Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24886Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 吳忠幟 | |
| dc.contributor.author | Cheng-Han Wu | en |
| dc.contributor.author | 吳承翰 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:57:50Z | - |
| dc.date.copyright | 2011-08-12 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-05 | |
| dc.identifier.citation | 13
References 1. J. E. Lilienfeld, US Pat. 1,900,018 (1933). 2. O. Heil, Brit. Pat. BP439, 457 (1935). 3. P. K. Weimer, Proceedings of the Institute of Radio Engineers 50, 1462 (1962). 4. W. E. Spear, P.G. LeComber, Solid State Communications 17, 1193 (1975). 5. P. G. LeComber, W. E. Spear, and A. Ghaith, Electronics Letters 15, 179 (1979). 6. C. R. Kagan, P. Andry, Thin-Film Transistor, IBM T.J. Watson Research Center (2003). 7. H. Hosono, M. Yasukawa, H. Kawazoe, Journal of Non-Crystalline Solids 203, 334-344 (1996). 8. H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, Journal of Non-Crystalline Solids 200, 165-169 (1996). 9. H. Hosono, Journal of Non-Crystalline Solids 352, 851-858 (2006) 10. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Thin Solid Films 486, 38-41(2005). 11. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, 1269 (2003). 12. T. Riedl, P. Gorrn, W. Kowalsky, Journal of Display Technology 5, 501-508(2009). 13. Y. H. Kim, K. H. Kim, M. S. Oh, H. J. Kim, J. I. Han, M. K. Han, S. K. Park, IEEE Electron Device Letters 31, 836-838(2010). 14. T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Applied Physics Letters 90, 242114(2007). 15. A. Sato, K. Abe, R. Hayashi1, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, Applied Physics Letters 94, 133502(2009). 16. J. Park, I. Song, S. Kim, S. Kim, C. Kim, J. Lee, H. Lee, E. Lee, H. Yin, K. K. Kim, K. W. Kwon, Y. Park, Applied Physics Letter 93, 053501 (2008). 17. J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K. W. Kwon, and Y. Park, Applied Physics Letter 95, 053505 (2008). 18. J. M. Pimbley, M. Ghezzo, Electron Device Letters 3, 99-100(1982). 30 Reference 1. C. R. Kagan, P. Andry, Thin-Film Transistor, IBM T.J. Watson Research Center (2003). 2. H. Hosono, M. Yasukawa, H. Kawazoe, Journal of Non-Crystalline Solids 203, 334-344 (1996). 3. H. Hosono, N. Kikuchi, N. Ueda, H. Kawazoe, Journal of Non-Crystalline Solids 200, 165-169 (1996). 4. H. Hosono, Journal of Non-Crystalline Solids 352, 851-858 (2006). 5. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, .1269 – 1272 (2003). 6. J. M. Pimbley, M. Ghezzo, Electron Device Letters 3, 99-100(1982). 7. C. S. Yang, W. W. Read, C. B. Arthur, G. N. Parsons, Flat Panel Display Materials III 471, 179-184 (1997). 8. C. S. Yang, W. W. Read, C. B. Arthur, E. Srinivasan, G. N. Parsons, IEEE Electron Device Letters 19, 180-182 (1998). 9. M. Matsuo, T. Nakazawa, H. Ohshima, Japanese Journal of Applied Physics 31, 4567-4569 (1992). 10. C. C. Tsai , H. H. Chen, B. T. Chen, H. C. Cheng, IEEE Electron Device Letters 28, 599-602 (2007). 11. A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, . H. Hosono, Applied Physics Letters 94, 133502 (2009). 12. C. H. Seager and S.M. Myers, Japanese Journal of Applied Physics 94, 2888 (2003). 13. J. Park, I. Song, S. Kim, S. Kim, C. Kim, J. Lee, H. Lee, E. Lee, H. Yin, K. K. Kim, K. W. Kwon, Y. Park, Applied Physics Letter 93, 053501 (2008). 14. K. Remashan, D. Hwang, S. Park, J. Jang, IEEE Transactions on Electron Devices 55, 10, 2736 – 2743 (2008). 15. J. R. Flemish and R. L. Pfeffer, Journal of Applied Physics 74, 5 (1993). 16. Y. W. Park, S. C. Choi, S.J. Yoon, H. J. Kim, S. K. Koh, H. J. Jung, Journal of the Korean Phusical Society, 32, S1700-S1703 (1998). 17. H. Dun, P. Pan, F.R. White, and R.W. Douse, Journal of Electrochem Society 128, 1555 (1981). 18. D. S. Kim, S. G. Yoon, G. E. Jang, S. J. Suh, H. Kim, D. H. Yoon, Journal of Electrochem Society 17, 315–318 (2006). 19. R.L. Hoffman, Solid-State Electronics 50, 5, 784-787 (2006). 50 Reference 1. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 7016, 488-492 (2004). 2. T. Minami, H. Sonohara, S. Takata, H. Sato, Journal of Applied Physics 33, 12A, L1693-L1696 (1994) . 3. D. L. Young, D. L. Williamson, T. J. Coutts, Journal of Applied Physics 91, 3, 1464-1471 (2002) . 4. K. Satoh, Y. Kakehi, A. Okamoto, S. Murakami, F. Uratani and T. Yotsuya, Japan Journal of Applied Physics 44, L34-L37 (2005). 5. W. B. Jackson, R. L. Hoffman, G. S. Herman, Applied Physics Letters 87, 19 (2005). 6. H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, D. A. Keszler, Applied Physics Letters 86, 1 (2005). 7. M. G. McDowell, R. J. Sanderson, I. G. Hill, Applied Physics Letters 92, 1 (2008). 8. H. H. Hsieh, C. H. Wu, C. W. Chien, C. K. Chen, C. S. Yang, C. C. Wu, Journal of the Society for Information Display 18, 10, 796-801 (2010). 9. J. K. Jeong, J. H. Jeong, H. W. Yang, J. S. Park, Y. G. Mo, and H. D. Kim, Applied Physics Letters 91, 113505 (2007) 10. J. F. Conley, Jr., IEEE Transections on Device and Materials Reliability 10, NO. 4 (2010). 11. P. Gorrrn, T. Riedl, and W. Kowalsky, Journal of Physics Chemistry C 113, 11126–11130 (2009). 12. D. Hong and J. F. Wager, Journal of Vacuum Science Technology B, Microelectron Nanometer Structure 23, no. 6, L25–L27 (2005). 13. D. H. Cho, S. H. Yang, J.-H. Shin, C. W. Byun, M. K. Ryu, J. I. Lee, C. S. Hwang and H. Y. Chu, Journal of the Korean Physical Society 54, no. 1, 531-534 (2009). 14. S.W. Tsao, T.C. Chang, S.Y. Huang, M.C. Chen, S.C. Chen, C.T. Tsai, Y.J. Kuo, Y.C. Chen, W.C. Wu, Solid-State Electronics 54, 1497–1499 (2010). 77 Reference 1. C. R. Kagan, P. Andry, Thin-Film Transistor (IBM T.J. Watson Research Center, 2003). 2. Y. Kuo, Journal of Electrochemical Society 141, 1061–1065 (1994). 3. Y. Kuo, Applied Physical Letter 61, 2790–2792 (1992). 4. A. M. Miri and S. G. Chamberlain, Material Research Society Symposium Proceeding 377, 737–742 (2005). 5. I. D. French, C. J. Curling, and A. L. Goodyear, Material Research Society Symposium Proceeding 336, 769–774 (1994). 6. S. H. Lee, B. H. Seo and J. H. Seo, Journal of the Korean Physical Society 53, 5, 2603-2606 (2008). 7. Y. H. Song, C. S. Hwang, Y. R. Cho, B. C. Kim, S. D. Ahn, C. H. Chung, D. H. Kim, H. S. Uhm, J. H. Lee, and K. I. Cho, ETRI Journal 24, No. 4 (2002). 8. T. Minami, H. Sonohara, S. Takata, and H. Sato, Japanese Journal of Applied Physics 33, L1693 (1994). 9. T. Minami, S. Takata, H. Sato, and H. Sonohara, Journal of Vacuum Science & Technology A 13(3), 1095 (1995). 10. H. H. Choe and S. G. Kim, Semiconductor Science and Technology 19, 7, 839-845 (2004). 78 11. T. Arai, A. Makita, Y. Hiromasu, H. Takatsuji, Thin Solid Films 383, 287-291 (2001). 12. K. S. Son, T. S. Kim, J. S. Jung, M. K. Ryu, K. B. Park, B. W. Yoo, K. C. Park, J. Y. Kwon, S. Y. Lee, and J. M. Kim, Electrochemical and Solid-State Letters 12, 1, H26-H28 (2009). 13. C. J. Kim, J. Park, S. Kim, I. Song, S. Kim, Y. Park, E. Lee, B. Anass, and J. S. Park, Electrochemical and Solid-State Letters 12, 4, H95-H97 (2009). 14. J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K. K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K. W. Kwon, and Y. Park, Applied Physics Letter 95, 053505 (2008). 15. M. A. Kanjwal, N. A. M. Barakat, F. A. Sheikh, D. K. Park, H. Y. Kim, Journal of Materials Science 45, 14, 3833-3840 (2010). 16. Y. Kim, Y. Yoon, D. Shin, Journal of Analytical and Applied Pyrolysis 85, 557-560 (2009). 17. P.K. Biswas, A. De, L.K. Dua, L. Chkoda, Bulletin of Materials Science 29, 323 (2006). 18. T. Ishida, H. Kobayashi, Y. Nakato, Journal of Applied Physics 73, 4344 (1993). 19. J.C.C. Fan, J.B. Goodenough, Journal of Applied Physics 48, 3524 (1977). 20. V. K. Jain, P. Kumar, M. Kumar, P. Jain, D. Bhandari, Y.K. Vijay, Journal of Alloys and Compounds 509, 3541–3546 (2011). 21. G. H. Kim, W. H. Jeong, and H. J. Kim, Physica Status Solidi A 207, No. 7, 1677–1679 (2010). 22. J. S. Park, J. K. Jeong, H. J. Chung,Y. G. Mo, and H. D. Kim, Applied Physics Letters 92, 072104 (2008). 23. J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, Applied Physics Letters 93, 123508 (2008). 24. K.L. Chopra, S. Major and D.K. Pandya, Thin Solid Film 102, 1, 1-46 (1983). 25. T. Tsuji, M. Hirohashi, Applied Surface Science 157, 47 (2000). 26. J.H. Ko, I.H. Kim, D. Kim, K.S. Lee, T.S. Lee, B. Cheong, W.M. Kim, Applied Surface Science 253, 7398–7403 (2007). 102 Reference 1. M. C. Hung, H. T. Hsiao, W. T. Lin, C. H. Tu, J. J. Chang, and P. L. Chen, Japanese Journal of Applied Physics 50 03CB07 (2011). 2. T. Arai, N. Morosawa, K. Tokunaga, Y. Terai, E. Fukumoto, T. Fujimori, T. Sasaoka, Journal of the SID 19, 205-211 (2011). 3. K. Toyotaka, K. Kusunoki, T. Nagata, Y. Hirakata, K. Wakimoto, J. Koyama, S. Yamazaki, R. Sato, K. Okazaki, and M. Sakakura, Japanese Journal of Applied Physics 50 03CC09 (2011). 4. H. C. Cheng, P. Y. Yang, J. L. Wang, S. Agarwal, W. C. Tsai, S. J. Wang, I. C. Lee, IEEE Electron Device Letters 32, 4, 497-499 (2011). 5. B. J. Kim, H. J. Kim, T. S. Yoon, Y. S. Kim, D. H. Lee, Y. Choi, B. H. Ryu, H. H. Lee, Journal of Industrial and Engineering Chemistry 17, 1, 96-99 (2011). 6. D. W. Kwon, J. H. Kim, J. S. Chang, S. W. Kim, W. Kim, J. C. Park, I. Song, C. J. Kim, U. I. Jung, B. G. Park, Applied Physics Letters 98, 6, 063502 (2011). 7. J. H. Shim, J. H. Choi, C. M. Lee, K. Park, J. Joo, H. Kim, H. J. Lee, J. H. Lim, M. R. Moon, D. Jung, Journal of the Korean Physical Society 57, 6, 1847-1851 (2010). 8. V. P. Verma, D. H. Kim, H. Jeon, M. Jeon, W. Choi, Thin Solid Films 516, 23, 8736-8739 (2008). 103 9. G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, E. Fortunato, Electrochemical and Solid State Letters 13, 1, II20-II22 (2010). 10. H. Hosono, M. Yasukawa, and H. kawazoe, Journal of Non-Crystalline Solids 203, 334 (1996). 11. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Kimura, M. Hirano, and H. Hosono, Physics Status Solidi A 206, No. 9, 2187–2191 (2009). 12. S. Y. Sung, S. Y. Kim, K. M. Jo, J. H. Lee, J. J. Kim, S. G. Kim, K. H. Chai, S. J. Pearton, D. P. Norton, Y. W. Heo, Applied Physics Letters 97, 22, 222109 (2010). 13. S. M. Chung, J. H. Shin, J. M. Lee, M. K. Ryu, W. S. Cheong, S. H. K. Park, C. S. Hwang, K. I. Cho, Journal of Nanoscience and Nanotechnology 11, 1, 782-786 (2011). 14. Q. Y. Hou, C. W. Zhao, J. J. Li, G. Wang, Acta Physica Sinica 60, 4, 047104 (2011). 15. J. K. Yao, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, H. P. D. Shieh, P. T. Liu, Y. P. Huang, IEEE Transactions on Electron Devices 58, 4, 1121-1126 (2011). 16. H. H. Hsieh, T. T. Tsai, C. Y. Chang, S. F. Hsu, C. S. Chuang, Y. S. Lin, Journal of the Society for Information Display 19, 4, 323-328 (2011). 17. K. Nomura, T. Kamiya, Y. Kikuchi, M. Hirano, H. Hosono, Thin Solid Films 518, 11, 3012-3016 (2010). 18. T. Arai, N. Morosawa, K. Tokunaga, Y. Terai, E. Fukumoto, T. Fujimori, T. Sasaoka, Journal of the Society for Information Display 19, 2, 205-211 (2011). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24886 | - |
| dc.description.abstract | I
摘要 透明金屬氧化物半導體是由具有(n-1)d 10 ns 0 (n≧4)電子組態的重金屬陽離子 和氧結合而成。金屬氧化物半導體的傳導帶是取決於金屬的 s 軌域重疊,而 s 軌 域為球形對稱,因此不管在結晶態或非晶態都可以有良好的重疊及高載子遷移率。 金屬氧化物由於不需維持在結晶態,所以適合於低溫下沉積。且金屬氧化物常具 有高能隙,因此在可見光下是透明的。憑藉這些優點,以金屬氧化物半導體為材 料所製作的薄膜電晶體,有可能取代非晶矽成為下一代顯示技術的主流材料。 本論文主要探討兩種常見的金屬氧化物半導體,氧化銦鎵鋅及氧化鋅錫,研 究其薄膜特性並製作各種結構之薄膜電晶體。首先藉由控制不同氫含量的氮化矽 覆蓋在氧化銦鎵鋅上,可改變其下半導體層的導電率,並透過這個原理,在薄膜 電晶體的通道及汲極/源極上覆蓋不同氫含量的氮化矽,可成功地製作出自我對準 式上閘極氧化銦鎵鋅薄膜電晶體。 此外為了降低對貴金屬銦的需求,開發不含銦的金屬氧化物半導體氧化鋅錫 製程以求降低製作成本,是未來金屬氧化物半導體的一個有潛力的研究方向。我 們可利用完整的微影蝕刻製程,製作出下閘極共平面氧化鋅錫薄膜電晶體,並且 可藉由調整氧化鋅錫的沉積條件,來達到最佳化的元件特性。我們更進一步製作 了利用濕蝕刻製程的背面通道蝕刻結構製作的氧化鋅錫薄膜電晶體。濕蝕刻製程 的背面通道蝕刻結構是現階段顯示工業所偏好的元件結構,但受限於適當的蝕刻 液及蝕刻後續的修補處理,金屬氧化物薄膜電晶體在目前較難以濕蝕刻方式製作此種元件結構。我們開發出利用酸液蝕刻,以及電漿進行蝕刻後續處理,可成功 地製作出鉬/鋁電極的背面通道蝕刻結構之氧化鋅錫薄膜電晶體。本論文之研究, 對未來相關的金屬氧化物薄膜電晶體技術相信有所幫助。 | zh_TW |
| dc.description.abstract | III
Abstract Transparent metal oxide semiconductors are composed of heavy metal cations (HMCs) with electronic configuration of (n-1)d 10 ns 0 (n≧4). The conduction band of metal oxide semiconductors is dominated by the overlap of spherical metal s orbitals, and thus carriers can transport in the conduction band with high mobility in either the single crystalline or the amorphous phase. Metal oxide semiconductors can adopt the low-temperature or even room-temperature deposition technology since the crystalline phase is not necessary. In addition, the bandgap of most oxide semiconductors are large and thus are usually transparent in the visible range. With these merits, metal-oxide- semiconductor based TFTs have the potential to replace a-Si TFTs in the display technology. Self-aligned techniques are often used in conventional CMOS and Si-based TFTs due to various merits. This dissertation investigates the self-aligned coplanar top-gate InGaZnO TFTs using PECVD a-SiNx:H patterned to have low hydrogen content in the channel region and high hydrogen content in the source/drain region. After annealing to induce hydrogen diffusion from a-SiNx:H into the oxide semiconductor, the source/drain regions become more conductive and yet the channel region remains suitable for TFT operation, yielding a working self-aligned TFT structure. Such fabrication involves neither back-side exposure nor ion implantation, and thus may be compatible with the typical and cost-effective TFT manufacturing. IGZO is the most studied oxide semiconductors, but it contains the relatively rare In element, thus In-free Zinc-Tin oxide (ZTO) has high potential in the oxide TFT technology. We demonstrated the bottom-gate ZTO thin film transistors fabricated on glass substrates with fully photolithographic/etching processes and with completed passivation. The ZTO active layer were deposited by RF sputtering with different combinations of chamber pressure, rf power, and Ar/O 2 ratio during sputtering of ZTO, in order to obtain optimized device performances. The back-channel-etch (BCE) type TFT process is most compatible to the conventional a-Si TFT industry, since the number of masks required can be minimized and is easier to scale down the channel length, especially when compared with etch-stop type TFTs. However, oxide TFTs with the conventional BCE processing have the issues that the oxide layer on the film surface would be corroded or damaged in wet etching of source/drain electrodes, leading to failure or leaky devices. To realize ZTO TFTs with the BCE structure, we adopted a wet etchant that is less corrosive to ZTO and repaired the damage of the ZTO surface by an in-situ plasma treatment. Also, we performed various physical and chemical examinations of the influence of the wet etchant and the plasma treatment on ZTO surface and explained the mechanisms. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:57:50Z (GMT). No. of bitstreams: 1 ntu-100-D95943023-1.pdf: 3351633 bytes, checksum: a83de385749bda9ecd08f0ea6a7528eb (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | V
Contents Chapter 1 Introduction………………………………………………………………...1 1.1 Background of Thin Film Transistors………………………………………………..1 1.1.1 The History……………………………………………………………………...1 1.1.2 The Structure and Operations…………………………………………………...3 1.2 Overview of Metal Oxide Semiconductors and Their TFTs…………………………8 1.3 Dissertation Organization…………………………………………………………..11 Reference…………………………………………………………………………….…13 Chapter 2 Self-aligned Top-gate Coplanar In-Ga-Zn-O Thin Film Transistors….18 2.1 Introduction………………………………………………………………………...18 2.2 Experiments………………………………………………………………………...22 2.3 Results and Discussions…………………………………………………………….25 2.3.1 Properties of SiNx:H Grown by PECVD with Different SiH 4 Gas Ratio……..25 2.3.2 Influences of Different SiNx:H Coverage on the Resistivity of the IGZO Layer…………………………………………………………………………..26 2.3.3 Device Characteristics of Self-aligned IGZO TFTs…………………………...27 2.4 Summary……………………………………………………………………………29 Reference……………………………………………………………………………….30 VI Chapter 3 Influences of Channel Deposition Conditions on Characteristics of Bottom-Gate Oxide TFTs Adopting In-Free Zinc-Tin Oxides…………………...41 3.1 Introduction………………………………………………………………………...41 3.2 Experiments………………………………………………………………………...43 3.3 Results and Discussions…………………………………………………………….44 3.4 Summary……………………………………………………………………………49 Reference……………………………………………………………………………….50 Chapter 4 Development of the Back-Channel-Etch Type of Zn-Sn-O Thin Film Transistors……………………………………………..………………………………61 4.1 Introduction………………………………………………………………………...61 4.2 Experiments………………………………………………………………………...64 4.3 Results and Discussions…………………………………………………………….66 4.3.1 Etching Selectivity between ZTO and Mo/Al…………………………………66 4.3.2 BCE-Type ZTO TFTs Fabricated by High-Etching-Selectivity Acid…………68 4.3.3 Improve BCE-Type ZTO TFTs with Plasma Treatment………………………70 4.3.4 Various Physical and Chemical Characterization of ZTO Films under Different Treatments..…………………………………………………………………...72 4.4 Summary……………...…………………………………………………………….76 Reference……………………………………………………………………………….77 Chapter 5 Summary and Future work………………………………………………97 5.1 Dissertation summary………………………………………………………………97 5.2 Suggestion for future research…………………………………………………….100 Reference……………………………………………………………………………102 | |
| dc.language.iso | en | |
| dc.subject | 背面通道蝕刻 | zh_TW |
| dc.subject | 氧化物半導體 | zh_TW |
| dc.subject | 薄膜電晶體 | zh_TW |
| dc.subject | 氧化銦鎵鋅 | zh_TW |
| dc.subject | 氧化鋅錫 | zh_TW |
| dc.subject | 自組裝製程 | zh_TW |
| dc.subject | Oxide semiconductors | en |
| dc.subject | IGZO | en |
| dc.subject | Thin-film transistor | en |
| dc.subject | Back-channel-etch | en |
| dc.subject | Self-aligned process | en |
| dc.subject | ZTO | en |
| dc.title | 氧化物薄膜電晶體之材料與元件研究 | zh_TW |
| dc.title | Studies of Materials, Device Structures and Device
Processing for Oxide Thin Film Transistors | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 謝信弘,陳介偉,張志豪,岑尚仁 | |
| dc.subject.keyword | 氧化物半導體,薄膜電晶體,氧化銦鎵鋅,氧化鋅錫,自組裝製程,背面通道蝕刻, | zh_TW |
| dc.subject.keyword | Oxide semiconductors,Thin-film transistor,IGZO,ZTO,Self-aligned process,Back-channel-etch, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-08 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| Appears in Collections: | 電子工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 3.27 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
