請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24831完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 馮哲川 | |
| dc.contributor.author | Yi-Zhe Huang | en |
| dc.contributor.author | 黃一哲 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:57:00Z | - |
| dc.date.copyright | 2008-01-30 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-01-18 | |
| dc.identifier.citation | 1.1 S. J. Pearton, D. P. Norton, K. Ip, and Y. W. Heo T. Steiner, J. Vac. Sci. Technol. B. 22.3 (2004).
1.2 M. Wraback, H. Shen, S. Liang, C. R. Gorla, and Y. Lu, Appl. Phys. Lett. 74, 507 (1999). 1.3 J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, Appl. Phys. Lett. 78, 2842 (2001). 1.4 S. O. Kucheyev, J. E. Bradley, J. S. Williams, C. Jagadish, and M. V. Swain, Appl. Phys. Lett. 80, 956 (2002). 1.5 D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999). 1.6 S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku and Y. Sugimoto, Jpn. J. Appl. Phys. 35, L217 (1996). 1.7 I. Akasaki and H. Amano, Jpn. J. Appl. Phys. 36, 5393 (1996). 1.8 S. Ito, J. Ohta, H. Fujioka and M. Oshima, Appl. Surf. Sci. 197/198, 384 (2002). 1.9 J. Ohta, H. Fujioka, H. Takahashi and M. Oshima, Phys. Status Solidi A. 188, 497 (2001). 1.10 H. Takahashi, J. Ohta, H. Fujioka and M. Oshima, Thin Solid Films. 407, 114 (2002). 1.11 T. Matsuoka, N. Yoshimoto, T. Sasaki and A. Katsui, J. Electron. Mater. 21, 157 (1992). 1.12 S. Ito, H. Fujioka, J. Ohta, H. Takahashi and M. Oshima, Phys. Status Solidi C. 0, 192 (2002). 1.13 J. Ohta, H. Fujioka, M. Kawano and M. Oshima, Phys. Status Solidi C. 0, 554 (2002). 1.14 J. Ohta, H. Fujioka, M. Sumiya, H. Koinuma and M. Oshima, J. Cryst. Growth. 225, 73 (2001). 1.15 F. Hamdani, A. Botchkarev, W. Kim, H. Morkoc, M. Yeadon, J. M. Gibson, S.-C. Y. Tsen, D. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Mitchel and P. Hemenger: Appl. Phys. Lett. 70, 467 (1997). 1.16 H. Morkoc, J. Mater. Sci. Mater. Electron 12, 677 (2001). 1.17 R.C. Tu, C.J. Tun, J.K. Sheu, W.H. Kuo, T.C. Wang, C.E. Tsai, J.T. Hsu, J. Chi, G.C. Chi, IEEE Electron. Dev. Lett. 24, 206 (2003). 1.18 L.W. Wu, S.J. Chang, Y.K. Su, R.W. Chuang, Y.P. Hsu, C.H. Kuo, W.C. Lai, T.C. Wen, J.M. Tsai, J.K. Sheu, Solid State Electron. 47, 2027 (2003). 1.19 M.S. Oh, M.K. Kwon, I.K. Park, S.H. Baek, S.J. Park, S.H. Lee, J.J. Jung, J. Crystal Growth 289, 107 (2006). 1.20 S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukail, Jpn. J. Appl. Phys., Part 2 34, L1332 (1995). 1.21 S. Nakamura, M. Senoh, S.I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, Jpn. J. Appl. Phys. 35, L74 (1996). 1.22 S. Nakamura, et al., Jpn. J. Appl. Phys. 36, L1568 (1997). 1.23 S. Nakamura, et al., Appl. Phys. Lett. 72, 2014 (1998). 1.24 http://www.nec.co.jp/rd/Eng/innovative/E1/03.html 1.25 Y.S. Han, J.K. Shin, S.T. Kim, J. Appl. Phys. 90, 5731 (2001). 1.26 S. Iijima, Nature 354, 56 (1991). 1.27 R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press (ICP), Imperial College London, (1998). 1.28 M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381, 678 (1996). 1.29 N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992). 1.30 A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, P. Nordlander, D.T. Colbert, R.E. Smalley, Science 269, 1550 (1995). 1.31 W.A. Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995). 1.32 P.G. Collins, A. Zettl, Appl. Phys. Lett. 69, 1969 (1996). 1.33 Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang, A.R. Krauss, Appl. Phys. Lett. 70, 3308 (1997). 1.34 J.-M. Bonard, J.-P. Salvetat, T. Stockli, W.A. de Heer, L. Forro, A. Chatelain, Appl. Phys. Lett. 73, 918 (1998). 1.35 S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Science 283, 512 (1999). 1.36 Saito R.,Fujita M.,Dresselhaus G. and Dresselhaus.S., Appl Phys Lett 68,1579 (1992). 1.37 Saito, R., Dresselhaus, G, and Dresselhaus, M S, Physical properties of carbon nanotubes. Imperial college press London, (1998) 1.38 Bonard, J.M., Salvetat, J P, Stockli, T, Forro, L, and Chatelain, A, Field emission from carbon nanotubes: perspectives for applications and clues to the emission mechanism. Applied-Physics-A (Materials Science Processing) (Germany), A69, 245, (1999). 1.39 Gao, R., Pan, Z, and Wang, Z L, Work function at the tips of multiwalled carbon nanotubes. Applied-Physics-Letters (USA), 78, 1757, (2001). 1.40 Groening, O., Kuettel, O M, Emmenegger, C, Groening, P, and Schlapbach, L, Field emission properties of carbon nanotubes. Journal-of-Vacuum-Science-Technology-B (Microelectronics and Nanometer Structures)(USA), 18, 665, (2000). 1.41 Fransen, M.J., van Rooy, T L, and Kruit, P, Field emission energy distributions from individual multiwalled carbon nanotubes. Applied-Surface-Science (Netherlands), 146, 312, (1999). 1.42 W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, Appl. Phys. Lett. 75, 3129 (1999) 1.43 Niels de Jonge, Yann Lamy, Koen Schoots, Tjerk H. Oosterkamp, Nature 420, 393 (2002) 1.44 A. P. Graham, G. S. Duesberg, R. Seidel, M. Liebau, E. Unger, F. Kreupl and W. Honlein, Diamond Relat. Mater. 13, 1296 (2004). 2.1 http://inventors.about.com/od/pstartinventions/a/Photoluminescen.html 2.2 Joseph H. Simmons and Kelly S. Potter, “Optical Materials”, San Diego, Academic Press, (2000). 2.3 A. H. Kitai, “Solid State Luminescence”, New York, Chapman & Hall, (1993). 2.4 Klaus D. Mielenz, “Optical Radiation Measurements”, New York, Academic Press, (1982). 2.5 Goldberg, “Luminescence of Inorganic Solids”, New York, Academic Press, (1966). 2.6 Bastard, Gerald, “Wave Mechanics applied to Semiconductor Heterostructures”, New York, Halsted Press, (1988). 2.7 J. Wagner, Phys. Rev. B4, 2002(1984). 2.8 Herman, Bimberg and Christen, J. Appl. Phys. 70 (1991): R1. 2.9 http://www.geosci.ipfw.edu/XRD/techniqueinformation.html 2.10 Ian Farnan, IB Mineral Sciences Module B: Transport Properties. 2.11 http://en.wikipedia.org/wiki/Raman_spectroscopy 2.12 http://en.wikipedia.org/wiki/Raman_scattering 2.13 Harris and Bertolucci (1989). Symmetry and Spectroscopy. Dover Publications. 2.14 R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical properties of carbon nanotubes (Imperial College Press, London, 1998). 2.15 Singh C, Shaffer MSP, Kinloch IA, Windle AH. Production of aligned carbon nanotubes by the CVD injection method. Physics B, 323 (1–4):339–40 (2002). 2.16 E.F. Kukovitsky, S.G. L’vov, N.A. Sainov, Chemical Physics Letters 317, 65–70 (2000) 2.17 R.T.K. Baker, J.J. Chludzinski Jr., N.S. Dudash, A.J. Simoens, Carbon 21, 463. (1983) 2.18 Zhengsong Lou, Changle Chen, Qianwang Chen, Jin Gao, Letters to the Editor / Carbon, 43 1084–1114 (2005). 2.19 Chih Ming Hsua, Chao Hsun Linb, Hong Jen Laia, Cheng Tzu Kuo, Thin Solid Films, 471 140– 144 (2005). 2.20 J.H. Ting, C.C. Chang, S.L. Chen, D.S. Lu, C.Y. Kung, F.Y. Huang, Thin Solid Films,496 299-305 (2006). 2.21 W.A. Heer, A. Chatelain, D. Ugarte, Science 270, 1179 (1995). 3.1 R. Paszkiewicz, B. Paszkiewicz, R. Korbutowicz, J. kozlowski,M. Tlaczala, L. Bryja, R. Kudrawiec, J. Miiewicz, Cryst. Res. Technol. 36, 971–977 (2001). 3.2 Ciorga, M., Bryja, L., Misiewicz J., Paszkiewicz, R., Korbutowicz, R., Panek, M., Paszkiewicz, B., Tlaczala, M.: Mater. Sci. & Engg. B. 59, 16 (1999). 3.3 Kozlowski, J., Paszkiewicz, R., Korbutowicz, R., Panek, M., Paszkeiwicz, B., Tlaczala, M.: MRS Internet J. Nitride Semicond. Res. 3, 27 (1998). 3.4 Nola Li, Eun-Hyun Park, Yong Huang, Shenjie Wang, Adriana Valencia, Bill Nemeth, Jeff Nause, and Ian Ferguson, Proc. of SPIE, 6337, 63370Z (2006) 3.5 X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, Appl. Phys. Lett. 84, 2268 (2004). 3.6 G. Namkoong, S. Burnham, K. Lee, E. Trybus, W. A. Doolittle, M. Losurdo, P. Capezzuto, G. Bruno, B. Nemeth, and J. Nause, Appl. Phys. Lett. 87, 184104-1 (2005). 3.7 A. Kobayashi, J. Ohta, and H. Fujioka, Appl. Phys. Lett. 99, 123513 (2004). 3.8 R. Paszkiewicz, B. Paszkiewicz, R. Korbutowicz, J. Kozlowski, M. Tlaczala, L. Bryja, R. Kudrawiec, and J. Misiewicz, Cryst. Res. Technol., 36, 971, (2001). 3.9 E. S. Hellman, D. N. E. Buchanan, D. Wiesmann, and I. Brener, MRS Internet J. Nitride Semicond. Res. 1, 16 , (1996). 3.10 M. Liu, A. H. Kitai, and P. Mascher, J. Lumin. 54, 35 (1992). 3.11 C.A. Arguello, D.L. Rousseau, and S.P.S. Porto, Phys. Rev. B 181, 1351 (1969). 3.12 Zhou Xin, Gu Shulin, Zhu Shunming, Ye Jiandong, Liu Wei Liu Songmin, Hu Liqun, Zheng Youdou, Zhang Rong and Shi Yi, Chinese Journal of Semiconductors, 27, 249 (2006). 3.13 Nola Li, Shen-Jie Wang, Eun-Hyun Park, Zhe Chuan Feng, Adriana Valencia, Jeff Nause, Chris Summers, Ian Ferguson, Proc. of SPIE, 6669, 66690X (2007). 3.14 Jakschik, S.a.e.a., Thin Solid Films, 425, 216 (2003). 3.15 Ritala, M.a.M.L., Handbook of Thin Film Materials - Deposition and Processing of Thin Films. ed. H.S. Nalwa. 1, Academic Press. (2002). 3.16 I. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996). 3.17 D. Doppalapudi, S. N. Basu, K. F. Ludwig Jr., and T. D. Moustakas, J. Appl. Phys. 84, 1389 (1998). 3.18 N. A. EI-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, Appl. Phys. Lett. 72, 40 (1998). 3.19 Z. C. Feng, T. R. Yang, R. Liu, and T. S. A. Wee, Mater. Sci. in Semi. Proce. 5, 39 (2002). 3.20 A. Tabata, L. K. Teles, L. M. R. Scolfaro, J. R. Leite, A. Kharchenko, T. Frey, D. J. As, D. Schikora, K.Lischka, J. Furthmuller, and F. Bechstedt, Appl. Phys. Lett. 80, 769 (2002). 3.21 S. Y. Karpov, MRS Internet J. Nitride Semicond. Res. 3, 16 (1998). 3.22 S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi and E. Calleja, J. Appl. Phys. 98, 013511 (2005) 3.23 S. Nakamura, S. Pearton and G. Fasol, “The Blue Laser Diode – the complete story”, Springer, Berlin (2000). 3.24 Nakamura, S., J. Cryst. Growth, 145, 911 (1994). 4.1 L. Nilsson, O. Groning, C. Emmenegger, et al., Appl. Phys. Lett. 76, 2071 (2000). 4.2 J.-M. Bonard, N. Weiss, H. Kind, et al., Adv. Mater. 13, 184 (2001). 4.3 L. Nilsson, O. Groぴning, P. Groぴning, O. Kuぴ ttel, L. Schlapbach, J. Appl. Phys. 90, 768 (2001). 4.4 J.-M. Bonard, R. Kurt, C. Klinke, Chem. Phys. Lett. 343, 21 (2001). 4.5 K.A. Dean, B.R. Chalamala, Appl. Phys. Lett. 75 (19), 3017 (1999). 4.6 L. Nilsson, O. Groning, P. Groning, O. ぴ ぴ Kuぴ ttel, L. Schlapbach, Thin Solid Films 383, 78 (2001). 4.7 O. Groぴning, O.M. Kuぴ ttel, P. Groぴning, L. Schlapbach, J. Vacuum Sci. Technol. B 18 (3), 685 (2000). 4.8 Bart Van Zeghbroeck, Field emission - Fowler-Nordheim tunneling, Principles of Semiconductor Devices, (1997). 4.9 Niels de Jonge, Myriam Allioux, Maya Doytcheva, Monja Kaiser, Appl. Phys. Lett. 85, 1607-1609 (2004). 4.10 R. C. Smith, D. C. Cox, and S. R. P. Silva, Appl. Phys. Lett. 87, 103112 (2005) 4.11 http://en.wikipedia.org/wiki/Fowler-Nordheim_equation 4.12 Hiura H, Ebbesen TW, Tanigaki K, Takahashi H, Chem Phys Lett, 202, 509 (1993). 4.13 Shao M, Li Q, Wu J, Xie B, Zhang S, Qian Y, Carbon, 40, 2961 (2002). 4.14 Li W, Zhang H, Wang C, Zhang Y, Xu L, Zhu K, Appl Phys Lett,70, 2684 (1997). 4.15 Liu L, Qin Y, Guo ZX, Zhu D, Carbon ,41, 331, (2003). 4.16 Peter J.F. Harris , Carbon Nanotubes and Related Structures, Cambridge University Press, Cambridge (1999). 4.17 Ando Y, Zhao X, Shimoyama H. Carbon, 39, 569 (2001). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24831 | - |
| dc.description.abstract | 由於有相近的晶格及層序匹配,氧化鋅被考慮用來當作三族氮化物磊晶成長的基板材料。因此我們的工作包含了使用有機金屬化學氣相沈積磊晶技術在晶格匹配的氧化鋅基板上成長氮化銦鎵及氮化鎵磊晶層。因為在成長氮化鎵基底材料元件上,有機金屬化學氣相沈積磊晶為一個主要的生長技術,因此在其成長氧化鋅基板上有需要在一全面完整的探索。然而,在使用有機金屬化學氣相沈積磊晶在氧化鋅上成長氮化鎵仍有數個數個議題待解決。其中一個是氧化鋅基板的熱穩定性,鋅原子會向外擴散到氮化鎵層並且氫氣會背向蝕刻氧化鋅基板,這會造成氮化鎵較不佳的品質。高解析度X光繞射量測可確認出在氧化鋅上成長的氮化銦鎵及氮化鎵薄膜。而透過室溫和變溫的光激發螢光檢測,我們可得到樣品的光學及結構特性。另外,為了避免鋅及氧原子擴散到磊晶層,我們在氧化鋅上加上一層氧化鋁的過渡層。高解析度X光繞射量測顯示出我們成功的在氧化鋅基板上的氧化鋁過渡層上成長了單晶的氮化銦鎵薄膜。
而我論文的第二個部份,是奈米碳管材料的研究。研究的主要課題是討論由微波電漿化學氣相沉積法成長之奈米碳管的場發射性質。我們的樣品是在矽基板有厚度10奈米的阻障層及厚度7奈米的鎳催化劑層,鎳層再經過電漿處理後,會轉變成分離的島狀物。奈米碳管就是藉微波電漿化學氣相沉積成長在覆蓋有鎳層的區域上。較佳的奈米碳管薄膜具有非常低的場發射門檻電場,門檻電場在電流密度每平方公分10微安培下大約是每微米0.088 伏特。我們發現微波電漿化學氣相沉積的製程參數對奈米碳館的場發射性質有著重要的影響,其中包括甲烷的流率及製程的微波功率。掃瞄式電子顯微鏡的觀察則顯示出了中空,且類似竹子結構的多壁奈米碳管。而場發射量測和F-N分析則可得到奈米碳管的門檻電場、啟始電場、及場增強因子。最後經由拉曼光譜的測量我們可得到奈米碳管的石墨化程度。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:57:00Z (GMT). No. of bitstreams: 1 ntu-97-J94941024-1.pdf: 7278194 bytes, checksum: 3d92d2645b591196d65aca4dff3070ca (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 口試委員會審定書...........................................I
致謝......................................................II 摘要.....................................................III Abstract...................................................V Content..................................................VII Lists of Figures...........................................X Lists of Tables..........................................XVI Chapter 1 Introduction 1.1.Introduction of InGaN, GaN, and ZnO....................1 1.2.Nature and applications of carbon nanotubes (CNTs).....3 1.2.1.Motivation...........................................3 1.2.2.Overview of Carbon Nanotubes.........................4 1.2.3.Applications of Carbon Nanotubes.....................8 Reference.................................................12 Chapter 2 Theoretical Background and Experimental Details 2.1.Optical measurements of InGaN/GaN thin films on ZnO substrate.................................................17 2.1.1.Photoluminescence (PL)..............................17 2.1.1.1.Theory of PL......................................17 2.1.1.2.PL experiment setup...............................21 2.1.2.X-ray diffraction (XRD).............................22 2.1.3.Raman spectroscopy..................................26 2.1.4.Scanning electron microscope (SEM)..................28 2.2.The growth and the measurement of CNTs................30 2.2.1.Growth of Carbon Nanotubes..........................30 2.2.1.1.Structure of CNTs.................................30 2.2.1.2.Growth mechanism of CNTs..........................32 2.2.1.3.Synthesize CNTs by Microwave plasma-enhanced chemical vapor deposition (MPCVD).........................35 2.2.2.Field Emission Measurement of Carbon Nanotubes......39 2.2.2.1.Field Emission basics.............................39 2.2.2.2.Field Emission experiment setup...................40 Reference.................................................42 Chapter 3 Growth of InGaN/GaN thin films on ZnO substrate 3.1.Growth processing survey..............................44 3.2.Analysis of GaN on ZnO................................48 3.3.Analysis of InGaN/GaN/Al2O3(atomic layer deposition) on ZnO.......................................................55 3.4.Conclusion............................................63 References................................................64 Chapter 4 Field emission properties of CNTs 4.1.The sample information of CNTs........................67 4.2.Scanning electron microscope (SEM) measurement of the CNTs......................................................69 4.3.Field emission (FE) results and analysis..............80 4.3.1.The influences of the different densities of catalytic pattern.........................................85 4.3.2.The influences of the CH4 flow ratio................94 4.3.3.The influences of the MPCVD microwave power........103 4.4.Raman spectroscopy of CNTs...........................112 4.5.Conclusion...........................................123 References...............................................124 Appendix Appendix I Photoreflectance (PR).........................126 Appendix II Additional photoluminescence measurement....132 | |
| dc.language.iso | en | |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 氧化鋅基板 | zh_TW |
| dc.subject | 場發射 | zh_TW |
| dc.subject | field emission | en |
| dc.subject | carbon nanotubes | en |
| dc.subject | ZnO substrate | en |
| dc.title | 在氧化鋅上成長氮化鎵及氮化銦鎵之光學量測與分析及奈米碳管之場發射性質研究 | zh_TW |
| dc.title | Optical Measurements and Analyses of InGaN/GaN on ZnO and Field Emission Studies of Carbon Nanotubes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 毛明華,賴志明 | |
| dc.subject.keyword | 氧化鋅基板,場發射,奈米碳管, | zh_TW |
| dc.subject.keyword | ZnO substrate,field emission,carbon nanotubes, | en |
| dc.relation.page | 125 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2008-01-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf 未授權公開取用 | 7.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
