請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24697
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡定平 | |
dc.contributor.author | Chen-Jung Chen | en |
dc.contributor.author | 陳振榮 | zh_TW |
dc.date.accessioned | 2021-06-08T05:37:13Z | - |
dc.date.copyright | 2011-08-04 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-27 | |
dc.identifier.citation | [1]R. W. Wood, 'On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' Philosophical Magazine 4, 396-402 (1902).
[2]A. Otto, 'Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,' Zeitschrift fur Physik A Hadrons and Nuclei 216 (4), 398-410 (1968). [3]E. Kretchmann, 'Die bestimmung optischer Konstanten von Metallen durch Anregung von Oberflachenplasaschwingungen,' Z. Phys. 241, 313-324. (1971) [4]W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, 'Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,' Physical Review B 59, 12661 (1999). [5]J. A. Porto, Garc, iacute, F. J. a-Vidal, and J. B. Pendry, 'Transmission Resonances on Metallic Gratings with Very Narrow Slits,' Physical Review Letters 83, 2845 (1999) [6]W. Cai, R. Sainidou, J. J. Xu, A. Polman, and F. J. G. de Abajo, 'Efficient Generation of Propagating Plasmons by Electron Beams,' Nano Letters 9, 1176-1181 (2009). [7]F. J. G. de Abajo, 'Optical excitations in electron microscopy,' Reviews of Modern Physics 82, 209-275 (2010). [8]E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, 'Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence Spectroscopy,' Nano Letters 7, 2843-2846 (2007). [9]B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, 'Local excitation, scattering, and interference of surface plasmons,' Physical Review Letters 77, 1889-1892 (1996). [10]A. V. Zayats, and Smolyaninov, II, 'Near-field photonics: surface plasmon polaritons and localized surface plasmons,' Journal of Optics A: Pure and Applied Optics 5, S16-S50 (2003). [11]A. Bouhelier, and G. P. Wiederrecht, 'Surface plasmon rainbow jets,' Optics Letters 30, 884-886 (2005). [12]V. G. Veselago, 'Electrodynamics of substances with simultaneously negative values of giama and mu,' Soviet Physics Uspekhi-Ussr 10, 509-& (1968). [13]D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, 'Composite Medium with Simultaneously Negative Permeability and Permittivity,' Physical Review Letters 84, 4184 (2000). [14]R. A. Shelby, D. R. Smith, and S. Schultz, 'Experimental verification of a negative index of refraction,' Science 292, 77-79 (2001). [15]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, 'Magnetism from conductors and enhanced nonlinear phenomena,' Microwave Theory and Techniques, IEEE Transactions on 47 (11), 2075-2084 (1999). [16]J. B. Pendry, 'Negative refraction makes a perfect lens,' Physical Review Letters 85, 3966-3969 (2000). [17]J. Pendry, 'Comment on 'Negative refraction makes a perfect lens' - Reply,' Physical Review Letters 87 (2001). [18]R. A. Shelby, D. R. Smith, and S. Schultz, 'Experimental verification of a negative index of refraction,' Science 292, 77-79 (2001). [19]N. Fang, H. Lee, C. Sun, and X. Zhang, 'Sub-diffraction-limited optical imaging with a silver superlens,' Science 308, 534-537 (2005). [20]C. M. Soukoulis, S. Linden, and M. Wegener, 'Negative refractive index at optical wavelengths,' Science 315, 47-49 (2007). [21]S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, 'Loss-free and active optical negative-index metamaterials,' Nature 466, 735-738 (2010). [22]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, 'Composite medium with simultaneously negative permeability and permittivity,' Physical Review Letters 84, 4184-4187 (2000). [23]R. B. Greegor, C. G. Parazzoli, K. Li, and M. H. Tanielian, 'Origin of dissipative losses in negative index of refraction materials,' Applied Physics Letters 82, 2356-2358 (2003). [24]M. Bayindir, K. Aydin, E. Ozbay, P. Markos, and C. M. Soukoulis, 'Transmission properties of composite metamaterials in free space,' Applied Physics Letters 81, 120-122 (2002). [25]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, 'Terahertz magnetic response from artificial materials,' Science 303, 1494-1496 (2004). [26]N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, 'Magnetic response of split-ring resonators in the far-infrared frequency regime,' Optics Letters 30, 1348-1350 (2005). [27]S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, 'Magnetic response of metamaterials at 100 terahertz,' Science 306, 1351-1353 (2004). [28]S. Zhang, W. J. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, 'Midinfrared resonant magnetic nanostructures exhibiting a negative permeability,' Physical Review Letters 94 (2005). [29]S. Zhang, W. J. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, 'Experimental demonstration of near-infrared negative-index metamaterials,' Physical Review Letters 95 (2005). [30]C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, 'Magnetic metamaterials at telecommunication and visible frequencies,' Physical Review Letters 95 (2005). [31]G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, and C. M. Soukoulis, 'Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,' Optics Letters 30, 3198-3200 (2005). [32]V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, 'Negative index of refraction in optical metamaterials,' Optics Letters 30, 3356-3358 (2005). [33]G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, 'Simultaneous negative phase and group velocity of light in a metamaterial,' Science 312, 892-894 (2006). [34]G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, 'Negative-index metamaterial at 780 nm wavelength,' Optics Letters 32, 53-55 (2007). [35]J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, 'Optical negative refraction in bulk metamaterials of nanowires,' Science 321, 930-930 (2008). [36]N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, 'Three-dimensional photonic metamaterials at optical frequencies,' Nature Materials 7, 31-37 (2008). [37]C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E. B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, and T. Pertsch, 'Polarization-independent negative-index metamaterial in the near infrared,' Optics Letters 34, 704-706 (2009). [38]S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, 'A single-layer wide-angle negative-index metamaterial at visible frequencies,' Nature Materials 9, 407-412 (2010). [39] S. Kawata, H.B. Sun, T. Tanaka, and K. Takada, 'Finer features for functional microdevices,' Nature 412 (6848), 697-698 (2001) [40]http://www.lzh.de/en. [41]J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, 'Gold Helix Photonic Metamaterial as Broadband Circular Polarizer,' Science 325, 1513-1515 (2009). [42]J. H. Cho and D. H. Gracias, 'Self-Assembly of Lithographically Patterned Nanoparticles,' Nano Letters 9 (12), 4049-4052 (2009). [43]J. H. Cho, T. James, and D. H. Gracias, 'Curving Nanostructures Using Extrinsic Stress,' Advanced Materials. 22 (21), 2320-2324 (2010). [44]D. B. Burckel, J. R. Wendt, G. A. Ten Eyck, J. C. Ginn, A. R. Ellis, I. Brener, and M. B. Sinclair, 'Micrometer-Scale Cubic Unit Cell 3D Metamaterial Layers,' Advanced. Materials. 22 (44), 5053-5057 (2010). [45]Elionix Inc., 'Instruction manual for control system for electron beam lithography system, Page 10,21.' [46]http://www.microchem.com/ [47]S. Norrman, T. Andersson, C. G. Granqvist, and O. Hunderi, 'Optical properties of discontinuous gold films,' Physical Review B 18, 674 (1978). [48]B. F. Bai, J. Laukkanen, A. Lehmuskero, and J. Turunen, 'Simultaneously enhanced transmission and artificial optical activity in gold film perforated with chiral hole array,' Physical Review B 81 (2010). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24697 | - |
dc.description.abstract | 利用次波長的人造結構陣列所製成的超穎材料,擁有一般傳統光學所沒有的特殊光學性質,而現在最普遍用來做超穎材料的結構為隙環共振器(Split Ring Resonators),許多特殊的性質例如磁共振響應、光學的對掌性、負折射現象以及對光譜的調制性都已經被研究發現。在本文中,利用電子束微影以及二次曝光的技術在玻璃基板上製作375x375個底部長度為110 nm、手臂長度為60 nm與週期為200 nm的黃金立體U型環陣列,並且使用有限元素分析法模擬和顯微光譜量測在正向入射的情況下,U型環的穿透光譜,實驗結果與模擬相當吻合,從結果中我們發現當入射水平方向的偏振光時,會出現一個低階的共振模態,且在此模態下U型環的中心處會產生一個很強的磁場,接著當我們增長手臂長度時,會出現另外一個比較高階的共振模態,在此模態下會在手臂向外的兩端產生強磁場,而造成此現象的原因主要是由於增加手臂長度,會使得U型環內部允許存在的駐波數增加,造成不同的電流分布使得磁場發生改變。 | zh_TW |
dc.description.abstract | Metamaterials are created as an array of artificial sub-wavelength structures, often exhibit unique optical properties which are not found in nature. Metamaterials composited with sub-wavelength split ring resonators (SRRs) have attracted many scientists' attention because of a number of extraordinary properties, such as artificial magnetism, optical chirality and negative refraction index, optical spectrum manipulation. We fabricated of 375x375 vertical U-shape nano gold rings (110 nm x 60 nm x 40 nm) on a fused silica substrate has been successfully implemented by a novel e-beam lithography double exposure process. Plasmonic resonance modes of such structures are investigated by finite-element simulations and optical micro-spectra measurements, which are in excellent agreement with each other. Results show magnetic field solely depends on the resonance mode showing either enhanced between two prongs of vertical U-shape nano ring or enhanced around two prongs of vertical U-shape gold ring. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:37:13Z (GMT). No. of bitstreams: 1 ntu-100-R98222072-1.pdf: 2401314 bytes, checksum: bcba6aa4d6491a7e7ee514bdfd9870eb (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 第一章 超穎材料與表面電漿子之簡介與應用......1
1.1 前言.............................1 1.2 表面電漿子發展背景與原理.............2 1.2-1表面電漿子發展背景.....................2 1.2-2表面電漿共振..........................3 1.3 超穎材料發展背景與原理..............10 第二章 超穎材料製作方法簡介................17 2.1 前言.............................17 2.2 光學微影術........................17 2.2-1 光學曝光方式.......................17 2.2-2 光學曝光的製作過程..................18 2.3 雙光子聚合術.......................22 2.4 電子束直寫技術......................24 2.5 製作立體U型環......................32 2.5-1自組裝技術............................32 2.5-2側向蒸鍍法............................33 第三章 樣品製作與量測......................36 3.1 前言..............................36 3.2 樣品製作過程.......................36 3.2-1 AutoCAD數據格式...................36 3.2-2 製程步驟與參數設定..................39 3.2-3 蒸鍍與舉離製程......................43 3.3 樣品量測過程........................47 第四章 實驗結果與分析......................49 4.1 實驗結果...........................49 4.2 結果分析...............................51 4.2-1 單一U型共振環.........................51 4.2-2 雙U型共振環...........................55 第五章 總結...............................59 參考資料....................................60 附錄.......................................66 | |
dc.language.iso | zh-TW | |
dc.title | 三維奈米U型環於可見光波段共振之研究 | zh_TW |
dc.title | Metamaterial: vertical U-shape gold nano ring in optical region | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 藍永強,果尚志,胡淑芬,劉如熹 | |
dc.subject.keyword | 表面電漿子,隙環共振器,超穎材料, | zh_TW |
dc.subject.keyword | Surface plasmon,split ring resonators,Metamaterials, | en |
dc.relation.page | 67 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-07-27 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 2.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。