Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24775
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴凌平
dc.contributor.authorYen-Lin Lien
dc.contributor.author李彥伶zh_TW
dc.date.accessioned2021-06-08T05:56:18Z-
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-08-08
dc.identifier.citation1. International Diabetes Federation. Diabetes Atlas. 3rd ed. Brussels, Belgium: International Diabetes Federation; 2006.
2. Chan JC, Malik V, Jia W, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. May 27 2009;301(20):2129-2140.
3. 行政院衛生署98年度死因統計完整統計表. http://www.doh.gov.tw/CHT2006/DM/DM2_2_p02.aspx?class_no=440&now_fod_list_no=11397&level_no=-1&doc_no=76512.
4. Bureau of Health Promotion DoH, R.O.C (Taiwan): Diabetes Prevention and Future in Taiwan. Bureau of Health Promotion DoH, R.O.C(Taiwan), Ed., 2003.
5. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2007; 30: S42–S47.
6. Winder WW, Hardie DG. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol. Jul 1999;277:E1-10.
7. Nelson BA, Robinson KA, Buse MG. High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes. Diabetes. Jun 2000;49(6):981-991.
8. Lin CL, Lin JK. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol Nutr Food Res. Aug 2008;52(8):930-939.
9. Bailey CJ. Biguanides and NIDDM. Diabetes Care. Jun 1992;15(6):755-772.
10. Wu MS, Johnston P, Sheu WH, et al. Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care. Jan 1990;13(1):1-8.
11. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. Oct 2001;108(8):1167-1174.
12. Petersen KF, Krssak M, Inzucchi S, Cline GW, Dufour S, Shulman GI. Mechanism of troglitazone action in type 2 diabetes. Diabetes. May 2000;49(5):827-831.
13. Kolak M, Yki-Jarvinen H, Kannisto K, et al. Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J Clin Endocrinol Metab. Feb 2007;92(2):720-724.
14. Aguilar-Bryan L, Nichols CG, Wechsler SW, et al. Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science. Apr 21 1995;268(5209):423-426.
15. Fuhlendorff J, Rorsman P, Kofod H, et al. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes. Mar 1998;47(3):345-351.
16. Bruton JD, Lemmens R, Shi CL, et al. Ryanodine receptors of pancreatic beta-cells mediate a distinct context-dependent signal for insulin secretion. FASEB J. Feb 2003;17(2):301-303.
17. Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol. Apr 2002;3(4):267-277.
18. Kanai F, Ito K, Todaka M, et al. Insulin-stimulated GLUT4 translocation is relevant to the phosphorylation of IRS-1 and the activity of PI3-kinase. Biochem Biophys Res Commun. Sep 15 1993;195(2):762-768.
19. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. Dec 21-28 1995;378(6559):785-789.
20. Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology. Dec 2003;144(12):5179-5183.
21. Towler MC, Hardie DG. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. Feb 16 2007;100(3):328-341.
22. Birnbaum MJ. Activating AMP-activated protein kinase without AMP. Mol Cell. Aug 5 2005;19(3):289-290.
23. Hawley SA, Pan DA, Mustard KJ, et al. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. Jul 2005;2(1):9-19.
24. Hardie DG. The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci. Nov 1 2004;117(Pt 23):5479-5487.
25. Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW. 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes. Aug 1999;48(8):1667-1671.
26. Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ. Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Physiol Endocrinol Metab. Jul 2006;291(1):E182-189.
27. Lochhead PA, Salt IP, Walker KS, Hardie DG, Sutherland C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes. Jun 2000;49(6):896-903.
28. Carling D. The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci. Jan 2004;29(1):18-24.
29. da Silva Xavier G, Leclerc I, Varadi A, Tsuboi T, Moule SK, Rutter GA. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression. Biochem J. May 1 2003;371(Pt 3):761-774.
30. Sud'ina GF, Mirzoeva OK, Pushkareva MA, Korshunova GA, Sumbatyan NV, Varfolomeev SD. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett. Aug 23 1993;329(1-2):21-24.
31. Chen YJ, Shiao MS, Wang SY. The antioxidant caffeic acid phenethyl ester induces apoptosis associated with selective scavenging of hydrogen peroxide in human leukemic HL-60 cells. Anticancer Drugs. Feb 2001;12(2):143-149.
32. Fesen MR, Pommier Y, Leteurtre F, Hiroguchi S, Yung J, Kohn KW. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds. Biochem Pharmacol. Aug 3 1994;48(3):595-608.
33. Lee ES, Uhm KO, Lee YM, et al. CAPE (caffeic acid phenethyl ester) stimulates glucose uptake through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. Biochem Biophys Res Commun. Oct 5 2007;361(4):854-858.
34. Postic C, Dentin R, Girard J. Role of the liver in the control of carbohydrate and lipid homeostasis. Diabetes Metab. Nov 2004;30(5):398-408.
35. Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. Apr 2007;5(4):237-252.
36. Fujii N, Jessen N, Goodyear LJ. AMP-activated protein kinase and the regulation of glucose transport. Am J Physiol Endocrinol Metab. Nov 2006;291(5):E867-877.
37. Zhang L, He H, Balschi JA. Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration. Am J Physiol Heart Circ Physiol. Jul 2007;293(1):H457-466.
38. Koshy S, Alizadeh P, Timchenko LT, Beeton C. Quantitative measurement of GLUT4 translocation to the plasma membrane by flow cytometry. J Vis Exp. 2010(45).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24775-
dc.description.abstract背景:CAPE是蜂膠裡的主要成分之一,36-25A與CAPE為結構類似物,差別在於36-25A為具amide結構之caffeic acid衍生物。在骨骼肌細胞CAPE已被證實可促進葡萄糖的吸收,本篇實驗則研究在肝臟細胞中CAPE及其結構類似物36-25A是否也會影響能量的調控。
實驗方法與結果:本實驗使用HepG2人類肝癌細胞株作為細胞模式探討具降血糖活性之化合物CAPE及36-25A的作用機制,並以流式細胞儀分析CAPE及36-25A對細胞葡萄糖吸收作用之改變,再進一步以西方點墨法分析相關的訊息傳遞物質,另外也量測細胞內的ATP及肝醣含量以分析CAPE及36-25A對能量調控的影響。實驗結果發現CAPE及36-25A可以促進HepG2細胞對葡萄糖的吸收及增加HepG2細胞的肝醣含量。在HepG2細胞給予不同濃度的CAPE及36-25A刺激15分鐘後,於0.03 μM濃度下CAPE可顯著活化AMPK,而36-25A則從0.3 μM濃度下才可活化AMPK。從給予HepG2細胞不同給藥時間的實驗中則發現CAPE於給藥5分鐘後即可顯著活化AMPK,而36-25A則於給藥15分鐘後才能顯著活化AMPK,顯示與CAPE相比36-25A活化AMPK需較高的濃度及較長的時間。在活化Akt的部分則發現CAPE同樣於0.03 μM濃度下可顯著活化Akt,並於給藥5分鐘後即可活化Akt,而36-25A也於0.03 μM濃度下就明顯活化Akt,且同樣於給藥5分鐘後即可顯著活化Akt,顯示CAPE與36-25A在Akt調控路徑上的作用無明顯差異。進一步探討CAPE與36-25A對細胞ATP含量之影響,由實驗結果發現給予HepG2細胞不同濃度的CAPE及36-25A刺激15分鐘,可顯著降低細胞內ATP含量,且在時間點實驗中發現細胞內ATP的含量會隨著給藥時間拉長而增加,但仍都低於未給藥的對照組,顯示CAPE及36-25A活化AMPK後可能會抑制ATP的消耗並促進ATP的合成。此外CAPE及36-25A促進HepG2細胞對葡萄糖的吸收作用及增加HepG2細胞肝醣合成的作用皆會被compound C及Akt inhibitor所抑制,但compound C及Akt inhibitor不會影響CAPE及36-25A降低細胞內ATP含量的作用,顯示CAPE及36-25A可能是經由降低HepG2細胞內ATP的含量來活化AMPK及影響Akt的調控路徑,促進GLUT4轉移到細胞膜上,增加細胞對葡萄糖的吸收及促進細胞合成肝醣。

結論:總結本篇實驗結果,我們發現具降血糖活性之化合物CAPE及36-25A其增加HepG2細胞對葡萄糖的吸收之有效濃度與其活化AMPK及Akt等訊息傳遞物質之有效濃度相關,也證實CAPE及36-25A會經由降低細胞內ATP的含量來活化AMPK,但CAPE及36-25A如何降低細胞內ATP的含量與如何活化Akt等詳細的作用機制,及活化AMPK與Akt之間彼此如何相互調控仍有待更進一步的研究。
zh_TW
dc.description.abstractBackground: Caffeic aicd phenethyl ester (CAPE) is an active component of propolis, while 36-25A is an analog to CAPE, that 36-25A is a caffeic acid amide derivative. A previous study revealed that CAPE can induce glucose uptake in skeletal muscle cells, so in this study we are interested in whether CAPE and its analog 36-25A are involved in the energy homeostasis in hepatic cells.
Methods and Results: In this study, we used HepG2 human liver hepatocellular carcinoma cell line as cell models to investigate the mechanism of CAPE and 36-25A which possesses plasma glucose lowing activities. We use FLOW as a detector for glucose uptake effects induced by CAPE and 36-25A, and we perform the Western blot for identifying the related signaling pathways, furthermore, we measure the cellular ATP level and cellular glycogen content as an indicator for energy balance. The results showed that CAPE and 36-25A can induce glucose uptake in HepG2 cells and increase the cellular glycogen content in HepG2 cells. Giving different concentrations of CAPE and 36-25A for 15 minutes, we find that 0.03 μM CAPE significantly activates AMPK while 0.3 μM 36-25A activates AMPK. In the time course effects experiments we figure out that CAPE activate AMPK after dosing for 5 minutes while 36-25A induces HepG2 cells AMPK activation at 15 minutes. These data means that comparing to CAPE, 36-25A activate AMPK in a higher concentration and with a delayed time in onset of effects. Talking about activation of Akt we can see that CAPE and 36-25A activate Akt in the same concentration (0.03 μM) and in the same time manners (5 minutes after dosing). There is no difference in activating Akt between CAPE and 36-25A.
Next, we further examined the influence of cellular ATP level caused by CAPE and 36-25A. The results shows that different concentration of CAPE and 36-25A giving for 15 minutes can significantly lower the cellular ATP level in HepG2 cells. Although there is an elevation in cellular ATP level as the incubation time prolongs, the ATP levels are still lower than control groups. We explain that the elevation is due to the activation of AMPK and which then inhibits the ATP consumption and induces the ATP synthesis. Besides, enhanced glucose uptake and glycogen synthesis caused by CAPE and 36-25A in HepG2 cells can be inhibited by compound C and Akt inhibitor. However, compound C and Akt inhibitors cannot influence the cellular ATP level lowered by CAPE and 36-25A, indicating that CAPE and 36-25A may decrease the cellular ATP level as an upstream to activate AMPK and also change Akt signaling pathway to trigger the translocation of GLUT4 to the plasma membrane and increase cellular glucose uptake and glycogen content.
Conclusion: From the results of this study, we discover that CAPE and 36-25A can increase glucose uptake in HepG2 cells which is related to the activation of AMPK and Akt. We also confirm that CAPE and 36-25A activate AMPK by lowering cellular ATP level, but what is the detailed mechanism of CAPE and 36-25A in decreasing the cellular ATP level and how they activate Akt still need some deeper research. The activation of AMPK and Akt and the regulation between these two signaling pathways are the next issue of our interest.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:56:18Z (GMT). No. of bitstreams: 1
ntu-100-R98443001-1.pdf: 2334769 bytes, checksum: d67fea7fb9d8020396ce915a2f2d9244 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員審訂書 i
誌謝 ii
縮寫(Abbreviations) iii
中文摘要 iv
Abstract vi
第一章:緒論 1
一、 前言 1
二、 糖尿病的臨床表現、成因及分類5 2
三、 第二型糖尿病致病機轉及藥物治療 3
四、 血糖恆定調控機制 6
五、 胰島素降血糖機轉及訊息傳遞 6
六、 AMP-activated Protein Kinase (AMPK) 7
第二章:實驗材料及方法 9
一、 細胞培養 9
二、 劑量及時間不同之作用評估(dose and time-dependent treatment) 9
三、 蛋白質萃取 10
四、 蛋白質濃度測定與變性 10
五、 西方墨點法 (Western blot analysis) 11
六、 細胞肝糖含量測定 (Glycogen content analysis) 11
七、 細胞ATP含量測定 12
八、 細胞葡萄糖吸收測定 13
九、 細胞膜GLUT4 translocation的定量 13
十、 統計分析 14
第三章:實驗結果 15
一、 CAPE及36-25A促進HepG2細胞葡萄糖的吸收 15
二、 CAPE及36-25A在HepG2細胞活化AMPK-ACC路徑 16
三、 CAPE及36-25A在HepG2細胞活化Akt路徑 17
四、 CAPE及36-25A減少HepG2細胞ATP含量 17
五、 CAPE及36-25A促進HepG2細胞GLUT4轉移到細胞膜上 18
六、 CAPE及36-25A促進HepG2細胞肝醣合成 19
七、 Compound C及Akt inhibitor抑制CAPE和36-25A在HepG2細胞對葡萄糖的吸收及肝醣合成等促進作用 20
第四章:討論 21
第五章:結論 26
圖表 27
參考文獻 63
dc.language.isozh-TW
dc.title具降血糖活性化合物CAPE和36-25A在HepG2細胞之分子機制研究zh_TW
dc.titleMolecular signaling of CAPE and 36-25A, possessing plasma glucose lowering activity, in HepG2 cell lineen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.coadvisor蘇銘嘉
dc.contributor.oralexamcommittee林正一,顏茂雄
dc.subject.keywordCAPE,36-25A,AMPK,Akt,降血糖作用,GLUT4,zh_TW
dc.subject.keywordCAPE,36-25A,AMPK,Akt,antihyperglycemic effects,GLUT4,en
dc.relation.page66
dc.rights.note未授權
dc.date.accepted2011-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved