Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24701
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾孝文
dc.contributor.authorChia-Hsien Chengen
dc.contributor.author成佳憲zh_TW
dc.date.accessioned2021-06-08T05:37:24Z-
dc.date.copyright2005-01-21
dc.date.issued2005
dc.date.submitted2005-01-10
dc.identifier.citation1. Cook GC, Moosa B. Hepatocellular carcinoma: One of the world’s most common malignancies. Am J Med 1985;233:705-708.
2. Tsuzuki T, Sugioka A, Ueda M. Hepatic resection for hepatocellular carcinoma. Surgery 1990;107:511-520.
3. Ohto M, Yoshikawa M, Saisho H, et al. Non surgical treatment of hepatocellular carcinoma in cirrhotic patients. World J Surg 1995;19:42-46.
4. Robertson JM, Lawrence TS, Andrews JC, et al. Long-term results of hepatic artery fluorodeoxyuridine and conformal radiation therapy for primary hepatobiliary cancers. Int J Radiat Oncol Biol Phys 1997;37:325-330.
5. Yasuda S, Ito H, Yoshikawa M, et al. Radiotherapy for large hepatocellular carcinoma combined with transcatheter arterial embolization and percutaneous ethanol injection therapy. Int J Oncol 1999;15:467-473.
6. Cheng JC, Chuang VP, Cheng SH, et al. Local radiotherapy with or without transcatheter arterial chemoembolization for patients with unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2000;47:435-442.
7. Dawson LA, McGinn CJ, Normolle D, et al. Escalated focal liver radiation and concurrent hepatic artery fluorodeoxyuridine for unresectable intrahepatic malignancies. J Clin Oncol 2000;18:2210-2218.
8. Cheng JC, Chuang VP, Cheng SH, et al. Unresectable hepatocellular carcinoma treated with radiotherapy and/or chemoembolization. Int J Cancer (Radiation Oncology Investigations) 2001;96:243-252.
9. Lawrence TS, Robertson JM, Anscher MS, et al. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys 1995;31:1237-1248.
10. Lawrence TS, Ten Haken RK, Kessler ML, et al. The use of 3-D dose volume analysis to predict radiation hepatitis. Int J Radiat Oncol Biol Phys 1992;23: 781-788.
11. Cheng JC, Wu J-K, Huang C-M, et al. Radiation-induced liver disease after radiotherapy for hepatocellular carcinoma: Clinical manifestation and dosimetric description. Radiother Oncol 2002;63:41-45.
12. Dawson LA, Normolle D, Balter JM, et al. Analysis of radiation-induced liver disease using the Lyman NTCP model. Int J Radiat Oncol Biol Phys 2002;53:810-821.
13. Cheng JC, Wu J-K, Huang C-M, et al. Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: Dosimetric analysis and implication. Int J Radiat Oncol Biol Phys 2002;54:156-162.
14. Jackson A, Ten Haken RK, Robertson JM, et al. Analysis of clinical complication data for radiation hepatitis using a parallel architecture model. Int J Radiat Oncol Biol Phys 1995;31:883-891.
15. MacDonald JS, Smalley SR, Benedetti J, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med 2001;345:725-730.
16. Kolemick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene 2003;22:5897-5906.
17. Yu MC, Yuan JM. Environmental factors and risk for hepatocellular carcinoma. Gastroenterology 2004;127(5 Suppl 1):S72-S78.
18. Stillwagon GB, Order SE, Guse C, et al, Fishman EK. 194 hepatocellular cancers treated by radiation and chemotherapy combinations: toxicity and response: a Radiation Therapy Oncology Group Study. Int J Radiat Oncol Biol Phys 1989;17:1223-1229.
19. Abrams RA, Pajak TF, Haulk TL, Flam M, Asbell SO. Survival results among patients with alpha-fetoprotein-positive, unresectable hepatocellular carcinoma: analysis of three sequential treatments of the RTOG and Johns Hopkins Oncology Center. Cancer J Sci Am 1998;4:178-184.
20. Matsuura M, Nakajima N, Arai K, Ito K. The usefulness of radiation therapy for hepatocellular carcinoma. Hepatogastroenterology 1998;45:791-796.
21. Park HC, Seong J, Han KH, Chon CY, Moon YM, Suh CO. Dose-response relationship in local radiotherapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2002;54:150-155.
22. Kim JP. Surgical results in gastric cancer. Semin Surg Oncol 1999;17:132-138.
23. Smalley SR, Gunderson L, Tepper J, et al. Gastric surgical adjuvant radiotherapy consensus report: rationale and treatment implementation. Int J Radiat Oncol Biol Phys 2002;52:283-293.
24. Yeo W, Chan PKS, Zhong S, et al. Frequency of hepatitis B virus reactivation in cancer patients undergoing cytotoxic chemotherapy: A prospective study of 626 patients with identification of risk factors. J Med Virol 2000;62:299-307.
25. Wharton JT, Delclos L, Gallager S. Radiation hepatitis induced by abdominal irradiation with the cobalt 60 moving strip technique. Am J Roentgenol 1973;117:73–81.
26. Yu MW, Hsu FC, Sheen I-S, et al. Prospective study of hepatocellular carcinoma and liver cirrhosis in asymptomatic chronic hepatitis B virus carriers. Am J Epidemiol 1997;145:1039–1047.
27. Yamasaki SA, Marn CS, Francis IR, Robertson JM, Lawrence TS. High-dose localized radiation therapy for treatment of hepatic malignant tumors: CT findings and their relation to radiation hepatitis. Am J Roentgenol 1995;165:79–84.
28. Trotti A, Byhardt R, Stetz J, et al. Common Toxicity Criteria: Version 2.0. An improved reference for grading the acute effects of cancer treatment: Impact on radiotherapy. Int J Radiat Oncol Biol Phys 2000;47:13-47.
29. Mohan R, Chui C, Lidofsky L. Differential pencil beam dose computation model for photons. Med Phys 1986;13:64-73.
30. Metcalfe PE, Hoban PW, Murray DC, Round WH. Beam hardening of 10 MV radiotherapy x-rays: analysis using a convolution/superposition method. Phys Med Biol 1990;35:1533-1549.
31. Zhu Y, Van Dyk J. Accuracy requirements of the primary x-ray spectrum in dose calculations using FFT convolution techniques. Med Phys 1995;22:421-426.
32. Lyman JT. Complication probability as assessed from dose volume histograms. Radiat Res 1985;8 (Suppl):513-519.
33. Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method. Int J Radiat Oncol Biol Phys 1989;16:1623-1630.
34. Jackson A, Kutcher GJ, Yorke ED. Probability of radiation induced complications for normal tissues with parallel architecture subject to nonuniform irradiation. Med Phys 1993;20:613-625.
35. Niemierko A, Goitein M. Modeling of normal tissue response to radiation: The critical volume model. Int J Radiat Oncol Biol Phys 1993;25:135-145.
36. Roberts SA, Hendry JH. The delay before onset of accelerated tumour cell repopulation during radiotherapy: a direct maximum-likelihood analysis of a collection of worldwide tumour-control data. Radiother Oncol 1993;29:69-74.
37. Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys 1991;21:123-135.
38. Kim WR, Poterucha JJ, Wiesner RH, et al. The relative role of the Child-Pugh classification and the Mayo natural history model in the assessment of survival in patients with primary sclerosing cholangitis. Hepatology 1999;29:1643-1648.
39. Lau H, Fan ST, Ng IO, et al. Long term prognosis after hepatectomy for hepatocellular carcinoma: A survival analysis of 204 consecutive patients. Cancer 1998;83:2302-2311.
40. Poon RT, Fan ST, Lo CM, et al. Intrahepatic recurrence after curative resection of hepatocellular carcinoma: Long-term results of treatment and prognostic factors. Ann Surg 1999;229:216-222.
41. Yorke ED, Jackson A, Rosenzweig KE, et al. Dose-volume factors contributing to the incidence of radiation pneumonitis in non-small-cell lung cancer patients treated with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 2002;54:329-339.
42. Kwa SL, Theuws JC, Wagenaar A, et al. Evaluation of two dose-volume histogram reduction models for the prediction of radiation pneumonitis. Radiother Oncol 1998;48:61-69.
43. Zaider M, Anols HI. A little to a lot or a lot to a little: is NTCP always minimized in multiport therapy? Int J Radiat Oncol Biol Phys 1998;41:945-950.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24701-
dc.description.abstract放射治療是癌症病人治療種類中相當重要的方式。放射線可能產生正常器官併發症的科學化評估方式,是由正常組織在放射治療電腦設計規劃系統中計算出的劑量體積資料,訂定出特定的閥值或臨界點。現行常用的劑量學指標存在著未能將體積化效應溶入放射線併發症風險估計的缺失,而正常組織併發症機率(NTCP)模型則是被發展出的一個較完善方式,能利用連續化的劑量體積資料及特定參數的搭配,來加權計算出高劑量與低劑量放射線可能造成的器官傷害。在我們過去已完成三度空間順形放射治療肝臟腫瘤的病人中,我們發現正常組織併發症機率模型較傳統的劑量學指標,更能準確估計放射線引起肝併發症的風險,然而以這個美國團隊研發的模型預估的風險,明顯低估了台灣肝臟放射治療發生肝併發症的機率,這樣的現象呈現了台灣病人肝臟對放射線的忍受度,是明顯低於西方國家病人的肝忍受度,這也說明了發展出因應台灣病人獨特生物性背景的肝併發症,所衍生出的專屬模型的必要參數。
研究的第一階段由89位肝癌病人及62位胃癌病人接受肝臟放射治療後,是否發生放射線引起肝併發症之結合生物性的正常組織併發症機率模式開始,而B型肝炎病毒帶原者則是台灣病人在肝忍受度上不同於西方國家的特點。我們首先以三參數的萊曼正常組織併發症機率模型,重算89位肝癌病人原始放射治療順形設計中的劑量體積數據,並以事實上發生肝併發症與否的根據,運用最大機率統計法來求取最佳化的模型參數。在多變項分析中,B型肝炎帶原是統計中最具顯著性意義與肝併發症有關的變項,而最佳化下的萊曼正常組織併發症機率模型參數(體積效應參數,曲線斜率參數,半機率併發症劑量)分別為0.35,0.39,49.4Gy,相較於非B型肝炎帶原組的參數為0.86,0.31,46.1Gy,其主要的組間差別是在於體積效應參數在B型肝帶原者明顯較小,顯示B型肝炎帶原的生物性因素對正常組織併發機率模型的最佳化有重大的影響。研究的第二階段是以萊曼正常組織併發症機率模型最佳化62位接受放射治療的胃癌病人,B型肝炎帶原這個變項仍然是相關於發生肝併發症的具統計意義相關因素,三個模型參數在B型肝炎帶原組為0.11,6.88,20.5Gy,相較於非帶原組的1.99,0.09,21.5Gy,在體積效應參數上的明顯差別再度顯示B型肝炎帶原的生物因素影響了肝臟的放射線忍受度。研究的第三階段使用四參數的平行性結構正常組織併發症機率模型,來針對其適用於平行性結構特性的器官,以合併肝癌與胃癌的151位病人資料庫測試這個模型的最佳化。B型肝炎帶原仍然是合併資料庫多變項分析中最具統計意義的相關於肝併發症的變項,而平行性結構正常組織併發症模型四參數,平均功能體積比率,功能比率曲線標準差,半肝臟單元受損劑量,以及肝臟單元的劑量效應曲線斜率,在整個資料庫最佳化結果為0.54,0.14,50Gy,0.13;在B型肝炎組為0.53,0.07,50Gy,4.6
zh_TW
dc.description.abstractRadiotherapy has been one of the most important treatment modalities in cancer patients. The scientific method to estimate the risk of radiation-induced organ complication is using the dose-volume data from the computerized treatment planning system to perform calculations with certain thresholds and criteria. The current commonly used dosimetric parameters have the defects of non-volumetric criteria and the lack of volume effect integrated into the radiation-related organ damage. Normal tissue complication probability (NTCP) model has been proposed as a more comprehensive way to calculate the risk of complication by the use of the serial dose-volume data with a few parameters to weigh the risk between low-dose and high-dose damage. In our past patients with radiation-induced liver disease (RILD) after three-dimensional conformal radiotherapy (3DCRT), we found that the NTCP was more useful than the conventionally used parameters. However, the risk of RILD in Taiwan seemed underestimated with the NTCP model parameters developed in the Unites States. This means the tolerance of liver to radiation for patients in Taiwan different from the patients’ tolerance in the western countries, and the indication of generating the unique model parameters based on the biological features of RILD in Taiwanese patients.
Our first step was to establish the biology-integrated NTCP in the two different databases, 89 patients with hepatocellular carcinoma (HCC) and 62 patients with gastric carcinoma (GC) undergoing 3DCRT. Hepatitis B viral (HBV) carriers have been the unique feature of Taiwanese patients in their liver tolerance as compared to the western countries. We first used the three-parameter Lyman NTCP model to recalculate the NTCP of RILD in 89 HCC patients by their original dose-volume data retrieved from the conformal design of 3DCRT. Logistic regression was used for significant factors of RILD. Maximal likelihood analysis was conducted to obtain the best estimates of NTCP model parameters based on the true occurrence of RILD in 17 of 89 HCC patients. In multivariate analysis, HBV carrier remained statistically significant as the susceptible factor to RILD. The best estimates of NTCP parameters (n, m, TD50(1)) were 0.35, 0.39, and 49.4 Gy. The parameters specifically estimated from HBV carriers were 0.26, 0.40, and 50.0 Gy, as compared to 0.86, 0.31, and 46.1 Gy for non-carrier patients. The main difference in volume effect parameter (n) between the two subgroups indicated the impact of this biological factor (HBV carrier) on modeling NTCP. The second step was to apply the Lyman NTCP model in 62 GC patients. HBV carrier status was the only independent factor associated with RILD. The parameters (n, m, TD50(1)) specifically estimated from HBV carriers were 0.11, 6.88, and 20.5 Gy, as compared to 1.99, 0.09, and 21.5 Gy for non-carrier patients. The difference in volume effect parameter similarly described the biological integration of HBV carrier into the NTCP model. The third step was to use the four-parameter parallel-architecture NTCP model, specifically designed for the organ with parallel feature like liver, in a combined group of 151 patients with either HCC or GC. HBV carrier was the only independent factor with statistically significant susceptibility to RILD in multivariate test. The NTCP model parameters, mean functional reserve (v50), width of functional reserve distribution ( ), dose at which half of liver subunits are damaged (d1/2), slope parameter for subunit dose response (k), were 0.54, 0.14, 50Gy, 0.13 (whole group); 0.53, 0.07, 50Gy, 4.6 10-7 (HBV carriers); 0.59, 0.12, 25Gy, 59.8 (non-HBV carriers), respectively. The main difference in slope parameter demonstrated the biological influence of HBV carrier on RILD. The threshold effect of fraction of liver damaged (f) became evident after integrating biological factor (HBV carrier) into the modeling process.
We concluded the effectiveness of the two NTCP models in RILD, and the unique importance of HBV carrier in estimating the two NTCP model parameters. It is emphasized that physical and mathematical NTCP methods should be cautiously used with appropriate integration of biological factors. The biology integrated NTCP models are extremely important for HBV carrier patients undergoing 3DCRT or the other new technology of radiotherapy to the liver. Such importance of biological factor in radiation-induced liver damage also implies the corresponding biological pathogenesis and warrants the ongoing basic cellular or molecular research on RILD.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:37:24Z (GMT). No. of bitstreams: 1
ntu-94-D91921021-1.pdf: 1294587 bytes, checksum: 8952bd71f35f7df09e4116a731e09802 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsChapter 1 Introduction…………………………………………..………………….1
Chapter 2 Background……………………………………………..……………….3
2.1 Radiotherapy in cancer treatment…………………………..…………….....3
2.2 Radiotherapy in patients with HCC………………………..……………….4
2.3 Radiotherapy in patients with GC…………………………..……………....7
2.4 Radiation-induced liver disease…………………………..………………....8
2.5 Clinical and dosimetric difference in liver tolerance to radiation between the US and Asian patients…………………………………………..……………….9
2.6 Three-dimensional conformal radiotherapy (3DCRT) design and dosimetry
2.6.1 Imaging and target localization……….…………….…………..…...10
2.6.2 Simulation……………………………………………………..……12.
2.6.3 Outlining of structures………………………………………………14
2.6.4 Beam arrangement…………………………………………………..14
2.6.5 Dose calculation……………………………………………………..15
2.6.6 Plan evaluation………………………………………………………16
2.6.7 Treatment verification……………………………………………….17
Chapter 3 Materials and Methods…………………………………………..……...19
3.1 HCC Patient recruitment and treatment………………………….…………19
3.2 GC patient recruitment and treatment………………………………………23
3.3 Definition of RILD………………………………………………………….28
3.4 Lyman NTCP model………………………………………………………...29
3.5 Parallel-architecture NTCP model………………….……………………….29
3.6 Statistical analysis…………………………………………………………..31
3.7 Maximal likelihood method……………………………….……………..…31
3.8 Goodness-of-fit method……………………………………………………..32
Chapter 4 Results…………………………………………………….……………..34
4.1 Univariate and multivariate analyses for the 89 HCC patients……………..34
4.2 Lyman NTCP model parameterization for the whole group (89 HCC patients) and the subgroups divided by HBV carrier status………………………………36
4.3 Goodness-of-fit test for the whole group (89 HCC patients) and the subgroups divided by HBV carrier status……………………………………….39
4.4 Univariate and multivariate analyses for the 151 HCC and GC patients…...40
4.5 Parallel-architecture NTCP model parameterization for the whole group (151 HCC and GC patients) and the subgroups divided by HBV carrier status……...41
4.6 Goodness-of-fit test for the whole group (151 HCC and GC patients) and the subgroups divided by HBV carrier status……………………………………….45
4.7 Biological correlation of HBV reactivation with RILD…………………….46
Chapter 5 Discussion……………………………………………………………….48
Chapter 6 Conclusion………………………………………………………………55
dc.language.isoen
dc.subjectB型肝炎帶原zh_TW
dc.subject放射線引起的肝併發症zh_TW
dc.subject模型zh_TW
dc.subject正常組織併發症機率zh_TW
dc.subjectNormal tissue complication probabilityen
dc.subjectModelen
dc.subjectHepatitis B viral carrieren
dc.subjectRadiation-induced liver diseaseen
dc.title以放射治療引起的肝臟病變建立生物性的正常組織併發症機率模型zh_TW
dc.titleProbability Model for Biology Integrated Normal Tissue Complication Based on Radiation-Induced Liver Diseaseen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree博士
dc.contributor.oralexamcommittee賴明坤,周迺寬,謝長堯,張璞曾,郭德盛
dc.subject.keyword放射線引起的肝併發症,模型,正常組織併發症機率,B型肝炎帶原,zh_TW
dc.subject.keywordNormal tissue complication probability,Radiation-induced liver disease,Hepatitis B viral carrier,Model,en
dc.relation.page61
dc.rights.note未授權
dc.date.accepted2005-01-11
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved