請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24700
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 廖振鐸 | |
dc.contributor.author | Tsai-Yu Lin | en |
dc.contributor.author | 林彩玉 | zh_TW |
dc.date.accessioned | 2021-06-08T05:37:22Z | - |
dc.date.copyright | 2005-01-27 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-01-13 | |
dc.identifier.citation | Anderson, S., and Hauck, W. W. (1990), ``Consideration of Individual Bioequivalence,' Journal of Pharamacokinetics and Biopharmaceutics, 18, 259-274.
Bagui, S. C., Bhaumik, D. K., and Parnes, M. (1996), ``One-Sided Tolerance Limits for Unbalanced m-Way Random Effects ANOVA Models,' Journal of Applied Statistical Science, 3, 135-148. Balaam, L. N. (1968), ``A Two-Period Design with $t^2$ Experimental Units,' Biometrics, 24, 61-73. Bavazzano, P., Apostoli, P., Balducci, C., Bartolucci, G. B., Buratti, M., Duca, P., Gori, G., Donni, V. L., Perbellini. L., Perico, A., and Minoia, C. (1998), ``Determination of Urinary 2,5-Hexanedione in the General Italian Population,' International Archives of Occupational and Environmental Health, 71, 284-288. Beckman, R. J., and Tietjen, G. L. (1989), ``Two-Sided Tolerance Limits for Balanced Random-Effects ANOVA Models,' Technometrics, 31, 185-197. Bhaumik, D. K., and Kulkarni, P. M. (1991), ``One-Sided Tolerance Limits for Unbalanced One-Way ANOVA Random Effects Model,' Communication in Statistics: Theory and Methods, 20, 1665-1675. Bhaumik, D. K., and Kulkarni, P. M. (1996), ``A Simple and Exact Method of Constructing Tolerance Intervals for the One-Way ANOVA with Random Effects,' The American Statistician, 50, 319-323. Bowker, A. H., and Lieberman, G. J. (1972), Engineering statistics (2nd ed), Englewood Cliffs, N. J.:Prentice-Hall. Brown, E. B., Iyer, H. K., and Wang, C. M. (1997), ``Tolerance Intervals for Assessing Individual Bioequivalence,' Statistics in Medicine, 16, 803-820. Burch, B. D., and Iyer, H. K. (1997), ``Exact Confidence Interval for a Variance Ratio (or Heritability) in a Mixed Linear Model,' Biometrics, 53, 1318-1333. Chang, Y. P., and Huang, W. T. (2000), ``Generalized Confidence Intervals for The Largest Value of Some Functions of Parameters under Normality,' Statistica Sinica, 10, 1369-1383. Chow, S. C., and Liu, J. P. (1992), Design and Analysis of Bioavailability and Bioequivalence Studies, New York: Marcel Dekker, Inc. Fraser, D. A. S., and Guttman, I. (1956), ``Tolerance Regions,' Annals of Mathematical Statistics}, 27, 162-179. Graybill, F. A. (1983), Matrices with Applications in Statistics, Belmont Ca: Wadsworth International Group. Guttman, I. (1970), Statistical Tolerance Regions: Classical and Bayesian, London: Charles W. Griffin and Co. Hahn, G. J. (1982), ``Removing Measurement Error in Assessing Conformance to Specifications,' Journal of quality technology, 14, 117-121. Hahn, G. J., and Meeker, W. Q. (1991), Statistical Intervals, New York: John Wiley. Hamada, M., and Weerahandi, S. (2000), ``Measurement System Assessment via Generalized Inference,' Journal of Quality Technology, 32, 241-253. Howe, W. G. (1969), ``Two-Sided Tolerance Limits for Normal Populations - Some Improvements,' Journal of the American Statistical Association, 64, 610-620. Iyer, H. K., Wang, C. M., and Mathew, T. (2004), ``Models and Confidence Intervals for True Values in Interlaboratory Trials,' Journal of the American Statistical Association, 99, 1060-1071. Khuri, A. I., Mathew, T., and Sinha, B. K. (1998). Statistical tests for mixed linear Models, New York: Wiley. Krishnamoorthy, K., and Mathew, T. (2004), ``One-Sided Tolerance Limits in Balanced and Unbalanced One-Way Random Models Based on Generalized Confidence Intervals,' Technometrics, 46, 44-52. Jaech, J. L. (1984), ``Removing the Effects of Measurement Errors in Constructing Statistical Tolerance Intervals,' Journal of quality technology, 16, 676-680. Jordan, P. (1995), ``Estimation of Tolerance Limits from Reference Data,' Computational Statistics and Data Analysis, 19, 655-668. LaMotte, L. R., and McWhorter, A., Jr. (1978), ``An Exact Test for the Presence of Random Walk Coefficients in a Linear Regression Model,' Journal of the American Statistical Association, 73, 816-820. Lemon, G. H. (1977), ``Factors for One-Sided Tolerance Limits for Balanced One-Way ANOVA Random-Effects Model,' Journal of the American Statistical Association, 72, 676-680. Liao, C. T., and Iyer, H. K. (2001), ``A Tolerance Interval for Assessing the Quality of Glucose Monitoring Meters,' Technical Report No. 14, Department of Statistics, Colorado State University. Liao, C. T., and Iyer, H. K. (2004), ``A Tolerance Interval for the Normal Distribution with Several Variance Components,' Statistica Sinica, 14, 217-229. Liman, M. M. T., and Thomas, D. R. (1988), ``Simultaneous Tolerance Intervals in the One-Way Model with Covariates,' Communications in Statistics-Simulation and Computation, 17, 1007-1019. McNally, R. J. (2002), ``Tests for Individual and Population Bioequivalence Using 3-Period Crossover Designs,' Technical Report No. 7, Department of Statistics, Colorado State University. McNally, R. J. (2002), ``A Test for Population Bioequivalence for Pharmacokinetic Data from $2\times2$ Crossover Designs,' Technical Report No. 8, Department of Statistics, Colorado State University. McNally, R. J., Iyer, H. K., and Mathew, T. (2003), ``Tests for Individual and Population Bioequivalence Based on Generalized P-Values,' Statistics in Medicine, 22, 31-53. Mee, R. W., and Owen, D. B. (1983), ``Improved Factors for One-Sided Tolerance Limits for Balanced One-Way ANOVA Random Model,' Journal of the American Statistical Association, 78, 901-905. Mee, R. W. (1984), ``$\beta $-Expectation and $\beta $-Content Tolerance Limits for Balanced One-Way ANOVA Random Model,' Technometrics, 26, 251-254. Mee, R. W. (1984), ``Tolerance Limits and Bounds for Proportions Based on Data Subject to Measurement Error,' Journal of quality technology, 16, 74-80. Odeh, R. E., and Owen, D. B. (1980), Tables for Tolerance Limits, Sampling Plans, and Screening, New York: Marcel Dekker. Ostle, B., and Mensing R. W. (1975), Statistics in Research: Basic Concepts and Techniques for Research Workers, Ames: Iowa State University Press. Paulson, E. (1943), ``A Note on Tolerance Limits,' Annals of Mathematical Statistics, 14, 90-93. Patel, J. K. (1986), ``Tolerance Intervals - A Review,' Communications in Statistics--Theory and Methods, 15, 2719-2762. Patel, J. K. (1989), ``Prediction Intervals - A Review,' Communications in Statistics--Theory and Methods, 18, 2393-2465. Rukhin, A. L., and Vangel, M. G. (1998), ``Estimation of a Common Mean and Weighted Mean Statistics,' Journal of the American Statistical Association, 93, 303-309. Satterthwaite, F. E. (1946), ``An Approximate Distribution of Estimates of Variance Components,' Biometrics Bulletin, 2, 110-114. Searle, S. R. (1982), Matrix Algebra Useful for Statistics, New York: John Wiley $\&$ Sons. Searle, S. R., Casella G., and McCulloch, C. E. (1992), Variance Components, New York: John Wiley $\&$ Sons. Smith, R. W. (2002), ``The Use of Random-Model Tolerance Intervals in Environmental Monitoring and Regulation,' Journal of Agricultural, Biological, and Environmental Statistics}, 7, 74-94. Swallow, W. H., and Searle, S. R. (1978), ``Minimum Variance Quadratic Unbiased Estimation (MIVQUE) of Variance Components,' Technometrics, 20, 265-272. Thomas, J. D., and Hultquist, R. A. (1978), ``Interval Estimation for the Unbalanced Case of the One-Way Random Effects Model,' The Annals of Statistics, 6, 582-587. Tsui, K. W., and Weerahandi, S. (1989), ``Generalized P-Values in Significance Testing of Hypotheses in the Presence of Nuisance Parameters,' Journal of the American Statistical Association, 84, 602-607. Vangel, M. G. (1992), ``New Methods for One-Sided Tolerance Limits for a One-Way Balanced Random-Effects ANOVA Model,' Technometrics, 34, 176-186. Vangel, M. G. (1996), ``Design Allowables from Regression Models Using Data from Several Batches,' Composite Materials: Testing and Design (Twelfth Volume), ASTM STP 1274, R.B. Deo and C.R. Saff, Eds., American Society of Testing and Materials, 358-370. Wang, C. M. (1988), ``$\beta$-Expectation Tolerance Limits for Balanced One-Way Random-Effects Model,' Probability and Statistics: Essays in Honor of Franklin A. Graybill ed J.N. Srivastava, 285-295, Amsterdam: North-Holland. Wang, C. M., and Iyer, H. K. (1994), ``Tolerance Intervals for the Distribution of True Values in the Presence of Measurement Errors,' Technometrics, 36, 162-170. Wald, A., and Wolfowitz, J. (1946), ``Tolerance Limits for a Normal Distribution,' The Annals of Mathematical Statistics, 17, 208-215. Weerahandi, S. (1991), ``Testing Variance Components in Mixed Models with Generalized P-Values,' Journal of the American Statistical Association, 86, 151-153. Weerahandi, S. (1993), ``Generalized Confidence Intervals,' Journal of the American Statistical Association, 88, 899-905. Weerahandi, S. (1995), Exact Statistical Methods for Data Analysis, New York: Springer-Verlag. Welch, B. L. (1956), ``On Linear Combinations of Several Variances,' Journal of the American Statistical Association, 51, 132-148. Wilks, S. S. (1941), ``Determination of Sample Sizes for Setting Tolerance Limits,' The Annals of Mathematical Statistics, 12, 91-96. Zhou, L., and Mathew, T. (1994), ``Some Tests for Variance Components Using Generalized P-Values,' Technometrics, 36, 394-401. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24700 | - |
dc.description.abstract | 容許區間是一個非常重要的統計工具且被廣泛地運用於各種領域中,例如,在動植物育種研究上、生態環境品質的監控、製藥工業、或工業上製程的可靠度研究及產品品質的管控等等。容許區間是屬於統計區間的一種,其所關心的問題是母群體中的某一特定比例(proportion)個體之區間範圍。本論文主要在於發展一套容許區間的建構程序,對象乃針對包含一組相互獨立的卡方分配隨機變數的一般常態線性模型之單尾與雙尾的$\beta$-content 及 $\beta$-expectation 之容許區間。此建構程序是基於廣義基準量 (generalized pivotal quantity) 的想法來進行,原本廣義基準量的目的在解決傳統信賴區間定義下無法獲得精確解 (exact solution) 的問題。本研究所討論的統計模型,包括有一般的平衡混合線性模型 general balanced mixed linear models)、
非平衡單向隨機模型 (unbalanced one-way random models),以及異質性 (heterogeneous)誤差變異數前提假設下具共變數 (covariates) 的非平衡單向隨機模型。就單尾的情況來說,這是一個精確的方法;就雙尾而言,則為一個好的近似方法。再由建構的程序中可以發現,廣義基準量的使用對於我們所感興趣的容許區間之建構相當簡易直接。我們由一些實際的問題來說明本論文所提出的容許區間之方法及應用。更進一步,我們進行統計模擬研究來評估此程序之成效。由模擬的結果顯示,本論文所提出的容許區間之建構程序可被建議使用於一般實際問題的解決上。 | zh_TW |
dc.description.abstract | A tolerance interval, a statistical interval pertains to a specified proportion of a population, is an important statistical tool and widely used in various practical applications, such as plant or animal inbreeding, environmental monitoring and regulation, pharmaceutical engineering, process reliability studies, quality control, etc. In this dissertation, we develop procedures for one- and two-sided $eta$-content and $eta$-expectation tolerance intervals for normal general linear models in which there exists a set of independent scaled chi-squared random variables. The developed procedures are based on the concept of generalized pivotal quantities, which has been frequently used to obtain confidence intervals in ituations where standard procedures do not lead to useful solutions.
We first derive the tolerance intervals for a general setting. Then we implement the derived procedures in the general balanced mixed linear models, the unbalanced one-way random models, and the unbalanced one-way random models with covariates under heterogeneous error variances. For the one-sided case, it does not involve any approximations, resulting in an exact method. For the two-sided case, it is good approximate. It is shown that the use of generalized pivotal quantities allows the construction of the tolerance intervals of interest fairly straightforward. Some practical examples are given to illustrate the proposed procedures. Furthermore, detailed statistical simulation studies are conducted to evaluate their performance, showing that the proposed procedures can be recommended for practical use. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:37:22Z (GMT). No. of bitstreams: 1 ntu-94-D89621201-1.pdf: 805902 bytes, checksum: 7e3c04524429540e8c340c334ffc899a (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | Contents
1 Introduction 1 1.1 Applications of tolerance intervals . . . . . . . . . . . . . . . . . . . 2 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Organization of the dissertation . . . . . . . . . . . . . . . . . . . . 8 2 Preliminaries 9 2.1 Statistical intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Tolerance intervals . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.2 Prediction intervals . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.3 Some relationships . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 Generalized condence intervals . . . . . . . . . . . . . . . . . . . . 12 3 Derivation of Tolerance Intervals for a General Setting 15 3.1 -content tolerance intervals . . . . . . . . . . . . . . . . . . . . . . 16 3.2 -expectation tolerance intervals . . . . . . . . . . . . . . . . . . . . 18 4 Tolerance Intervals for General Balanced Mixed Linear Models 20 4.1 GPQs for general balanced mixed models . . . . . . . . . . . . . . . 20 4.2 -content tolerance intervals . . . . . . . . . . . . . . . . . . . . . . 22 4.2.1 Monte-Carlo algorithm . . . . . . . . . . . . . . . . . . . . . 22 4.2.2 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . 24 4.2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 -expectation tolerance intervals . . . . . . . . . . . . . . . . . . . . 35 4.3.1 Monte-Carlo algorithm . . . . . . . . . . . . . . . . . . . . . 35 4.3.2 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . 36 4.3.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5 Tolerance Intervals for Unbalanced One-Way Random Models 51 5.1 A canonical form (LaMotte and McWhorter, 1978) . . . . . . . . . 52 5.2 The distributions of interest . . . . . . . . . . . . . . . . . . . . . . 53 5.3 -content tolerance intervals . . . . . . . . . . . . . . . . . . . . . . 54 5.3.1 Monte-Carlo sampling for the required GPQs . . . . . . . . 54 5.3.2 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . 56 5.3.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.5 Proof of Equation (5.5) . . . . . . . . . . . . . . . . . . . . . 75 5.4 -expectation tolerance intervals . . . . . . . . . . . . . . . . . . . . 77 5.4.1 Monte-Carlo sampling for the required GPQs . . . . . . . . 77 5.4.2 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . 77 5.4.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . 78 6 Tolerance Intervals for Unbalanced One-Way Random Models with Covariates under Heterogeneous Error Variances 89 6.1 The distribution of interest . . . . . . . . . . . . . . . . . . . . . . . 90 6.2 -content tolerance intervals . . . . . . . . . . . . . . . . . . . . . . 91 6.2.1 Monte-Carlo sampling for the required GPQs . . . . . . . . 91 6.2.2 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . 94 6.2.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3 -expectation tolerance intervals . . . . . . . . . . . . . . . . . . . . 103 6.3.1 Monte-Carlo sampling for the required GPQs . . . . . . . . 103 6.3.2 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . 103 6.3.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . 104 7 Conclusions and Future Research 108 Bibliography 111 List of Tables 4.1 Sires' breeding values and their daughters' milk production (kg). . . 29 4.2 Simulated condence coecients (times 104) for the ( = 0:95; = 0:90)-tolerance intervals, based on the glucose monitoring meter experiment, with m = 5; 10; B = L = E = 3 and R = 1. . . . . . . . 32 4.3 Simulated condence coecients (times 104) for the ( = 0:95; = 0:90)-tolerance intervals, based on the glucose monitoring meter experiment, with m = 25; 50; B = L = E = 3 and R = 1. . . . . . . . 33 4.4 Simulated condence coecients (times 104) for the ( = 0:95; = 0:90)-tolerance intervals, based on the glucose monitoring meter experiment, with m = 75; 100; B = L = E = 3 and R = 1. . . . . . . 34 4.5 Breaking strength (pounds tension) of nine batches of cement briquettes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.6 The average and standard deviation (in parentheses) of simulated proportions for one-sided -expectation tolerance limits based on the glucose monitoring meter experiment for B = L = E = 3, R = 1 and T = :5. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.7 The average and standard deviation (in parentheses) of simulated proportions for one-sided -expectation tolerance limits based on the glucose monitoring meter experiment for B = L = E = 3, R = 1 and T = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.8 The average and standard deviation (in parentheses) of simulated proportions for one-sided -expectation tolerance limits based on the glucose monitoring meter experiment for B = L = E = 3, R = 1 and T = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.9 The average and standard deviation (in parentheses) of simulated proportions for one-sided -expectation tolerance limits based on the glucose monitoring meter experiment for B = L = E = 3, R = 1 and T = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.10 The average of simulated proportions for two-sided -expectation tolerance intervals using Mee's method and the proposed method. The simulated expected lengths are given in parentheses. . . . . . . 49 5.1 Sulfur content for SRM 2682. . . . . . . . . . . . . . . . . . . . . . 57 5.2 Net weights (oz) of vegetable oil lls by groups. . . . . . . . . . . . 58 5.3 Moisture contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4 Designs used for simulation study. . . . . . . . . . . . . . . . . . . . 61 5.5 Simulated condence coecients (times 104) and expected values for upper ( = 0:90; = 0:95)-tolerance limits of N(; 2 ). . . . . . . . 63 5.6 Simulated condence coecients (times 104) and expected lengths for two-sided ( = 0:90; = 0:95)-tolerance intervals of N(; 2 ). . . 65 5.7 Simulated condence coecients (times 104) and expected values for upper ( = 0:90; = 0:95)-tolerance limits of N(; 2 + 2 e ). . . . . 67 5.8 Simulated condence coecients (times 104) and expected lengths for two-sided ( = 0:90; = 0:95)-tolerance intervals of N(; 2 +2 e ). 69 5.9 Simulated condence coecients (times 104) and expected values for upper ( = 0:90; = 0:95)-tolerance limits of N(; 2 ) using Krishnamoorthy-Mathew (K-M) method (the generalized -condence upper bound using T4 in (20)) and the proposed method. . . . . . . 73 5.10 Simulated condence coecients (times 104) and expected values for upper ( = 0:90; = 0:95)-tolerance limits of N(; 2 + 2 e ) using Krishnamoorthy-Mathew (K-M) method (the generalized - condence upper bound using T2 in (13)) and the proposed method. 74 5.11 The average and standard deviation (in parentheses) of simulated proportions for one-sided ( = 0:05)-expectation tolerance limits of N(; 2 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.12 The average and standard deviation (in parentheses) of simulated proportions for one-sided ( = 0:95)-expectation tolerance limits of N(; 2 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.13 The average and standard deviation (in parentheses) of simulated proportions for one-sided ( = 0:05)-expectation tolerance limits of N(; 2 + 2 e ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.14 The average and standard deviation (in parentheses) of simulated proportions for one-sided ( = 0:95)-expectation tolerance limits of N(; 2 + 2 e ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.1 Arsenic in NIST SRM 1556a (Oyster Tissue). . . . . . . . . . . . . 95 6.2 Number of participants, intake and steady state serum concentration of the vitamin C studies. . . . . . . . . . . . . . . . . . . . . . . . . 96 6.3 The estimated true lower serum levels (lower ( = 0:90; = 0:95)- tolerance limits) for some specied intake doses. . . . . . . . . . . . 97 6.4 Sampling designs used in the simulation study. . . . . . . . . . . . . 99 6.5 Simulated condence coecients (times 104) for one-sided ( = 0:90; = 0:95)-tolerance interval of N(x00; 2 ). . . . . . . . . . . . 101 6.6 Simulated condence coecients (times 104) for two-sided ( = 0:90; = 0:95)-tolerance interval of N(x00; 2 ). . . . . . . . . . . . 102 6.7 The estimated true lower serum levels (lower ( = 0:90)-expectation tolerance limits) for some specied intake doses. . . . . . . . . . . . 104 6.8 The average of simulated proportions for one-sided ( = 0:05)- expectation tolerance limits of N(x00; 2 ). . . . . . . . . . . . . . . 105 6.9 The average of simulated proportions for one-sided ( = 0:95)- expectation tolerance limits of N(x00; 2 ). . . . . . . . . . . . . . . 106 List of Figures 6.1 Mean serum level of vitamin C (mg/dl) versus daily intake in mg listed in Table 6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.2 The estimated true lower ( = 0:90; = 0:95)-tolerance limits versus some specied daily intake in mg. . . . . . . . . . . . . . . . . . . . 98 | |
dc.language.iso | en | |
dc.title | 廣義容許區間之研究 | zh_TW |
dc.title | Construction of Tolerance Intervals Using the Concept
of Generalized Pivotal Quantity | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蔡風順,陳 宏,鄭明燕,丁兆平,姚怡慶,劉仁沛 | |
dc.subject.keyword | 廣義 p 值,線性模型,卡方近似,變異數成份,廣義信賴區間, | zh_TW |
dc.subject.keyword | Chi-squared approximation,Generalized p-value,Generalized confidence interval,Linear model,Variance component, | en |
dc.relation.page | 117 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2005-01-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 787.01 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。