請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24675完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何志浩(Jr-Hau He) | |
| dc.contributor.author | Wen-Cheng Sun | en |
| dc.contributor.author | 孫文政 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:36:10Z | - |
| dc.date.copyright | 2011-08-04 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-27 | |
| dc.identifier.citation | [1] J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, Y. W. Kim, “Soft
solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser”, Adv. Mater. 15, 1911 (2003) [2] K. L. Chopra, S. Major, D. K. Pandya, “Transparent conductors--a status review”, Thin Solid Films 102, 1 (1983) [3] C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, Y. Lu, M. Wraback, and H. Shen, “Structural, optical, and surface acoustic wave properties of epitaxial ZnO films grown on (0112 ) sapphire by metalorganic chemical vapor deposition”, J. Appl. Phys. 85, 2595 (1999) [4] N. J. Dayan, S. R. Sainkar, R. N. Karekar, R. C. Aiyer, “Formulation and characterization of ZnO: Sb thick-film gas sensors”, Thin Solid Films 325, 254 (1998) [5] N. Golego, S. A. Studenikin, and M. Cocivera, “Sensor Photoresponse of Thin-Film Oxides of Zinc and Titanium to Oxygen Gas”, J. Electrochem. Soc. 147, 1592 (2000) [6] T. Diet, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, “Zener model description of ferromagnetism in zinc-blende magnetic semiconductors”, Science 287, 1019 (2000) [7] S. Krishnamoorthy, A. A. Iliadis, A. Inumpudi, S. Choopun, R. D. Vis pute, T. Venkatesan, “Observation of resonant tunneling action in ZnO/Zn0.8Mg0.2O devices”, Solid State Electron. 46, 1633 (2002) [8] Y. Chen, D. Bagnall, T. Yao, “ZnO as a novel photonic material for the UV region”, Mater. Sci. Eng. B 75, 190 (2000) [9] D. J. Sirbuly, M. Law, H. Yan and P. Yang, “Semiconductor Nanowires for Subwavelength Photonics Integration”, J. Phys. Chem. B 109, 15190 (2005) [10] D. Appell, “Nanotechnology: Wired for success”, Nature 419, 553 (2002) [11] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature 409, 66-69 (2001) [12] J. H. He, C. L. Hsin, J. Liu, L. J. Chen and Z. L. Wang, “Piezoelectric Gated Diode of a Single ZnO Nanowire”, Adv. Mater. 19, 781-784 (2007) [13] K. F. Huo, Y. M. Hu, J. J. Fu, X. B. Wang, P. K. Chu, Z. Hu and Y. Chen, “Direct and Large-Area Growth of One-Dimensional ZnO Nanostructures from and on a Brass Substrate”, J. Phys. Chem. C 111, 5876-5881 (2007) [14] X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves”, Science 316, 102 (2007) [15] M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. D. Yang, “Nanowire dye-sensitized solar cells”, Nat. Mater. 4, 455 (2005) [16] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science 292, 1897 (2000) [17] S. Park, J. M. Vohs, R. J. Gorte, “Direct oxidation of hydrocarbons in a solidoxidefuel cell”, Nature 404, 265 (2000) [18] Y. W. Li, D. H. He, Z. X. Cheng, C. L. Su, J. R. Li, M. J. Zhu, “Effect of calcium salts on isosynthesis over ZrO2 catalysts”, Mol. Catal. A 175, 267 (2001) [19] E. C. Subbarao, H. S. Maiti, “Science and technology of zirconia”, Adv. Ceram. 24, 731 (1988) [20] Q. Zhang, J. Shen, J. Wang, G. Wu, L. Chen, “Sol–gel derived ZrO2–SiO2 highly reflective coatings”, Int. J. Inorg. Mater. 2, 319 (2000) [21] P. K. Wright, A. G. Evans, “Mechanisms governing the performance of thermal barrier coatings”, Curr. Opin. Solid State Mater. Sci. 4, 25 (1999) [22] C. Piconi, G. Maccauro, “Zirconia as a ceramic biomaterial, Biomaterials”, 20, 1 (1999) [23] P. Salas, E. D. Rosa-Cruz, L. A. Diaz-Torres, V. M. Castano, R. Melendrez, M. Barboza-Flores, “Monoclinic, ZrO2 as a broad spectral response thermoluminescence UV dosemeter”, Radiat. Meas. 37, 187 (2003) [24] S. Shukla, S. Seal, R. Vij, S. Bandyopadhyay, “Reduced Activation Energy for Grain Growth in Nanocrystalline Yttria- Stabilized Zirconia”, Nano. Lett. 3, 0397 (2003) [25] M. Ritala, M. Leskelä, “Atomic layer epitaxy-a valuable tool for nanotechnology”, Nanotechnology 10, 19 (1999) [26] L. Niinistö, J. Päiväsaari, J. Niinistö, M. Putkonen, and M. Nieminen, “Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials”, phys. stat. sol. (a) 201, 1443 (2004) [27] “Technology Backgrounder: Atomic Layer Deposition”, ICKnowledge (2004) [28] W. Y. Chen, C. W. Wang, J. H. He, Y. C. Chang, J. C. Wang, L. J. Chen, H. Y. Chen, and Shangir Gwo, “Facile synthesis of large scale Er- doped ZnO flower-like structures with enhanced 1.54 μm infrared emission”, phys. stat. sol. (a) 205, 1190 (2008) [29] C. Y. Chen, C. A. Lin, M. J. Chen, G. R. Lin and J. H. He, “ZnO/Al2O3 core–shell nanorod arrays: growth, structural characterization, and luminescent properties”, Nanotechnology 20, 185605 (2009) [30] L. E. Greene, B. D. Yuhas, M. Law, D. Zitoun and P. D. Yang, “Solution-Grown Zinc Oxide Nanowires”, Inorg. Chem. 45, 7535 (2006) [1] J. T. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanotubes”, Acc. Chem. Res. 32, 435 (1999) [2] L. Samuelson, “Self-forming nanoscale devices”, Mater. Today 6, 22 (2003) [3] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang, and M. Muhammed, “High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes”, J. Phys. Chem. B 101, 2598 (1997) [4] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire dye-sensitized solar cells”, Nat. Mater. 4, 455 (2005) [5] J. H. He, S. T. Ho, T. B. Wu, L. J. Chen, and Z. L. Wang, “Electrical and photoelectrical performances of nano-photodiode based on ZnO nanowires”, Chem. Phys. Lett. 435, 119 (2007) [6] X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves”, Science 316, 102 (2007) [7] H. Kind, H. Q. Yan, B. Messer , M. Law, and P. D. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches “, Adv. Mater. 14, 158 (2002) [8] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science 292, 1897 (2000) [9] A. Polman, “Erbium implanted thin film photonic materials”, J. Appl. Phys. 82, 1 (1997) [10] S. Lanzerstorfer , L. Palmetshofer, W. Jantsch, and J. Stimmer, “On the environment of optically active Er in Si-electroluminescence devices”, Appl. Phys. Lett. 72, 809 (1998) [11] S. Coffa, G. Franzo, F. Priolo, A. Pacelli, and A. Lacaita, “Direct evidence of impact excitation and spatial profiling of excited Er in light emitting Si diodes”, Appl. Phys. Lett. 73, 93 (1998) [12] X. Zhao, S. Komuro, H. Isshiki, Y. Aoyagi, and T. Sugano, “Fabrication and stimulated emission of Er-doped nanocrystalline Si waveguides formed on Si substrates by laser ablation”, Appl. Phys. Lett. 74, 120 (1999) [13] N. Mais, J. P. Reithmaier, A. Forchel, M. Kohls, L. Spanhel, and G. Muller, “Er doped nanocrystalline ZnO planar waveguide structures for 1.55 μm amplifier applications”, Appl. Phys. Lett. 75, 2005 (1999) [14] S. Komuro, T. Katsumata, T. Morikawa, X. W. Zhao, H. Isshiki, and Y. Aoyagi, “Highly erbium-doped zinc–oxide thin film prepared by laser ablation and its 1.54 μm emission dynamics”, J. Appl. Phys. 88, 7129 (2000) [15] M. Ishii, S. Komuro, T. Morikawa, and Y. Aoyagi, “Local structure analysis of an optically active center in Er-doped ZnO thin film”, J. Appl. Phys. 89, 3679 (2001) [16] E. Rita, E. Alves, U. Wahl, J. G. Correia, T. Monteiro, M. J. Soares, A. Neves and M. Peres, “Stability and luminescence studies of Tm and Er implanted ZnO single crystals”, Nucl. Instrum. Methods Phys. Res., Sect. B 242, 580 (2006) [17] T. Schmidt, G. Muller and L. Spanhel, “Activation of 1.54 μm Er3+ Fluorescence in Concentrated II−VI Semiconductor Cluster Environments”, Chem. Mater. 10, 65 (1998) [18] X. T. Zhang, Y. C. Liu, J. G. Ma, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong and X. W. Fan, “Room-temperature blue luminescence from ZnO:Er thin films”, Thin Solid Films 413, 257 (2002) [19] Y. H. Xie, E. A. Fitzgerald, and Y. J. Mii, “Evaluation of erbium‐doped silicon for optoelectronic applications”, J. Appl. Phys. 70, 3223-3228 (1991) [20] W. C. Yang, C. W. Wang, J. C. Wang, Y. C. Chang, H. C. Hsu, Tzer-En Nee, L. J. Chen, and J. H. He, “Aligned Er-Doped ZnO Nanorod Arrays with Enhanced 1.54 µm Infrared Emission”, J. Nanosci. Nanotechnol. 8, 3363 (2008) [1] M. A. L. Johnson, Shizuo Fujita, W. H. Rowland, W. C. Hughes, J. W. Cook and J. F. Schetzina, “MBE growth and properties of ZnO on sapphire and SiC substrates”, J. Electron. Mater. 25, 855 (1996) [2] Y. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, K.-T. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, “Growth of ZnO single crystal thin films on c-plane (0 0 0 1) sapphire by plasma enhanced molecular beam epitaxy”, J. Cryst. Growth 181, 165 (1997) [3] A. Ohtomo, K. Tamura, K. Saikusa, K. Takahashi, T. Makino, Y. Segawa, H. Koinuma, and M. Kawasaki, “Single crystalline ZnO films grown on lattice-matched ScAlMgO4(0001) substrates”, Appl. Phys. Lett. 75, 2635 (1999) [4] R. D. Vispute, V. Talyansky, S. Choopun, R. P. Shrama, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, and K. A. Jones, “Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices”, Appl. Phys. Lett. 73, 348 (1998) [5] M. Fujitaa, M. Sasajimaa, Y. Deesirapipata, Y. Horikoshia, “Molecular beam epitaxial growth of hexagonal ZnMgO films on Si(1 1 1) substrates using thin MgO buffer layer”, J. Cryst. Growth 278, 293 (2005) [6] Y.W. Heo, D.P. Norton, L.C. Tien, Y. Kwon, B.S. Kang, F. Ren, S.J. Pearton, J.R. LaRoche, “ZnO nanowire growth and devices”, Mater. Sci. Eng. R 47, 1 (2004) [7] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo and P. D. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science 292, 1897 (2000) [8] H. Rensmo, K. Keis, H. Lindström, S. Södergren, A. Solbrand, A. Hagfeldt, S. E. Lindquist, L. N. Wang, and M. Muhammed, “High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes”, J. Phys. Chem. B 101, 2598 (1997) [9] L. Liao, H. B. Lu, J. C. Li, C. Liu, D. J. Fu, “The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation”, Appl. Phys. Lett. 91, 173110 (2007) [10] H. Kind, H. Q. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches “, Adv. Mater. 14, 158 (2002) [11] D. K. Hwang, S. H. Kang, J. H. Lim, E. G. Yang, J. Y. Oh, J. H. Yang, and S. J. Park, “p-ZnO/n-GaN heterostructure ZnO light-emitting diodes”, Appl. Phys. Lett. 86, 222101 (2005) [12] N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, Y. C. Lu, “Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire”, Appl. Phys. Lett. 85, 3702 (2004) [13] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, Adv. Mater. 15, 464 (2003) [14] M. H. Sun, Q. F. Zhang, J. L. Wu, “Electrical and electroluminescence properties of As-doped p-type ZnO nanorod arrays”, J. Phys. D: Appl. Phys. 40, 3798 (2007) [15] J.B. Cui, C.P. Daghlian, U.J. Gibson, R. Pusche, P. Geithner, L. Ley, “Low-temperature growth and field emission of ZnO nanowire arrays”, J. Appl. Phys. 97, 44315 (2005) [16] P.X. Gao, J.H. Song, J. Liu, Z.L.Wang, “Nanowire Piezoelectric Nanogenerators on Plastic Substrates as Flexible Power Sources for Nanodevices”, Adv. Mater. 19, 67 (2003) [17] Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, “Light scattering by nanostructured anti-reflection coatings”, Energy Environ. Sci. Advance Article (2011) [18] X. H. Pan, J. Jiang, Y. J. Zeng, H. P. He, L. P. Zhu, Z. Z. Ye, B. H. Zhao, and X. Q. Pan, “Electrical and optical properties of phosphorus-doped p-type ZnO films grown by metalorganic chemical vapor deposition”, J. Appl. Phys. 103, 023708 (2008) [19] M. W. Cho, A. Setiawan, H. J. Ko, S. K. Hong, and T. Yao, “ZnO epitaxial layers grown on c-sapphire substrate with MgO buffer by plasma-assisted molecular beam epitaxy (P-MBE)”, Semicond. Sci. Technol. 20, 13 (2005) [20] Y. S. Bae, D. C. Kim, C. H. Ahn, J. H. Kim, and H. K. Cho, “Growth of ZnO nanorod arrays by hydrothermal method using homo-seed layers annealed at various temperatures”, Surf. Interface Anal. 42, 978 (2010) [21] J. Song, S. Lim, “Effect of Seed Layer on the Growth of ZnO Nanorods”, J. Phys. Chem. C 111, 596 (2007) [22] S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, X. P. Qu, “The effect of pre-annealing of sputtered ZnO seed layers on growth of ZnO nanorods through a hydrothermal method”, Appl. Phys. A 94, 775 (2009) [1] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98, 041301 (2005) [2] D. C. Look, “Progress in ZnO materials and devices”, J. Electron. Mater. 35 1299 (2006) [3] X.-M. Zhang, M.-Y. Lu, Y. Zhang, L.-J. Chen, Z.L. Wang, “Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film”, Adv. Mater. 21, 2767 (2009) [4] E. Lai, W. Kim, P. D. Yang, “Vertical nanowire array-based light emitting diodes”, Nano Res. 1, 123 (2008) [5] R. Guo, J. Nishimura, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, “Electroluminescence from ZnO nanowire-based p-GaN/ n-ZnO heterojunction light-emitting diodes”, Appl. Phys. B 94, 33 (2009) [6] M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.W. Lee, J.M. Myong, “ZnO-Nanowire-Inserted GaN/ZnO Heterojunction Light-Emitting Diodes”, Small 3, 568 (2007) [7] W. I. Park, G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN”, Adv. Mater. 16, 87 (2004) [8] S.-H. Park, S.-H. Kim, S.-W. Han, “Growth of homoepitaxial ZnO film on ZnO nanorods and light emitting diode applications”, Nanotechnology 18, 055608 (2007) [9] M.-C. Jeong, B.-Y. Oh, M.-H. Ham, J. M. Myong, “Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes”, Appl. Phys. Lett. 88, 202105 (2006) [10] A. M. C. Ng, Y. Y. Xi, Y. F. Hsu, A. B. Djurišic, W. K. Chan, S. Gwo, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, C. Surya, “GaN/ZnO nanorod light emitting diodes with different emission spectra”, Nanotechnology 20, 445201 (2009) [11] Y. Bie, Z. Liao, P. Wang, Y. Zhou, X. Han, Y. Ye, Q. Zhao, X. Wu, L. Dai, and J. Xu, “Single ZnO Nanowire/p-type GaN Heterojunctions for Photovoltaic Devices and UV Light-Emitting Diodes”, Adv. Mater. 22, 4284 (2010) [12] O. Lupan, T. Pauporte, and B. Viana, “Low-Voltage UV-Electroluminescence from ZnO-Nanowire Array/p-GaN Light-Emitting Diodes”, Adv. Mater. 22, 3298 (2010) [13] D. C. Kim , W. S. Han , B. H. Kong , H. K. Cho , C. H. Hong, “Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition”, Physica B 401–402, 386 (2007) [14] C. H. Chen , S. J. Chang , S. P. Chang , M. J. Li , I. C. Chen , T. J. Husueh , C. L. Hsu, “Electroluminescence from n-ZnO nanowires/p-GaN heterostructure light-emitting diodes”, Appl. Phys. Lett. 95, 223101 (2009) [15] S. D. Lee , Y. S. Kim , M. S. Yi , J. Y. Choi , S. M. Kim, “Morphology Control and Electroluminescence of ZnO Nanorod/GaN Heterojunctions Prepared Using Aqueous Solution”, J. Phys. Chem. C 113, 8954 (2009) [16] S. Kishwar , K. Hasan , G. Tzamalis , O. Nur , M. Willander , H. S. Kwack , D. Le Si Dang, “Electro-optical and cathodoluminescence properties of low temperature grown ZnO nanorods/p-GaN white light emitting diodes”, Phys. Status Solidi A 207, 67 (2010) [17] A. M. C. Ng, X. Y. Chen, F. Fang, Y. F. Hsu, A. B. Djurišic, C. C. Ling, H. L. Tam, K. W. Cheah, P. W. K. Fong, H. F. Lui, C. Surya, W. K. Chan, “Solution-based growth of ZnO nanorods for light-emitting devices: hydrothermal vs. electrodeposition”, Appl Phys B 100, 851 (2010) [18] S. J. Jiao, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, Y. C. Liu, and X. W. Fan, “Ultraviolet electroluminescence of ZnO based heterojunction light emitting diode”, phys. stat. sol. (c) 3, 972–975 (2006) [19] H. Zhu, C. X. Shan, B. H. Li, J. Y. Zhang, B. Yao, Z. Z. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, “Ultraviolet Electroluminescence from MgZnO-Based Heterojunction Light-Emitting Diodes”, J. Phys. Chem. C 113, 2980–2982 (2009) [20] T. C. Lu, M. Y. Ke, S. C. Yang, Y. W. Cheng, L.Y. Chen, G. J. Lin, Y. H. Lu, J. H. He, H. C. Kuo, and J. J. Huang, “Characterizations of low-temperature electroluminescence from ZnO nanowire light-emitting arrays on the p-GaN layer”, Optics Letters 35, 4109 (2010) [21] D. M. Roessler, and W. C. Walker, Phys. Rev. 159, 733 (1967) [22] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, “MgxZn1−xO as a II–VI widegap semiconductor alloy”, Appl. Phys. Lett. 72, 2466 (1998) [23] A. K. Sharma, J. Nerayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas, O. W. Holland, “Optical and structural properties of epitaxial MgxZn1−xO alloys”, Appl. Phys. Lett. 75, 3327 (1999) [24] A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma, M. Kawasaki, “Thermal stability of supersaturated MgxZn1−xO alloy films and MgxZn1−xO/ZnO heterointerfaces”, Appl. Phys. Lett. 75, 4088 (1999) [25] W. I. Park, G.-C. Yi, H. M. Jang, “Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1−xMgxO(0 ⩽ x ⩽ 0.49) thin films”, Appl. Phys. Lett. 79, 2022 (2001) [26] D. Li, Y. H. Leung, A. B. Djurisic, Z. T. Liu, M. H. Xie, S. L. Shi, S. J. Xu, and W. K. Chan, “Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods”, Appl. Phys. Lett. 85, 1601(2004) [27] A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, R. F. Karlicek, “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures”, Appl. Phys. Lett. 70, 2790 (1997) [28] Ya. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, “Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes”, Appl. Phys. Lett. 83, 2943 (2003) [29] J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park,” UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering”, Adv. Mater. 18, 2720 (2006) [30] J. A. Aranovich, D. Golmayo, A. L. Fahrenbruch, and R. H. Bube, “Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis”, J. Appl. Phys. 51, 4260 (1980) [31] K.Y. Tsou, and E.B. Hensley, “Electron affinities of the alkaline earth chalcogenides”, J.Appl.Phys.45, 47 (1979) [32] D. Qiao, L. S. Yu, S. S. Lau, J. M. Redwing, J. Y. Lin, and H. X. Jiang, “Dependence of Ni/AlGaN Schottky barrier height on Al mole fraction”, J. Appl. Phys. 87, 801 (2000) [33] H. Tang, B. J. Kwon, and J. Y. Park, “Characterizations of individual ZnMgO nanowires synthesized by a vapor-transport method”, Phys. Status Solidi A 207, 2478–2482 (2010) [34] Z. Zhang, J. G. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, and J. Y. Huang, “Quasi-aligned Zn1−xMgxO nanorods synthesized by thermal evaporation”, J. Phys. D: Appl. Phys. 40, 3490–3493 (2007) [1] C. R. Xia, H. Q. Cao, H. Wang, P. H. Yang, G. Y. Meng and D. K. Peng, “Sol-gel synthesis of yttria stabilized zirconia membranes through controlled hydrolysis of zirconium alkoxides”, J. Membrane Sci. 162, 181-188 (1999) [2] Y. Li, D. He, Z. Cheng, C. Su, J. Li, Q. Zhu, “Effect of calcium salts on isoynthesis over ZrO2 catalysts”, J. Mol. Catal. A: Chemical 175, 267 (2001) [3] E. C. Subbarao, and H. S. Maiti, Adv. Ceram. 24, 731–748 (1988) [4] M. Mamak, N. Coombs, and G. Ozin, “Self-Assembling Solid Oxide Fuel Cell Materials: Mesoporous Yttria-Zirconia and Metal-Yttria-Zirconia Solid Solutions”, J. Am. Chem. Soc. 122, 8932–8939 (2000) [5] T.S. Kalkur, and Y.C. Lu, “Electrical characteristics of ZrO2-based metal-insulator-semiconductor structures on p-Si”, Thin Solid Films 207, 193-196 (1992) [6] G. D. Wilk, and R. M. Wallace, “Stable zirconium silicate gate dielectrics deposited directly on silicon”, Appl. Phys. Lett. 76, 112 (2000) [7] S. Somiya, N. Yamamoto, and H. Yanagina, “Science and Technology of Zirconia III”, American Ceramic Society, Westerville, OH, vol. 24A and 24B (1988) [8] G. Li, W. Li, M. Zhang, and K. Tao, “Characterization and catalytic application of homogeneous nano-composite oxides ZrO2–Al2O3”, Catal. Today 93, 595 (2004) [9] W.-H. Tuan, J.-R. Chen, and C.-J. Ho, “Critical zirconia amount to enhance the strength of alumina”, Ceram. Int. 34, 2129 (2008) [10] R. H. French, S. J. Glass, F. S. Ohuchi, Y.-N. Xu, and W. Y. Ching, “Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2”, Phys. Rev. B 49, 5133 (1994) [11] A. Emeline, G. V. Kataeva, A. S. Litke, A. V. Rudakova, V. K. Ryabchuk, and N. Serpone, “Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and colloidal ZrO2 sols”, Langmuir 14 ,5011 (1998) [12] C.-H. Lu, H.-C. Hong, and R. Jagannathan, “Sol–gel synthesis and photoluminescent properties of cerium-ion doped yttrium aluminium garnet powders”, J. Mater. Chem. 12, 2525 (2002) [13] P. Iacconi, D. Lapraz, and R. Caruba, “Traps and emission centres in thermoluminescent ZrO2”, Phys. Status Solidi A 50, 275 (1978) [14] M. Garcıa-Hipolito, R. Martınez, O. Alvarez-Fregoso, “Cathodoluminescent and photoluminescent properties of terbium doped ZrO2 films prepared by pneumatic spray pyrolysis technique”, J. Luminesc. 93, 9 (2001) [15] V. A. Emeline, and N. Serpone, “Relaxation dynamics of processes in colloidal zirconia nanosols. Dependence on excitation energy and temperature”, Chem. Phys. Lett. 345, 105 (2001) [16] W. C. Hsieh, and C. S. Su, “UV induced thermoluminescence in ZrO2 doped by Er2O3”, J. Phys. D: Appl. Phys. 27, 1763 (1994) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24675 | - |
| dc.description.abstract | 本論文研究利用原子層沉積技術(Atomic Layer Deposition, ALD)和水熱法(Hydrothermal synthesis)所成長的氧化鋅奈米柱陣列(Nanorod arrays, NRAs)於不同晶種層,與氧化鋅奈米柱陣列在異質接面發光二極體(heterojunction LED)的應用,同時還有研究二氧化鋯(Zirconia, ZrO2)奈米粒子結構的可見光螢光激發光譜(Phololuminescence spectra, PL spectra)。
在第二章,控制旋轉塗佈的參數和熱退火處理製作出摻鉺氧化鋅奈米柱,且他們具有強烈的1.54微米紅外線發射光譜。利用該合成方法所合成氧化鋅奈米結構所具有的優勢是能夠進行大規模生產,最低要求的裝備和產品同質化。從螢光激發光譜的測量結果發現,鉺離子被成功地摻入進氧化鋅裡。此外,我們遵循同樣的過程製備摻鉺氧化鋅薄膜。在1.54微米具有增強發光強度的摻鉺氧化鋅奈米柱可期待被利用於光電器件和光通信的應用。 在第三章,我們利用原子層沉積技術矽基板上成長兩種不同的氧化鋅晶種層:一個是在氧化鋅晶種層和矽基板中間插入25奈米氧化鎂,另一個是沒有氧化鎂夾層。氧化鎂夾層被證明是有益的,它可以增加氧化鋅晶種層的平均晶粒尺寸。在螢光激發光譜中, 氧化鋅晶種層的發光品質也提升藉由使用氧化鎂夾層。此外,氧化鋅奈米柱成長於在兩個不同的晶種層並對它們的性質進行研究。結果發現,使用氧化鎂夾層, 氧化鋅奈米柱的表面型態會增強, 同時近帶隙(near-band-edge, NBE)發光強度也會提升。期望這章可以提供一個簡單和低溫度的方法去製造高品質的氧化鋅, 且在光電奈米元件的應用。 在第四章,我們結合原子層沉積技術和水熱法製作出氧化鋅異質接面發光二極體和氧化鎂電流阻擋層。當正向偏壓增加,來自氧化鋅的電激放光(Electroluminescence)強度有顯著增強,並在室溫下觀察到。此外,結合原子層沉積技術和熱退火處理製作出氧化鋅鎂奈米柱在 p型氮化鎵上形成異質接面發光二極體。在室溫下,光譜中約370 nm處有氧化鋅鎂的電激放光。此章的結果有助於未來實現氧化鋅短波長發光奈米器件。 在第5章,均勻分散奈米氧化鋯旋塗直接在矽基板。樣品分為兩部分:氧化鋯奈米粒子和氧化鋅奈米氧化鋯奈米複合材料。經過退火,對氧化鋯奈米粒子和氧化鋅奈米氧化鋯奈米複合材料的可見光螢光激發光譜進行了研究。因此,期望這些氧化鋯奈米結構未來可以有潛力應用於新型環保發光材料。 | zh_TW |
| dc.description.abstract | In this thesis, the optoelectronic characteristics of ZnO NRAs grown by hydrothermal method on different seed layers and their practical applications in heterojunction LED based on p-GaN were investigated. Also, the various UV-visible luminescences from ZrO2 nanoparticles based structures were discovered and proposed.
In chapter 2, Er-doped ZnO nanorods with sharp and intense 1.54 µm infrared emission have been synthesized through a well-controlled spin-coating and thermal annealing process. The synthesis method is advantageous for synthesizing ZnO nanostructures capable for large-scale production, minimum equipment requirement and product homogeneity. It was found that Er atoms were successfully incorporate into ZnO host from PL measurements. Furthermore, Er-doped ZnO thin film was fabricated by following the same process, and it was also found that the Er-related emission was not originated from Er2O3 formed on the surface during thermal diffusion process. The enhanced luminescence intensity of Er-doped ZnO nanorods at 1.54µm emission would be conductive to applications in optoelectronic devices and optical communications. In chapter 3, we have grown two different ZnO seed layers by atomic layer deposition (ALD) on Si substrates: One was grown with a 25 nm MgO layer inserted between the ZnO seeds and Si, and the other was grown without any interlayer. The x-ray diffraction measurements revealed that the FWHM of (0002) peak for ZnO seed layer with an inserted MgO layer was sharper than that without an inserted MgO layer, proving that the thin MgO interlayer was useful to increase the average grain size and crystallinity of ZnO seed layer. The characteristic of PL property in ZnO seed layer was also improved significantly using the MgO interlayer. Moreover, the characteristics of ZnO NRAs grown by hydrothermal method on two different seed layers were studied. It was found that ZnO nanorods grown on seed layer with an inserted MgO layer were much larger and longer than that without an inserted MgO layer and showed much stronger NBE emission. No annealing treatment was conducted during the whole experiment for maintaining the sharpness of each layer, so this work may provide a facile and low-temperature route to selective-area fabricate high quality ZnO NRAs for applications in optoelectronic nanodevices. In chapter 4, ZnO NRAs based heterojunction LED with a thin MgO current blocking layer has been fabricated by combining the ALD technique and hydrothermal method. As the applied forward bias increased, light emission from ZnO NRAs showed a significant enhancement in intensity and was observed at room temperature. Moreover, MgZnO NRAs have been successfully fabricated by combining ALD technique and thermal annealing treatment on p-GaN to form the heterojunction LED. At room temperature, EL emission around 370 nm was observed from MgZnO NRAs at a low DC injection current. The results reported in this chapter may assist in the realization of ZnO NRAs based short wavelength light-emitting devices. In chapter 5, monodispersed ZrO2 nanoparticles were spin-coated directly on the Si substrates. The samples were divided into two parts: ZrO2 nanoparticles and ZnO-ZrO2 nanocomposite. The fabrication of ZnO-ZrO2 nanocomposite was followed by the deposition of ZnO by ALD. After being annealed, visible photoluminescence emission from ZrO2 nanoparticles and ZnO-ZrO2 nanocomposite were investigated and characterized. Therefore, these ZrO2 based nanostructures could be potentially applied as new environment-friendly luminescent materials. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:36:10Z (GMT). No. of bitstreams: 1 ntu-100-R98941034-1.pdf: 4761949 bytes, checksum: 6f056b32a93a0e675bf9d565d9cad287 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Atomic Layer Deposition (ALD) 2 1.3 Hydrothermal synthesis 6 1.4 Reference 8 Chapter 2 Optical properties of Er-doped ZnO nanorods and thin film 12 2.1 Introduction 12 2.2 Experimental Details 13 2.3 Results and Discussion 15 2.4 Conclusion 20 2.5 Reference 21 Chapter 3 Improvement in morphologies of ZnO NRAs grown with the MgO buffer layer prepared by ALD on Si (111) substrates 24 3.1 Introduction 24 3.2 Experimental Details 26 3.3 Results and Discussion 27 3.3.1 Characterizations of ZnO seed layers 27 3.3.2 Characterizations of ZnO nanorod arrays 30 3.4 Conclusion 34 3.5 Reference 35 Chapter 4 The applications of MgO layer grown by ALD in ZnO NRAs based heterojunction LED 39 4.1 Introduction 39 4.2 UV-blue electroluminescence from the ZnO nanorod arrays based heterojunction LED 42 4.2.1 Experimental Details 42 4.2.2 Results and Discussion 45 4.3 UV electroluminescence from the MgZnO nanorod arrays based heterojunction LED 50 4.3.1 Experimental Details 50 4.3.2 Results and Discussion 52 4.4 Conclusion 57 4.5 Reference 57 Chapter 5 Optical properties of ZrO2 nanoparticles and ZnO-ZrO2 nanocomposite 62 5.1 Introduction 62 5.2 Experimental Details 63 5.3 Results and Discussion 64 5.4 Conclusion 68 5.5 Reference 68 Chapter 6 Summary 71 | |
| dc.language.iso | en | |
| dc.subject | 氧化鋅奈米柱 | zh_TW |
| dc.subject | 原子層沉積技術 | zh_TW |
| dc.subject | Atomic Layer Deposition | en |
| dc.subject | ZnO nanorod arrays | en |
| dc.title | 原子層沉積技術應用於奈米柱陣列與奈米粒子及其光電性質之研究 | zh_TW |
| dc.title | Application of Atomic Layer Deposition in Nanorod Arrays and Nanoparticles and their Optoelectronic Characteristics | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳敏璋(Miin-Jang Chen),吳育任(Yuh-Renn Wu),陳建彰(Jian-Zhang Chen) | |
| dc.subject.keyword | 原子層沉積技術,氧化鋅奈米柱, | zh_TW |
| dc.subject.keyword | Atomic Layer Deposition,ZnO nanorod arrays, | en |
| dc.relation.page | 73 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 4.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
