Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24855
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏家鈺
dc.contributor.authorChih-Ching Wuen
dc.contributor.author吳志清zh_TW
dc.date.accessioned2021-06-08T05:57:21Z-
dc.date.copyright2007-11-22
dc.date.issued2007
dc.date.submitted2007-11-19
dc.identifier.citationBailey MR, Couret LN, Sapozhnikov OA, Khokhlova VA, ter Haar G, Vaezy S, Shi X, Martin R, and Crum LA. Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound Med. Biol., 2001; 27: 695-708.
Chaussy C, Thuroff S. High-intensity focused ultrasound in prostate cancer: results after 3 years. Mol. Urol., 2000; 4: 179-182.
de Senneville BD, Mougenot C, Moonen CT. Real-time adaptive methods for treatment of mobile organs by MRI-controlled high-intensity focused ultrasound. Magn Reson Med 2007;57(2):319-330.
Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperthermia 1994;10(4):457-483.
Dewey WC, Hopwood LE, Sapareto SA, Gerweck LE. Cellular responses to combinations of hyperthermia and radiation. Radiology 1977;123(2):463-474.
De Poorter J, De Wagter C, De Deene Y, Thomsen C, Stahlberg F, Achten E. Noninvasive MRI thermometry with the proton resonance frequency (PRF) method: in vivo results in human muscle. Magn Reson Med 1995;33(1):74-81.
Graham SJ, Chen L, Leitch M, Peters RD, Bronskill MJ, Foster FS, Henkelman RM, Plewes DB. Quantifying tissue damage due to focused ultrasound heating observed by MRI. Magn Reson Med 1999;41(2):321-328.
Gorny KR, Hangiandreou NJ, Hesley GK, Gostout BS, McGee KP, Felmlee JP. MR guided focused ultrasound: technical acceptance measures for a clinical system. Phys Med Biol. 2006 Jun 21;51(12):3155-73. Epub 2006 Jun 6.
Illing RO, Kennedy JE, Wu F, et al. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br. J. Cancer, 2005; 93: 890-895.
Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995;34(6):814-823.
Jiang Y, Tian X, Luo W, Zhou X. Transmission electron microscopy of rabbit liver after high-intensity focused ultrasound ablation combined with ultrasound contrast agents. Adv Ther., 2007 Jul-Aug;24(4):700-5.
Jolesz FA, Hynynen K, McDannold N, Tempany C. MR imaging-controlled focused ultrasound ablation: a noninvasive image-guided surgery. Magn. Reson. Imaging Clin. N. Am., 2005; 13:545-560.
Khokhlova VA, Bailey MR, Reed JA, Cunitz BW, Kaczkowski PJ, and Crum LA. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. J. Acoust. Soc. Am., 2006; 119: 1834-1848.
Kim YS, Rhim H, Paik SS. Radiofrequency ablation of the liver in a rabbit model: creation of artificial ascites to minimize collateral thermal injury to the diaphragm and stomach. J. Vasc. Interv. Radiol., 2006; 17: 541-547.
Kennedy JE, ter Haar GR, Wu F, et al. Contrast-enhanced ultrasound assessment of tissue response to high-intensity focused ultrasound. Ultrasound Med Biol 2004; 30:851–854.
Kennedy JE, Wu F, ter Haar GR, et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics, 2004; 42: 931-935.
Kondo Y, Yoshida H, Shiina S, et al. Artificial ascites technique for percutaneous radiofrequency ablation of liver cancer adjacent to the gastrointestinal tract. Br. J. Surg., 2006; 93: 1277-1282.
Leslie TA, Kennedy JE. High-intensity focused ultrasound principles, current uses, and potential for the future. Ultrasound Q., 2006; 22: 263-272.
Leon-Villapalos J, Kaniorou-Larai M, Dziewulski P. Full thickness abdominal burn following magnetic resonance guided focused ultrasound therapy. Burns, 2005; 31: 1054-1055.
Luo W, Zhou X, Ren X, Zheng M, Zhang J, He G. Enhancing effects of SonoVue, a microbubble sonographic contrast agent, on high-intensity focused ultrasound ablation in rabbit livers in vivo. J Ultrasound Med., 2007 Apr;26(4):469-76.
Luo W, Zhou X, Tian X, Ren X, Zheng M, Gu K, He G. Enhancement of ultrasound contrast agent in high-intensity focused ultrasound ablation. Adv Ther., 2006 Nov-Dec;23(6):861-8.
Lafon C, Zderic V, Noble ML, Yuen JC, Kaczkowski PJ, Sapozhnikov OA, Chavrier F, Crum LA, and Vaezy S. Gel phantom for use in high-intensity focused ultrasound dosimetry. Ultrasound Med. Biol., 2005; 31: 1383-1389.
Lutz NW, Kuesel AC, Hull WE. A 1H-NMR method for determining temperature in cell culture perfusion systems. Magn Reson Med 1993;29(1):113-118.
Li JJ, Xu GL, Gu MF, Luo GY, Rong Z, Wu PH, Xia JC. Complications of high intensity focused ultrasound in patients with recurrent and metastatic abdominal tumors. World J Gastroenterol. 2007 May 21;13(19):2747-51.
Liu HL, Chen YY, Yen JY, Lin WL. Pilot point temperature regulation for thermal lesion control during ultrasound thermal therapy. Med Biol Eng Comput 2004;42(2):178-188.
Miller NR, Bamber JC, and ter Haar GR. Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery. Ultrasound Med. Biol., 2004; 30: 345-356.
Miller NR, Bograchev KM, and Bamber JC. Ultrasonic temperature imaging for guiding focused ultrasound surgery: effect of angle between imaging beam and therapy beam. Ultrasound Med. Biol., 2005; 31: 401-413.
Moonen CT. Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging-guided focused ultrasound.
Clin Cancer Res. 2007 Jun 15;13(12):3482-9.
Ohmoto K, Tsuzuki M, Yamamoto S. Percutaneous microwave coagulation therapy with intraperitoneal saline infusion for hepatocellular carcinoma in the hepatic dome. Am. J. Roentgenol, 1999; 172: 65-66.
Ohmoto K, Yamamoto S. Percutaneous microwave coagulation therapy using artificial ascites. Am. J. Roentgenol, 2001; 176: 817-818.
Owen NR, Bailey MR, Hossack J, and Crum LA. A method to synchronize high-intensity, focused ultrasound with an arbitrary ultrasound imager. IEEE Trans Ultrason. Ferroelectr. Freq. Control., 2006; 53: 645-650.
Parker DL, Smith V, Sheldon P, et al. Temperature distribution measurements in two-dimensional NMR imaging. Med Phys 1983;10:321-5.
Peters RD, Hinks RS, Henkelman RM. Ex vivo tissue-type independence in proton-resonance frequency shift MR thermometry. Magn Reson Med 1998;40(3):454-459.
Raman SS, Lu DS, Vodopich DJ, Sayre J, Lassman C. Minimizing diaphragmatic injury during radio-frequency ablation: efficacy of subphrenic peritoneal saline injection in a porcine model. Radiology, 2002; 222: 819-823.
Roberts WW. Focused ultrasound ablation of renal and prostate cancer: current technology and future directions. Urol. Oncol., 2005; 23: 367-371.
Rabkin BA, Zderic V, Crum LA, Vaezy S. Biological and physical mechanisms of HIFU-induced hyperecho in ultrasound images. Ultrasound in Med. & Biol., Vol. 32, No. 11, pp. 1721–1729, 2006
Salomir R,Vimeux FC, de Zwart JA, et al. Hyperthermia by MR-guided focused ultrasound: accurate temperature control based on fast MRI and a physical model of local energy deposition and heat conduction. Magn ResonMed 2000;43:342-7.
Tachibana K. Emerging technologies in therapeutic ultrasound: thermal ablation to gene delivery. Hum Cell 2004; 17:7–15.
Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, and Nagawa H. Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound. Ultrasound Med. Biol., 2004; 30: 1419-1422.
ter Haar G, Sinnett D, Rivens I. High intensity focused ultrasound—a surgical technique for the treatment of discrete liver tumours. Phys Med Biol 1989;34:1743–1750.
Thuroff S, Chaussy C. High-intensity focused ultrasound: complications and adverse events. Mol. Urol., 2000;4:183-187;discussion 189.
Tung YS, Liu HL, Wu CC, Ju KC, Chen WS, Lin WL. Contrast-agent-enhanced ultrasound thermal ablation. Ultrasound Med. Biol., 2006; 32:1103-1110.
Vallancien G, Harouni M, Guillonneau B, Veillon B, Bougaran J. Ablation of superficial bladder tumors with focused extracorporeal pyrotherapy. Urology., 1996; 47: 204-207.
Vaezy S, Andrew M, Kaczkowski P, Crum L. Image-guided acoustic therapy. Annu. Rev. Biomed. Eng., 2001; 3: 375-390.
Vaezy S, Shi X, Martin RW, Chi E, Nelson PI, Bailey MR, and Crum LA. Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Ultrasound Med. Biol., 2001b; 27: 33-42.
Watkin NA, ter Haar GR, Rivens I. The intensity dependence of the site of maximal energy deposition in focused ultrasound surgery. Ultrasound Med. Biol., 1996; 22: 483-491.
Wu CC, Chen CN, Ho MC, Chen WC, Lee PH. Using the acoustic interference pattern to locate the focus of a HIFU transducer. Ultrasound Med. Biol., 2007 (in press)
Wu F, Chen WZ, Bai J, Zou JZ, Wang ZL, Zhu H, and Wang ZB. Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies. Ultrasound Med. Biol., 2002; 28: 535-542.
Wu F, Wang ZB, Chen WZ, Wang W, Gui Y, Zhang M, Zheng G, Zhou Y, Xu G, Li M, Zhang C, Ye H, and Feng R. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview. Ultrason. Sonochem., 2004; 11: 149-154.
Wu F, Wang ZB, and Cao YD, et al. A randomised clinical trial of highintensity focused ultrasound ablation for the treatment of patients with localised breast cancer. Br J Cancer 2003;89:2227–2233.
Wu F, Wang ZB, Cao YD, Zhu XQ, Zhu H, Chen WZ, Zou JZ. 'Wide local ablation' of localized breast cancer using high intensity focused ultrasound. J Surg Oncol. 2007 Aug 1;96(2):130-6.
Zhou XD, Ren XL, Zhang J, He GB, Zheng MJ, Tian X, Li L, Zhu T, Zhang M, Wang L, Luo W. Therapeutic response assessment of high intensity focused ultrasound therapy for uterine fibroid: utility of contrast-enhanced ultrasonography. Eur J Radiol. 2007 May;62(2):289-94.
Zderic V, Brayman AA, Sharar SR, Crum LA, Vaezy S. Microbubble-enhanced hemorrhage control using high intensity focused ultrasound. Ultrasonics., 2006; Dec;45(1-4):113-20.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24855-
dc.description.abstract高能聚焦超音波系統因非侵入式治療優點已廣泛利用腫瘤的治療上。非侵入治療方式對於病人的優點為不需要開刀,減少對健康組織的傷害。不過這樣的優點的挑戰在於如何監測整個燒灼治療過程。目前主要的監測方式為診斷式超音波及磁振掃描影像兩種方式。因為超音波為機械波的一種,因此在不介質中傳遞時會產生折射現象,所以實際的聚焦位置會與幾何的聚焦位置有所偏差,因此本論文希望利用新的方法輔助目前利用馬達精密定位幾何焦點的方式,利用診斷式超音波的缺點為高能聚焦超音波會對診斷式超音波影像產生干擾,因此必須將觀察的時間與治療的時間相互錯開,否則無法達到即時觀察的目標。不過本研究發現焦點位置的干擾信號最為強烈,因此可以利用這干擾訊號達到定位的效能。
另一個監測治療用超音波的方式為磁振掃描影像,目前主要的觀察為磁振掃描影像中分析燒灼區域溫度場。本論文利用另一磁振掃描影像序列,可用於反映蛋白質變異程度,進行燒灼區域的蛋白質變異程度的分析,並與溫度場分析及超音波影響觀察的燒灼區域比較分析結果。
高能聚焦超音波系統對於燒灼的其中一項缺點為會造成皮膚的燒傷,尤其是當燒灼目標接近皮膚時更容易造成。因此為了避免皮膚燒傷對病人產生不必要的疼痛,所以本論文利用人工腹水的方式避免皮膚燒傷,於動物實驗上得到良好的驗證。
高能聚焦超音波系統的另一項缺點為單一聚焦燒灼區域太小,因此欲完成腫瘤治療往往需要花費數小時,所以最近的研究皆利用微小氣泡即超音波顯影劑增加單一燒灼體積,一般而言超音波顯影劑可以增加治療區域體積為3至4倍。本論文探討不同濃度的超音波顯影劑對於燒灼焦斑體積的影響效果。此方向研究在仿體上的效果已於先前研究發現當超音波顯影劑濃度太高時,焦班會產生於仿體表面而不是在焦點位置,本論文針對動物實驗中,不同濃度超音波顯影劑對燒灼效果的影響。
關鍵詞:超音波顯影劑、高能聚焦超音波、磁造影引導、組織傷害、熱治療。
zh_TW
dc.description.abstractOne of the main problems encountered when using conventional B-mode ultrasound (US) for targeting and monitoring purposes during ablation therapies employing high-intensity focused US (HIFU) is the appearance of strong interference in the obtained diagnostic US images. In this study, instead of avoiding the interference noise, we demonstrate how we used it to locate the focus of the HIFU transducer in both in-vitro tissue-mimicking phantoms and an ex-vivo tissue block. We found that when the B-mode image plane coincided with the HIFU focal plane, the interference noise was maximally converged and enhanced compared with the off-focus situations. Stronger interference noise was recorded when the angle between the US image plane and the HIFU axis was less than or equal to 90. By intentionally creating a target (group of bubbles) at the 3.5-MHz HIFU focus (7.1 mm in length and 0.7 mm in diameter), the position of the maximal noise convergence coincided well with the target. The differenced between the predicted focus and the actual one (bubbles) on x and z axes (axes perpendicular to the HIFU central axis, Fig. 1) were both about 0.9 mm. For y axis (HIFU central axis), the precision was within 1.0 mm. For tissue block ablation, the interference noise concentrated at the position of maximal heating of the HIFU-induced lesions. The proposed method can also be used to predict the position of the HIFU focus by using a low intensity output scheme before permanent changes in the target tissue were made.
The utilization of magnetic resonance imaging (MRI) for HIFU not only real-time monitoring of HIFU ablation but also allows the evaluation of HIFU-induced lesions after treatment. Our study proposed an interleaved dual gradient-echo technique to simultaneously estimate temperature changes and magnetization transfer (MT) contrast, reflecting respectively heating conditions and degree of tissue damage during HIFU treatment.
If the target hepatocellular carcinoma (HCC) is close to the surface of the liver, HIFU may overheat intervening tissue such as the diaphragm, abdominal wall, and skin. To avoid this complication, we propose inducing artificial ascites in the abdominal cavity so as to separate the liver from the peritoneum, and to serve as a heat sink to cool overlying structures and thereby avoid inducing permanent damage. Target tissue that was 10 mm below the liver surface was ablated in 12 New Zealand White rabbits: 6 in the experimental group and 6 in the control group. Artificial ascites was established in the experimental group by injecting normal saline into the abdominal cavity until the pressure reached 150 mmH2O. Artificial ascites not only reduced the probability and extent of thermal damage to intervening structures (P<0.05), but also had no adverse affect on the efficacy of HIFU ablation (P>0.05).
One of the major disadvantages of HIFU ablation was the small lesion size and thus the long treatment duration. In this study, the effect of using ultrasound contrast agent (UCA) to enlarge the lesion size was studied both in vitro and in vivo. The mechanisms of lesion formation in the presence of UCA microbubbles were studied in vitro and in vivo.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:57:21Z (GMT). No. of bitstreams: 1
ntu-96-D92522001-1.pdf: 6329780 bytes, checksum: d7b456c1e68d92dbfb70395c86e5dd7d (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents致謝 I
中 文 摘 要 II
英 文 摘 要 III
Table of Contents VI
List of Figures IX
List of Tables XII
Chapter 1: Introduction 1
1.1 Overview of the High Intensity Focus Ultrasound 1
1.2. Goals and Organization of this Thesis 5
Chapter 2: Using the Acoustic Interference Pattern To Locate The Focus of a HIFU Transducer 7
2.1. Materials and Method 8
2.1.1. Experimental setup 8
2.1.2. Experimental series 9
2.2. Results 14
2.2.1. Experiment 1: 14
2.2.2. Experiment 2: 16
2.2.3. Experiment 3: 19
2.2.4. Experiment 4:. 21
2.3 Discussion 22
Chapter 3: Monitoring of Temperature and protein denaturation for MR guided HIFU Treatment 30
3.1. Materials and Methods
3.1.1 Experimental Set-up 30
3.1.2 Data Processing 30
3.1.3 Thermal Dose Calculation 32
3.1.4 Noise Reduction 33
3.1.5 In-Vitro Experiments 34
3.1.6 In-Vivo Experiments 37
3.2. Results 38
3.2.1. Noise Reduction 38
3.2.2. In-Vitro Experiments 40
3.2.3. In-Vivo Experiments 53
3.3 Discussion 58
Chapter 4: Minimizing Abdominal Wall Damage during HIFU Ablation by Inducing Artificial Ascites 60
4.1. Materials and Method 60
4.1.1. Experimental setup 60
4.1.2. Animal model 62
4.1.3. Experimental procedures 64
4.1.4. Data analysis 65
4.2. Results 65
4.3 Discussion 68
Chapter 5: In-vitro and In-vivo Investigation of Contrast-Agent Enhanced Ultrasound Thermal Ablation 71
5.1. Materials and methods 71
5.1.1. HIFU System 71
5.1.2. Experimental setup - Ablation on the Pig Kidney 72
5.1.3. Animal model 72
5.2. Results 74
5.3. Discussion 76
Chapter 6: Conclusion 78
Chapter 7: Future Work 81
Chapter 8: References 82
List of published papers 91
dc.language.isozh-TW
dc.subject熱治療zh_TW
dc.subject高能聚焦超音波zh_TW
dc.subject磁造影引導zh_TW
dc.subject組織傷害zh_TW
dc.subject超音波顯影劑zh_TW
dc.subjectablationen
dc.subjectultrasound contrast agenten
dc.subjecthigh-intensity focused ultrasounden
dc.subjectMR guideden
dc.subjecttissue damageen
dc.subjectthermal therapyen
dc.subjectinterferenceen
dc.title高能聚焦超音波之燒灼技術改良:即時超音波焦點定位法、蛋白質變異監測、避免表淺組織燒傷,與利用超音波顯影劑增大燒灼焦斑zh_TW
dc.titleNovel Strategies to Improve HIFU Therapy Efficiency: Real-time HIFU Focus Localization, Protein Denature Monitoring, Minimizing Thermal Injuries of Superficial Structures, and Enlarging Ablation Lesions Using Ultrasound Contrast Agenten
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree博士
dc.contributor.coadvisor陳文翔
dc.contributor.oralexamcommittee曾文毅,葉秩光,劉浩澧
dc.subject.keyword超音波顯影劑,高能聚焦超音波,磁造影引導,組織傷害,熱治療,zh_TW
dc.subject.keywordultrasound contrast agent,high-intensity focused ultrasound,MR guided,tissue damage,thermal therapy,interference,ablation,en
dc.relation.page90
dc.rights.note未授權
dc.date.accepted2007-11-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
6.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved