and C.M. Kane, Promoting elongation with transcript cleavage stimulatory factors. Biochim Biophys Acta, 2002. 1577(2): p. 287-307.
28.Wada, T., et al., DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev, 1998. 12(3): p. 343-56.
29.Hartzog, G.A., et al., Identification and analysis of a functional human homolog of the SPT4 gene of Saccharomyces cerevisiae. Mol Cell Biol, 1996. 16(6): p. 2848-56.
30.Swanson, M.S., E.A. Malone, and F. Winston, SPT5, an essential gene important for normal transcription in Saccharomyces cerevisiae, encodes an acidic nuclear protein with a carboxy-terminal repeat. Mol Cell Biol, 1991. 11(8): p. 4286.
31.Chiang, P.W., et al., Isolation, sequencing, and mapping of the human homologue of the yeast transcription factor, SPT5. Genomics, 1996. 38(3): p. 421-4.
32.Mancebo, H.S., et al., P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev, 1997. 11(20): p. 2633-44.
33.Wada, T., et al., Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. Embo J, 1998. 17(24): p. 7395-403.
34.Ping, Y.H. and T.M. Rana, Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. J Biol Chem, 1999. 274(11): p. 7399-404.
35.Swanson, M.S. and F. Winston, SPT4, SPT5 and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics, 1992. 132(2): p. 325-36.
36.Hartzog, G.A., et al., Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev, 1998. 12(3): p. 357-69.
37.Yamaguchi, Y., et al., Structure and function of the human transcription elongation factor DSIF. J Biol Chem, 1999. 274(12): p. 8085-92.
38.Howard, S.C., A. Hester, and P.K. Herman, The Ras/PKA signaling pathway may control RNA polymerase II elongation via the Spt4p/Spt5p complex in Saccharomyces cerevisiae. Genetics, 2003. 165(3): p. 1059-70.
39.Ping, Y.H. and T.M. Rana, DSIF and NELF interact with RNA polymerase II elongation complex and HIV-1 Tat stimulates P-TEFb-mediated phosphorylation of RNA polymerase II and DSIF during transcription elongation. J Biol Chem, 2001. 276(16): p. 12951-8.
40.Jansen, L.E., et al., Spt4 modulates Rad26 requirement in transcription-coupled nucleotide excision repair. Embo J, 2000. 19(23): p. 6498-507.
41.Malagon, F. and A. Aguilera, Differential intrachromosomal hyper-recombination phenotype of spt4 and spt6 mutants of S. cerevisiae. Curr Genet, 1996. 30(2): p. 101-6.
42.Wen, Y. and A.J. Shatkin, Transcription elongation factor hSPT5 stimulates mRNA capping. Genes Dev, 1999. 13(14): p. 1774-9.
43.Taylor, K.A. and R.M. Glaeser, Electron microscopy of frozen hydrated biological specimens. J Ultrastruct Res, 1976. 55(3): p. 448-56.
44.Lepault, J., F.P. Booy, and J. Dubochet, Electron microscopy of frozen biological suspensions. J Microsc, 1983. 129(Pt 1): p. 89-102.
45.Stewart, M. and G. Vigers, Electron microscopy of frozen-hydrated biological material. Nature, 1986. 319(6055): p. 631-6.
46.Chiu, W., Electron microscopy of frozen, hydrated biological specimens. Annu Rev Biophys Biophys Chem, 1986. 15: p. 237-57.
47.Taylor, K.A. and R.M. Glaeser, Electron diffraction of frozen, hydrated protein crystals. Science, 1974. 186(4168): p. 1036-7.
48.Adrian, M., et al., Cryo-negative staining. Micron, 1998. 29(2-3): p. 145-60.
49.Roseman, A.M., et al., Structures of unliganded and ATP-bound states of the Escherichia coli chaperonin GroEL by cryoelectron microscopy. J Struct Biol, 2001. 135(2): p. 115-25.
50.Ludtke, S.J., et al., Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. Structure, 2004. 12(7): p. 1129-36.
51.Hainfeld, J.F. and F.R. Furuya, A 1.4-nm gold cluster covalently attached to antibodies improves immunolabeling. J Histochem Cytochem, 1992. 40(2): p. 177-84.
52.Wagenknecht, T., et al., Localization of calmodulin binding sites on the ryanodine receptor from skeletal muscle by electron microscopy. Biophys J, 1994. 67(6): p. 2286-95.
53.Puig, O., et al., The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods, 2001. 24(3): p. 218-29.
54.Rigaut, G., et al., A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol, 1999. 17(10): p. 1030-2.
55.Ohi, M., et al., Negative Staining and Image Classification - Powerful Tools in Modern Electron Microscopy. Biol Proced Online, 2004. 6: p. 23-34.
56.Brenner, S. and R.W. Horne, A negative staining method for high resolution electron microscopy of viruses. Biochim Biophys Acta, 1959. 34: p. 103-10.
57.Ludtke, S.J., P.R. Baldwin, and W. Chiu, EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol, 1999. 128(1): p. 82-97.
58.Frank, J., et al., SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol, 1996. 116(1): p. 190-9.
59.Penczek, P., M. Radermacher, and J. Frank, Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy, 1992. 40(1): p. 33-53.
60.Crowther, R.A., et al., Three dimensional reconstructions of spherical viruses by fourier synthesis from electron micrographs. Nature, 1970. 226(5244): p. 421-5.
61.McClanahan, T. and K. McEntee, DNA damage and heat shock dually regulate genes in Saccharomyces cerevisiae. Mol Cell Biol, 1986. 6(1): p. 90-6.
62.Sheng, S. and S.M. Schuster, Purification and characterization of Saccharomyces cerevisiae DNA damage-responsive protein 48 (DDRP 48). J Biol Chem, 1993. 268(7): p. 4752-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24903-
dc.description.abstract控制基因表現對於細胞存活是很重要的步驟,原核生物與真核生物都具有 RNA polymerase 以調控轉錄作用。轉錄分為起始、延長,及終止三個不同步驟,早期研究則發現轉錄延長階段為 mRNA 合成的關鍵步驟。
真核細胞之細胞核內至少有三種不同 RNA polymerase,其中RNA Pol I 主要負責合成 rRNA,RNA Pol II 負責合成 mRNA,而RNA Pol III 負責合成 tRNA。本論文將研究重點指向酵母菌 RNA Pol II 與 Spt4-Spt5 複合體。早期對 Spt4-Spt5 複合體的研究認為,它在酵母菌轉錄初始階段扮演轉錄因子角色,並調控核染色質結構。然而,近來此複合體已漸漸被證實為細胞內轉錄延長調控因子。
本篇論文中,利用電子顯微鏡的技術輔以單粒子影像分析與三維重建,決定 RNA Pol II 與 Spt4-Spt5 複合體之結構。本論文採取三種策略來增加重建結果的可信度與精確度。首先,以 reference-free 的方式重建 RNA Pol II 與 Spt4-Spt5 複合體結構,克服使用初始模型進行重建所造成的結構失真。接著進行胞外轉錄實驗證實我們所重建的結構具有生理活性,之後將使用奈米金標定的技術與 random conical tilt 的方式,增加定位 Spt4-Spt5 複合體的準確度。
zh_TW
dc.description.abstractThe control of gene expression is essential for cell survival and it is commonly achieved by regulating transcription with different forms of RNA polymerase in both prokaryotes and eukaryotes. Transcription can be mainly divided into initiation, elongation and termination phases and previous studies determined elongation phase as rate-limiting step for proper mRNA production.
At least three different RNA polymerase has been identified in eukaryotic cells, including RNA polymerase I for ribosome, RNA polymerase II (RNA Pol II) for mRNA and RNA polymerase III for transfer-RNA. In this study, we focus on RNA Pol II coupled with Spt4-Spt5 complex in Saccharomyces cerevisiae. Initial studies of Spt4-Spt5 complex in Saccharomyces cerevisiae suggested that they act as transcription factors that modify chromatin structure in transcription initiation. More recently, however, this complex has been generally believed to work as an elongation regulator in vivo.
Here, we present the structure of the yeast RNA Pol II with Spt4-Spt5 complex determined by electron microscopy followed by single-particle analysis and three-dimensional reconstruction. Three methods have been adapted to increase the reliability and accuracy of our final structural model: First, we use reference-free methods to reconstruct the structure of RNA Pol II and Spt4-Spt5 complex which overcomes the distortion caused by reference bias using initial model-based method, and secondly, the complex have been assayed by in vitro transcription to show their biological activity. In the future, we will use gold particle labeling and random conical tilt method to increase the accuracy in identifing the position of Spt4-Spt5 in the complex.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:58:07Z (GMT). No. of bitstreams: 1
ntu-96-R94B47208-1.pdf: 10166264 bytes, checksum: 02156874933a284ae219c25a3f81e19e (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目 錄
目錄 I
縮寫表 IV
中文摘要 VI
Abstract VII
第一章 緒論 1
1.1 真核生物轉錄初始機制 1
1.2 真核生物轉錄延長階段與相關因子討論 8
1.3 Spt4-Spt5 complex 生理背景與論文研究目標 9
1.4 冷凍電子顯微鏡 11
1.5 奈米金標定技術 13
1.6 Tandem Affinity Purification (TAP) method 15
第二章 材料與方法 18
2.1 固態培養與菌種保存 18
2.1.1 液態培養 18
2.2 實驗藥品 18
2.3 實驗儀器 19
2.4 實驗方法 22
2.4.1 酵母菌培養與 RNA Pol II/Spt4-Spt5 複合體純化 22
2.4.1.1 酵母菌培養 22
2.4.1.2 玻璃珠研磨法破菌 23
2.4.1.3 RNA Pol II/Spt4-Spt5 IgG 親和性管柱一次純化 25
2.4.1.4 Bradford protein–binding assay 定量 26
2.4.1.5 SDS 膠體電泳 26
2.4.1.6 蛋白質染色 26
2.4.1.7 膠體內水解 (In-Gel Digestion) 26
2.4.1.8 RNA Pol II/Spt4-Spt5 (Spt5-CBP) 攜鈣素親和性
管柱二次純化 28
2.4.2 酵母菌 Spt4-Spt5 複合體純化 29
2.4.2.1 酵母菌 RNA Pol II/Spt4-Spt5 (Spt4-TAP) IgG
親和性管柱一次純化 29
2.4.2.2 Spt4-Spt5 複合體攜鈣素親和性管柱二次純化 30
2.4.3 電子顯微鏡樣品製備 31
2.4.3.1 製備覆蓋碳膜之銅網格 31
2.4.3.2 電子顯微鏡負染樣品製備 32
2.4.3.3 電子顯微鏡冷凍樣品製備 33
2.4.3.4 冷凍負染樣品製備 34
2.4.4 穿透式電子顯微鏡造影 36
2.4.5 三維重建 (Three-Dimensional Reconstruction) 36
2.4.5.1 Reference-Free Methods 36
2.4.5.2 Refinement 37
第三章 結果與討論 39
3.1 酵母菌 RNA Pol II/Spt4-Spt5 複合體純化結果與討論 39
3.1.1 酵母菌 RNA Pol II/Spt4-Spt5 (Spt4-TAP) 39
3.1.1.1 RNA Pol II/Spt4-TAP tag 純化結果 39
3.1.1.2 RNA Pol II/Spt4-TAP tag 純化討論 42
3.1.2.1 RNA Pol II/Spt5-TAP tag 純化結果 45
3.1.2.2 RNA Pol II/Spt5-TAP tag 純化討論 48
3.1.3.1 RNA Pol II/Spt4-Spt5 from Cornell University 51
3.1.3.2 RNA Pol II/Spt4-Spt5 討論 52
3.2 穿透式電子顯微鏡影像分析與三維重建 58
3.2.1 RNA Pol II/Spt4-Spt5 (Spt4-TAP) 造影結果與三維重
建 58
3.2.1.1 RNA Pol II/Spt4-Spt5 (Spt4-TAP) 重建結果討
論 58
3.2.2 RNA Pol II/Spt4-TAP Reference-Free 三維重建 58
3.2.2.1 RNA Pol II/Spt4-TAP Reference-Free 重建結構
討論 59
3.2.3 RNA Pol II/Spt5-TAP造影結果與三維重建 59
3.2.3.1 RNA Pol II/Spt5-TAP造影結果討論 59
3.2.3.2 RNA Pol II/Spt5-TAP Reference-Free重建結構
討論 60
3.2.4 RNA Pol II/Spt5-TAP Reference-Based 重建結果 61
3.2.4.1 RNA Pol II/Spt5-TAP Reference-Based 重建討
論 62
3.2.5 RNA Pol II/Spt4-Spt5 (Spt4-TAP) 與攜鈣素奈米金標
定 63
3.2.5.1 電子顯微鏡負染色造影結果 63
3.2.5.2 奈米金負染色造影結果討論 63
3.2.6 低溫電子顯微鏡造影討論 63
第四章 結論與未來展望 64
結果圖 65
參考文獻 85
附錄 91
dc.language.isozh-TW
dc.title以電子顯微鏡解析酵母菌 RNA 聚合酶 II 與 Spt4-Spt5 複合體之三維結構zh_TW
dc.titleThree Dimensional Electron Microscopy Reconstruction of Yeast RNA Polymerase II with Spt4-Spt5 complexen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor章為皓(Wei-Hau Chang)
dc.contributor.oralexamcommittee李平篤(Ping-Du Lee),王愛玉(Ai-Yu Wang)
dc.subject.keyword電子顯微鏡,酵母菌,聚合&#37238,三維重建,zh_TW
dc.subject.keywordElectron Microscopy,Yeast,Polymerase,Three-Dimensional Reconstruction,en
dc.relation.page92
dc.rights.note未授權
dc.date.accepted2007-08-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept微生物與生化學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
9.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved