Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24861
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉小蓁(Hsiaw-Chan Yeh)
dc.contributor.authorWen-Hua Hsiehen
dc.contributor.author謝文華zh_TW
dc.date.accessioned2021-06-08T05:57:26Z-
dc.date.copyright2007-11-15
dc.date.issued2007
dc.date.submitted2007-10-31
dc.identifier.citationReferences
[1] Carmona, R. A. (2004). Statistical Analysis of Financial Data in S-Plus. Springer.
[2] Cherubini, U., Luciano, E., and Vecchiato, W. (2004). Copula Methods in Finance. John Wiley & Sons.
[3] Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values. Springer.
[4] Davison, A. C. (1984). Modelling excesses over high thresholds, with application. In Tiago de Oliveira, J., editor, Statistical Extremes and Applications, pages 461-482. Reidel, Dordrecht.
[5] Davison, A. C. & Smith, R. L. (1990). Models for exceedances over high thresholds (with discussion). Journal of the Royal Statistical Society, B52,393-442.
[6] Deheuvels, P. (1978). Caractérisation Compléte des lois Extrêmes Multivariées et de la Convergence des Types Extrêmes. Publications de l'Institut de. Statistique de l’Université de Paris, 23, 1-36.
[7] Durrett, R. (2005). Probability: Theory and Examples. Thomson Learning.
[8] Embrechts, P., Klüppelberg, C., Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance. Springer.
[9] Feller, W. (1968). An Introduction to Probability Theory and Its Applications, v.2, John Wiley & Sons.
[10] Fisz, M. (1963). Probability theory and mathematical statistics. Wiley.
[11] Frank, M. J. (1979). On the Simultaneous Associativity of f(x,y) and x+y-f(x,y). Aequationes Mathematiques, 19, 194-226.
[12] Gumbel, E. J. (1960).Distributions des Valeurs Extrêmes en Plusiers Dimensions. Publications de l’Institut de. Statistique de l’Université de Paris, 9, 171-173.

[13] Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.
[14] Heiberger, R. M., Holland, B. (2004). Statistical analysis and data display: an intermediate course with examples in S-plus, R, and SAS. Springer.
[15] Hull, J. C. (2006). Options, Futures, And Other Derivatives, 6th ed. Pearson Prentice Hall.
[16] Hull, J. C. (2007). Risk Management and Financial Institutions. Pearson Prentice Hall.
[17] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.
[18] Joe , H. and Xu, J. (1996). The Estimation Method of Inference Functions for Margins for Multivariate Models. Technical Report No. 166, Department of Statistics, University of British Columbia, Vancouver.
[19] Jorion, P. (2007). Value at Risk: The New Benchmark for Managing Financial Risk, McGraw-Hill.
[20] Khindanova, I., Rachev, S.T., and Schwartz, E. (2001). Stable Modeling of Value at Risk. Mathematical and Computer Modelling, 34, 1223-1259.
[21] Kruskal, W. H. (1958). Ordinal measures of association. Journal of the American Statistical Association, 53, 814-861.
[22] Mandelbrot, B. B. (1963). New Methods in Statistical Economics. J. of Political Economy, 71, 421-440.
[23] McNeil, A. J., Frey, R., Embrechts, P. (2005). Quantitative Risk Management. Princeton University Press.
[24] Neftci, S. N. (Spring 2000). Value at Risk Calculations, Extreme Events, and Tail Estimation. Journal of Derivatives v. 7 no. 3 p. 23-37
[25] Nelson, R. B. (1999). An Introduction to Copulas, Lecture Notes in Statistics. Springer-Verlag, New York.
[26] Rachev, S. T., Schwartz, E., and Khindanova, I. (2003). Stable Modeling of Credit Risk. In Handbook of Heavy Tailed Distributions in Finance, ed. Rachev S. T., 249-328. Amsterdam: North Holland Handbooks of Finance.
[27] Rachev, S. T., Menn, C., Fabozzi, F. J. (2005). Fat-Tailed and Skewed Asset Return Distributions. John Wiley & Sons.
[28] Rachev, S. T., Stoyanov, S., Biglova, A., Fabozzi, F. J. (2005). An Empirical Examination of Daily Stock Return Distributions for U.S. Stocks. Data Analysis and Decision Support, Springer Series in Studies in Classification, Data Analysis and Knowledge Organization. eds. Decker, R., Schmidt-Thieme, L., and Baier, D., 269-281.
[29] RiskMetrics (1995). RiskMetrics Technical Document. 3rd ed., J. P. Morgan, New York.
[30] Shiryaev, A. N. (1999). Essentials of Stochastic Finance: Facts, Models, Theory. World Scientific. Singapore.
[31] Smith, R. L. (1984). Threshold methods for sample extremes. In Tiago de Oliveira, J., editor, Statistical Extremes and Applications, pages 621-638. Reidel, Dordrecht.
[32] Tsay, R. S. (2005). Analysis of Financial Time Series. John Wiley & Sons.
[33] Zivot, E., Wang, J., (2006). Modeling financial time series with S-plus. Springer.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24861-
dc.description.abstract在這篇論文中,我們應用連接函數與極端值理論配置AMD及XEROX兩間公司股票報酬的聯合分配。我們比較了一般化柏拉圖分配以及常態分配作為邊際分配的影響,並且計算95%, 99%, 99.5%, 99.9%, 99.95% 及99.99% 信賴水準的風險值。由連接函數及極端值理論所得到的風險值的估計值,不論在樣本內或樣本外的測試結果都很好。並且我們也發現風險值的估計值並不隨著柏拉圖分配門檻的選擇而有很大的變化。另一方面,常態分配作為邊際分配所得到的信賴水準99%以上的風險值則低估了實際的風險。zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T05:57:26Z (GMT). No. of bitstreams: 1
ntu-96-R93221040-1.pdf: 1390031 bytes, checksum: aba9666e00a7d681824e3fe92f322f11 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontentsContents
CHAPTER 1: INTRODUCTION - 1 -
CHAPTER 2: LITERATURE REVIEW - 2 -
CHAPTER 3: RESEARCH METHOD - 5 -
CHAPTER 4: EMPIRICAL STUDY - 27 -
CHAPTER 5: CONCLUSIONS - 53 -
REFERENCES - 55 -
dc.language.isoen
dc.subject厚尾zh_TW
dc.subject連接函數zh_TW
dc.subject一般化柏拉圖分配zh_TW
dc.subject風險值zh_TW
dc.subjectCopulaen
dc.subjectHeavy Tailen
dc.subjectValue at Risken
dc.subjectGeneralized Pareto Distributionen
dc.title應用Copula方法於厚尾財務資料及風險值之計算zh_TW
dc.titleThe Application of Copula Methods to Heavy-Tailed Financial Data and the Computation of Value at Risk
The Application of Copula Methods to Heavy-Tailed Financial Data and the Computation of Value at Risk
The Application of Copula Methods to Heavy-Tailed Financial Data and the Computation of Value at Risk
en
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.coadvisor陳宜良(I-Liang Chern)
dc.contributor.oralexamcommittee蘇永成(Yong-Chern Su),廖咸興(Hsien-Hsing Liao)
dc.subject.keyword連接函數,一般化柏拉圖分配,風險值,厚尾,zh_TW
dc.subject.keywordCopula,Generalized Pareto Distribution,Value at Risk,Heavy Tail,en
dc.relation.page57
dc.rights.note未授權
dc.date.accepted2007-10-31
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved