Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳中明(Chung-Ming Chen)
dc.contributor.authorChia-Yen Leeen
dc.contributor.author李佳燕zh_TW
dc.date.accessioned2021-06-08T05:38:13Z-
dc.date.copyright2011-09-19
dc.date.issued2011
dc.date.submitted2011-08-19
dc.identifier.citation1. Kopans, D.B., E. Halpern, and C.A. Hulka, Statistical power in breast cancer screening trials and mortality reduction among Women 40-49 years of age with particular emphasis on the national breast screening study of Canada. Cancer, 1994. 74(4): p. 1196-1203.
2. Bjurstam, N., et al., The Gothenburg Breast Cancer Screening Trial: preliminary results on breast cancer mortality for women aged 39-49. Journal of the National Cancer Institute, 1997(22): p. 53-5.
3. Khoo, B.C., Mammographic screening and mortality from breast cancer: The Malmo mammographic screening trial. Plastic and Reconstructive Surgery, 1990. 85(5): p. 835.
4. Gautherie, M., Thermopathology of breast cancer: measurement and analysis of in vivo temperature and blood flow. Annals of the New York Academy of Sciences, 1980. 335(1): p. 383.
5. Leff, D., et al., Diffuse optical imaging of the healthy and diseased breast: A systematic review. Breast Cancer Research and Treatment, 2008. 108(1): p. 9-22.
6. Szu, H., L. Miao, and H. Qi, Thermodynamic free-energy minimization for unsupervised fusion of dual-color infrared breast images, in Independent Component Analyses, Wavelets, Unsupervised Smart Sensors, and Neural Networks2006: Orlando (Kissimmee), FL, USA. p. 62470P-15.
7. Lawson, R., Implications of surface temperatures in the diagnosis of breast cancer. CMAJ: Canadian Medical Association Journal, 1956. 75(4): p. 309.
8. Suma, H., et al., Intraoperative coronary artery imaging with infrared camera in off-pump CABG. The Annals of Thoracic Surgery, 2000. 70(5): p. 1741-1742.
9. Rich, P.B., et al., Infrared thermography: a rapid, portable, and accurate technique to detect experimental pneumothorax. Journal of Surgical Research, 2004. 120(2): p. 163-170.
10. Herry, C.L. and M. Frize, Quantitative assessment of pain-related thermal dysfunction through clinical digital infrared thermal imaging. Biomed Eng Online, 2004. 3(1): p. 19.
11. Lawson, R.N., Breast cancer and body temperature. CMAJ: Canadian Medical Association Journal, 1963. 88(2): p. 68.
12. Gautherie, M. and C.M. Gros, Breast thermography and cancer risk prediction. Cancer, 1980. 45(1): p. 51-56.
13. Weidner, N., et al., Tumor Angiogenesis and Metastasis — Correlation in Invasive Breast Carcinoma. New England Journal of Medicine, 1991. 324(1): p. 1-8.
14. Anbar, M., et al., The potential of dynamic area telethermometry in assessing breast cancer. IEEE Engineering in Medicine and Biology Magazine, 2000. 19(3): p. 58-62.
15. Button, T.M., et al., Dynamic infrared imaging for the detection of malignancy. Physics in Medicine and Biology, 2004. 49(14): p. 12.
16. Anbar, M., Assessment of physiologic and pathologic radiative heat dissipation using dynamic infrared imaging. Annals of the New York Academy of Sciences, 2002. 972(1): p. 111.
17. Anbar, M., et al., Detection of cancerous breasts by dynamic area telethermometry. IEEE Engineering in Medicine and Biology Magazine, 2001. 20(5): p. 80-91.
18. Amalu, W.C. Nondestructive testing of the human breast: the validity of dynamic stress testing in medical infrared breast imaging. in 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2004. Francisco, CA
19. Guidi, A.J., Angiogenesis in preinvasive lesions of the breast. Breast Journal, 1996. 2(6): p. 364.
20. Gamagami, P., Indirect signs of breast cancer: Angiogenesis study. In: Atlas of Mammography, Cambridge, Mass.,Blackwell Science, 1996.
21. Isard, H.J., Cancer in the cold breast thermogram. American Journal of Roentgenology, 1976. 127(5): p. 793-6.
22. Yang, H.Q., et al. A New Infrared Thermal Imaging and Its Preliminary Investigation of Breast Disease Assessment. in International Conference on Complex Medical Engineering. 2007. Beijing
23. Frize, M., C. Herry, and N. Scales. Processing thermal images to detect breast cancer and assess pain. in 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine. 2003. Birmingham, UK.
24. Ohsumi, S., et al., Prognostic Value of Thermographical Findings in Patients with Primary Breast Cancer. Breast Cancer Research and Treatment, 2002. 74(3): p. 213-220.
25. Ng, E.Y.K., et al., Statistical analysis of healthy and malignant breast thermography. Journal of Medical Engineering & Technology, 2001. 25(6): p. 253-263.
26. Head, J.F., et al. Image analysis of digitized infrared images of the breasts from a first generation infrared imaging system. in 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 1997. Chicago, IL , USA
27. Keyserlingk, J.R., et al., Infrared Imaging of the Breast: Initial Reappraisal Using High-Resolution Digital Technology in 100 Successive Cases of Stage I and II Breast Cancer. The Breast Journal, 1998. 4(4): p. 245-251.
28. Head, J.F., et al., The important role of infrared imaging in breast cancer. IEEE Engineering in Medicine and Biology Magazine, 2000. 19(3): p. 52-57.
29. Koay, J., C. Herry, and M. Frize. Analysis of breast thermography with an artificial neural network. in 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2004. San Francisco, CA
30. Schaefer, G., M. Závisek, and T. Nakashima, Thermography based breast cancer analysis using statistical features and fuzzy classification. Pattern Recognition, 2009. 42(6): p. 1133-1137.
31. Zavisek, M., A. Drastich, and K. Dvorak. Thermogram analysis and classification in breast cancer diagnostics. in Applications of Digital Image Processing XXVIII 2005. Bellingham, WA.
32. Qi, H., et al. Detecting breast cancer from infrared images by asymmetry analysis. in 22nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2000. Chicago, IL , USA
33. Xianwu, T. and D. Haishu. Asymmetry Analysis of Breast Thermograms with Morphological Image Segmentation. in 27th Annual International Conference of the Engineering in Medicine and Biology Society. 2005. Shanghai
34. Ng, E.Y.K., et al., Computerized detection of breast cancer with artificial intelligence and thermograms. Journal of Medical Engineering & Technology, 2002. 26(4): p. 152-157.
35. Ng, E.Y.K., Y. Chen, and L.N. Ung, Computerized breast thermography: study of image segmentation and temperature cyclic variations. Journal of Medical Engineering & Technology, 2001. 25(1): p. 12-16.
36. Stark, A.M. and S. Way, The use of thermovision in the detection of early breast cancer. Cancer, 1974. 33(6): p. 1664-1670.
37. Zylberberg, B., et al., Initial chemoimmunotherapy in inflammatory carcinoma of the breast. Cancer, 1982. 49(8): p. 1537-1543.
38. Boyd, A.S. and S.K. Maloney. Digital infrared thermal imaging as biofeedback tool: monitoring chemotherapy response in a young female with breast cancer mediastinal secondaries. in Proceedings of the Second Joint EMBS/BMES Conference. 2002. Houston, TX. USA.
39. Sekine, H., et al., Skin reactions after breast-conserving therapy and prediction of late complications using physiological functions. Breast Cancer, 2000. 7(2): p. 142-148.
40. Cunningham, L., The anatomy of the arteries and veins of the breast. Journal of Surgical Oncology, 1977. 9(1): p. 71-85.
41. Crum, W.R., T. Hartkens, and D.L.G. Hill, Non-rigid image registration: theory and practice. British journal of radiology, 2004. 77: p. S140-153.
42. Meyer, C.R., et al., Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality image fusion using affine and thin-plate spline warped geometric deformations. Medical Image Analysis, 1997. 1(3): p. 195-206.
43. Kostelec, P.J., J.B. Weaver, and D.M. Healy, Multiresolution elastic image registration. Medical Physics, 1998. 25(9): p. 1593-1604.
44. Likar, B. and F. Pernuš, Registration of serial transverse sections of muscle fibers. Cytometry, 1999. 37(2): p. 93-106.
45. Likar, B. and F. Pernus, A hierarchical approach to elastic registration based on mutual information. Image and Vision Computing, 2001. 19(1-2): p. 33-44.
46. Wirth, M.A., J. Narhan, and D. Gray. Nonrigid mammogram registration using mutual information. in Image Processing Medical Imaging. 2002. San Diego, CA, USA
47. Schaefer, G., et al., Automated Overlay of Infrared and Visual Medical Images. User Centered Design for Medical Visualization.2008.
48. Schaefer, G., R. Tait, and S.Y. Zhu. Overlay of thermal and visual medical images using skin detection and image registration. in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2006. New York City, USA.
49. O'Donnell, M., Quantitative volume backscatter imaging, in Filed date 20 Sep 1982; Other Information: PAT-APPL-4196791984; Patent US 4470303.1984: United States.
50. Pye, S.D., S.R. Wild, and W.N. McDicken, Adaptive time gain compensation for ultrasonic imaging. Ultrasound in Medicine and Biology, 1992. 18(2): p. 205-212.
51. Hughes, D.I. and F.A. Duck, Automatic attenuation compensation for ultrasonic imaging. Ultrasound in Medicine and Biology, 1997. 23(5): p. 651-664.
52. Guofang, X., et al., Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Transactions on Medical Imaging, 2002. 21(1): p. 48-57.
53. Vovk, U., F. Pernus, and B. Likar, A Review of Methods for Correction of Intensity Inhomogeneity in MRI. IEEE Transactions on Medical Imaging, 2007. 26(3): p. 405-421.
54. Brinkmann, B.H., A. Manduca, and R.A. Robb, Optimized homomorphic unsharp masking for MR grayscale inhomogeneity correction. IEEE Transactions on Medical Imaging, 1998. 17(2): p. 161-171.
55. Lewis, E.B. and N.C. Fox, Correction of differential intensity inhomogeneity in longitudinal MR images. NeuroImage, 2004. 23(1): p. 75-83.
56. Sled, J.G., A.P. Zijdenbos, and A.C. Evans, A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions onMedical Imaging, 1998. 17(1): p. 87-97.
57. Uros, V., P. Franjo, and L. Bostjan, MRI intensity inhomogeneity correction by combining intensity and spatial information. Physics in medicine and biology, 2004. 49(17): p. 15.
58. Ahmed, M.N., et al., A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 2002. 21(3): p. 193-199.
59. Ashburner, J. and K.J. Friston, Unified segmentation. NeuroImage, 2005. 26(3): p. 839-851.
60. Dawant, B.M., A.P. Zijdenbos, and R.A. Margolin, Correction of intensity variations in MR images for computer-aided tissue classification. IEEE Transactions on Medical Imaging, 1993. 12(4): p. 770-781.
61. Lai, S.H. and M. Fang, A new variational shape-from-orientation approach to correcting intensity inhomogeneities in magnetic resonance images. Medical Image Analysis, 1999. 3(4): p. 409-424.
62. Zhang, Y., M. Brady, and S. Smith, Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 2001. 20(1): p. 45-57.
63. Horsch, K., M.L. Giger, and C.J. Vyborny, Computerized diagnosis of breast lesions on ultrasound. Medical Physics, 2002. 29(2): p. 157-164.
64. Segyeong, J., et al., Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features. IEEE Transactions on Medical Imaging, 2004. 23(10): p. 1292-1300.
65. Chen, C.M., et al., Breast lesions on sonograms: computer-aided diagnosis with nearly setting-independent features and artificial neural networks. Radiology, 2003. 226(2): p. 504-514.
66. Chou, Y.H., et al., Stepwise logistic regression analysis of tumor contour features for breast ultrasound diagnosis. Ultrasound in Medicine and Biology, 2001. 27(11): p. 1493-1498.
67. Sahiner, B., et al., Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology, 2007. 242(3): p. 716-724.
68. Chen, D.R., et al., 3-D breast ultrasound segmentation using active contour model. Ultrason Med Biol, 2003. 29(7): p. 1017-1026.
69. Chang, R.F., et al., Automatic ultrasound segmentation and morphology based diagnosis of solid breast tumors. Breast Cancer Res Treat, 2005. 89(2): p. 179-185.
70. Chen, C.M., et al., Cell-competition algorithm: a new segmentation algorithm for multiple objects with irregular boundaries in ultrasound images. Ultrasound Med Biol, 2005. 31(12): p. 1647-1664.
71. Lee, C.Y., C.C. Hsieh, and C.M. Chen. Segmentation of sonographic breast lesions : fuzzy cell-competition algorithm and bias field reduction. in Medical Imaging 2008: Image Processing 2008. San Diego, CA, USA.
72. Lee, C.Y., et al., Intensity inhomogeneity correction for the breast sonogram: Constrained fuzzy cell-based bipartitioning and polynomial surface modeling. Medical Physics, 2010. 37(11): p. 5645-5654.
73. Wagsta, K., C. Cardie, and S. Schroedl. Constrained k-means clustering with background knowledge. in Proc. 18th International Conference on Machine Learning. 2001.
74. Likas, A., N. Vlassis, and J. J. Verbeek, The global k-means clustering algorithm. Pattern Recognition, 2003. 36(2): p. 451-461.
75. Clegg, S.T. and R.B. Roemer, Reconstruction of Experimental Hyperthermia Temperature Distributions: Application of State and Parameter Estimation. Journal of Biomechanical Engineering, 1993. 115(4A): p. 380-388.
76. Lucignani, G., G. Paganelli, and E. Bombardieri, The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective.Nuclear Medicine Communications, 2004. 25(7): p. 651-6.
77. Thie, J.A., Understanding the standardized uptake value, its methods, and implications for usage. Journal of Nuclear Medicine, 2004. 45(9): p. 1431-4.
78. Boellaard, R., et al., Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. Journal of Nuclear Medicine, 2004. 45(9): p. 1519-27.
79. Jianbo, S. and J. Malik, Normalized cuts and image segmentation. IEEE Transcations on Pattern Analysis and Machine Intelligence, 2000. 22(8): p. 888-905.
80. Horsch, K., et al., Computerized diagnosis of breast lesions on ultrasound. Medical Physics, 2002. 29(2): p. 157-164.
81. Sahiner, B., et al., Malignant and benign breast masses on 3D US volumetric images: effect of computer-aided diagnosis on radiologist accuracy. Radiology, 2007. 242(3): p. 716-24.
82. Chen, D.R., et al., 3-D breast ultrasound segmentation using active contour model. Ultrasound in Medicine and Biology, 2003. 29(7): p. 1017-1026.
83. Shreedhara, K. and M. Kumar. 3D reconstruction of solid breast nodule in ultra sonographic image. in International Conference on Cognition and Recognition. 2005.
84. Chan, T.F. and L.A. Vese, Active contours without edges. IEEE Transactions on Image Processing, 2001. 10(2): p. 266-77.
85. Mohamed, R.M., A. El-Baz, and A.A. Farag, Image Modeling Using Gibbs-Markov Random Field and Support Vector Machines Algorithm. International Journal of Information Technology. 1(14): p. 178-181.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24718-
dc.description.abstract在紅外線影像(Infra-red, IR)中每一個像素點均含有正常與不正常組織所釋放出來的紅外線訊息,藉此建構一套定量型雙波段紅外線乳癌診斷系統(Quantitative Dual-Spectrum IR Breast Imaging System, QDS-IR)。先以無標記點多時間點紅外線影像對位演算法和時間序列熱影像溫度正規化演算法,使不同次拍攝之多時間點影像轉換至相同的座標系統和相似的溫度基準下進行分析。本研究核心之一為開發定量型雙波段熱圖譜分離演算法(Quantitative Dual-Spectrum Heat Pattern Separation algorithm, QDS-HPS algorithm),此演算法運用盲源分離(Blind source separation,BSS)的概念,先推估出高溫組織區域(qH map)與正常溫度組織區域(qN map)之含量,再經由多次化療後的時間序列影像,定量分析高溫組織隨時間而改變的現象,可藉此更進一步地推估潛藏於高溫組織下可能的癌組織含量變化。本研究以動態對比顯影核磁共振影像(DCEMRI)以及正子斷層掃描(PET)驗證在化療過程中,腫瘤變化和高溫組織區域(qH map) 之結構性和功能性變化的相互關係。初步結果顯示qH map可有效地量化乳癌區域的組織和代謝改變,因此推估QDS-IR系統具有監控和評估化療病患之療效和偵測腫瘤之潛力。為使本系統功能更強大並證明QDS-IR系統的有效性,本研究另一核心為開發電腦輔助診斷系統之超音波影像分割,欲先以此為架構,未來進行3D超音波影像分割,藉以評估腫瘤大小,輔助說明QDS-IR系統所得到的資訊。超音波影像對比度較低且成像過程產生獨特的假影,灰階場不平均造成假影和腫瘤組織形成偽影,導致欲正確地自動分割出腫瘤邊界更加困難。本研究提出一種新的分割演算法,透過偏移場修正,提高超音波影像中腫瘤部分的對比度,期能較準確地判斷腫瘤邊緣。此研究結果顯示經過灰階場修正之影像,對於傳統的等位函數法,亦或本研究開發之Gibbs-weighted K-means分群演算法和模糊區域競爭法,所得到分割結果都較為原本未修正灰階場之影像分割結果來得好。zh_TW
dc.description.abstractBreast cancer has become the first cause of death for the female populations in the developed countries. Most modern imaging modalities, e.g., mammogram, breast sonogram, X-ray CT, etc., either do not have a sufficient spatial resolution to detect very small breast cancers or are not sensitive enough to measure the minutia angiogenesis phenomenon in the very earliest stage of breast cancers. MRI and PET are both very costly and not usually used for screening or a first line of defense during the regular checkup. In contrast, a passive medical imaging modality, called quantitative dual-spectrum IR (QDS-IR) breast imaging system is developed. The system roots in two facts: One is cancer cells tend to have higher temperatures than the normal cells because of the angiogenesis. The other is according to the intrinsic Wien's displacement law of the Planck thermal radiation, the radiation in the shorter wavelengths increases much more rapidly than in the longer ones as temperature increases.With energy readings from two IR cameras, middle wavelength IR (MIR, 3-5μm) and long wavelength IR (LIR, 8-9.2μm), IR image decomposes into normal ( map) and high ( map) temperature tissues via the blind source separation (BSS) algorithm.
To interpret the information obtained by QDS-IR system, 2D sonogram segmentation methods with intensity inhomogeneity correction algorithm are developed first to further implement 3D segmentation in the future. Based on the visual evaluation of two experienced radiologists, 46 out of 49 breast lesions were considered to have better contrasts on the inhomogeneity-corrected images by both radiologists.The interrater reliability for the radiologists was found to be Kappa = 0.479 (p = 0.001). The mean gradients of the low-gradient boundary points before and after correction of the intensity inhomogeneity were compared by the paired t-test yielding a p-value of 0.000, and the Chan and Vese level set method could derive a much better lesion boundary on the inhomogeneity-corrected image than on the original image (p=0.000).
Clinical tests have been carried out with the approval of Institutional Review Board of National Taiwan UniversityHospital. From June 2008 to June 2011, 50 patients of ages between 30 and 68 are recruited. The information of QDS-IR breast imaging system is correlated with DCE-MRI and PET. The results show that the map derived by quantitative dual-spectrum heat pattern separation (QDS-HPS) algorithm indicates not only the structure change but also the function change duringthe chemotherapy and prove that QDS-IR breast imaging system has potential to monitor the chemotherapy response and detect the minutia angiogenesis phenomenon.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:38:13Z (GMT). No. of bitstreams: 1
ntu-100-F93548025-1.pdf: 8808069 bytes, checksum: eac8383a690019329557c16b623fa727 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口試委員會審定書 I
ABSTRACT (Chinese) II
ABSTRACT III
CONTENTS IV
LIST OF FIGURES VII
LIST OF TABLESS XIII
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Motivation 6
1.3 Purpose 8
CHAPTER 2 LITERATURE REVIEW 12
2.1 Applications of Infrared Imaging 12
2.2 The Breast Infrared Imaging 13
2.3 Quantitative Analysis of the Breast Infrared Imaging 15
2.3.1 Cross-Sectional Approaches 15
2.3.2 Longitudinal Approaches 17
Why to use the dual-spectrum IR imaging? 18
2.4 The Registration for the Infrared Images 20
2.5 Intensity Inhomogeneity Correction for Breast Sonogram 22
2.6 Segmentation by Clustering for Breast Sonogram 26
CHAPTER 3 MATERIALS AND METHODS 28
3.1 Core I: Quantitative Dual-Spectrum IR Breast Imaging System 30
Subproject 1:Quantification and assessment of chemotherapy responses 30
A. Hardware System 30
3.1.1 Construction of QDS-IR Hardware System 30
B. Software System 32
3.1.2 Marker-free longitudinal IR image registration 34
3.1.3 Longitudinal temperature normalization 39
3.1.4 Quantitative Dual-Spectrum Heat Pattern Separation Algorithm 44
3.1.4.1 Descriptors of the High Temperature Region 50
3.1.4.2 Curved Multi-planar Reconstruction (Curved MPR) 51
3.1.4.3 The descriptor of PET: SUV 52
Subproject 2: Development of the CAD system to assist interpretation of QDS-IR breast imaging system: Lesion boundaries delineation on 2D sonogram 53
A. Constrained Fuzzy Cell-based Bipartitioning and Intensity Inhomogeneity Correction 53
A.1. IIC-E step 56
3.1.5 Fuzzy cell competition algorithm 56
3.1.6 Normalized Cut Algorithm 62
3.1.7 Bipartition—The CFCB-EM Algorithm 64
A.2. IIC-M step 69
3.1.8 Performance Analysis 69
B. Cell-based Clustering for segmentation 74
3.1.9 Gibbs-weighted K-means algorithm 75
3.2 Core II: Clinical Test 78
3.2.1 Subjects 78
3.2.2 Chemotherapy 79
3.2.3 Double Blind Procedure of Photograpging 79
CHAPTER 4 RESULTS AND DISCUSSIONS 82
4.1 Quantitastive Dual-Spectrum Infrared System 82
4.1.1 Results of marker-free longitudinal IR image registration 83
4.1.2 Results of longitudinal temperature normalization algorithm 87
4.1.3 Verify the anatomic change of qH map corresponding to MRI 91
4.1.4 Verify the functional change of qHmap corresponding to PET 97
4.1.5 Detecting the tumor and assessing chemotherapy responses 99
4.2 Breast Sonogram Segmentation with Intensity Inhomogeneity 101
CHAPTER 5 CONCLUSIONS 113
REFERENCE 115
APPENDIX A. The Derivation of QDS-HPS algorithm 123
APPENDIX B. Patient Consent Form 126
APPENDIX C. DCE-MRI Curved MPR Images 132
APPENDIX D. Analysis of the QDS-HPS algorithm 135
APPENDIX E. Segmentation of Intensity Inhomogeneity 2D Breast Sonogram 170
dc.language.isoen
dc.subject盲源分離zh_TW
dc.subject化學治療zh_TW
dc.subject灰階場修正zh_TW
dc.subject雙波段紅外線系統zh_TW
dc.subject乳癌zh_TW
dc.subject影像分割zh_TW
dc.subjectBreast Cancersen
dc.subjectSegmentationen
dc.subjectIntensity Inhomogeneity Correctionen
dc.subjectQDS-IRSystemen
dc.subjectChemotherapyResponseen
dc.subjectBlind Source Separationen
dc.title定量型雙波段紅外線乳癌診斷系統之研發:乳癌化療反應監控比較研究之熱圖譜特性化與腫瘤邊緣偵測zh_TW
dc.titleOn Development of Quantitative Dual-Spectrum IR Breast Imaging System: Heat Pattern Characterization and Lesion Boundary Delineation for Comparative Studies on Chemotherapy Response Monitoring of Breast Cancersen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee周宜宏(Yi-Hong Chou),許志宇(CHIH-YU HSU),陳泰賓(Tai-Been Chen),張允中(Yeun-Chung Chang),蔡育秀(Yuh-Show Tsai),孫家偉(Chia-Wei Sun)
dc.subject.keyword乳癌,盲源分離,化學治療,雙波段紅外線系統,灰階場修正,影像分割,zh_TW
dc.subject.keywordBreast Cancers,Blind Source Separation,ChemotherapyResponse,QDS-IRSystem,Intensity Inhomogeneity Correction,Segmentation,en
dc.relation.page198
dc.rights.note未授權
dc.date.accepted2011-08-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
8.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved