請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2463完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭原忠(Yuan-Chung Cheng) | |
| dc.contributor.author | Jing Sun | en |
| dc.contributor.author | 孫敬 | zh_TW |
| dc.date.accessioned | 2021-05-13T06:40:32Z | - |
| dc.date.available | 2017-07-27 | |
| dc.date.available | 2021-05-13T06:40:32Z | - |
| dc.date.copyright | 2017-07-27 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-21 | |
| dc.identifier.citation | [1] S. Singh, W. J. Jones, W. Siebrand, B. P. Stoicheff, and W. G. Schneider. Laser generation of excitons and fluorescence in anthracene crystals. J. Chem. Phys., 42:330, 1965.
[2] Millicent B. Smith and Josef Michl. Singlet fission. Chem. Rev., 110:6891, 2010. [3] Millicent B. Smith and Josef Michl. Recent advances in singlet fission. Acc. Chem. Res., 64:361, 2013. [4] Akshay Rao, Mark W. B. Wilson, Justin M. Hodgkiss, Sebastian Albert-Seifried, Heinz Bässler, and Richard H. Friend. Exciton fission and charge generation via triplet excitons in pentacene/c60 bilayers. J. Am. Chem. Soc., 132:12698, 2010. [5] Millicent B. Smith and Josef Michl. Recent advances in singlet fission. Ann. Rev. Phys. Chem., 64(1), 2013. [6] J. Frenkel. On the transformation of light into heat in solids. i. Phys. Rev., 37:17, 1931. [7] Charusheela Ramanan, Amanda L. Smeigh, John E. Anthony, Tobin J. Marks, and Michael R. Wasielewski. Competition between singlet fission and charge separation in solution-processed blend films of 6,13 bis(triisopropylsilylethynyl)pentacene with sterically-encumbered perylene-3,4:9,10-bis(dicarboximide)s. J. Am. Chem. Soc., 134:386, 2012. [8] Mark W. B. Wilson, Akshay Rao, Bruno Ehrler, and Richard H. Friend. Singlet exciton fission in polycrystalline pentacene: From photophysics toward devices. Acc. Chem. Res., 46:1330, 2013. [9] Jonathan J. Burdett and Christopher J. Bardeen. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc., 134:8597, 2012. [10] Andrew F. Schwerin, Justin C. Johnson, Millicent B. Smith, Paiboon Sreearunothai, Duška Popović, Jiři Černý, Zdeněk Havlas, Irina Paci, Akin Akdag, Matthew K. MacLeod, Xudong Chen, Donald E. David, Mark A. Ratner, John R. Miller, Arthur J. Nozik, and Josef Michl. Toward designed singlet fission: Electronic states and photophysics of 1,3-diphenylisobenzofuran. J. Phys. Chem. A., 114:1457, 2010. [11] Justin C. Johnson, Arthur J. Nozik, and Josef Michl. High triplet yield from singlet fission in a thin film of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc., 132:16302, 2010. [12] Samuel W. Eaton, Leah E. Shoer, Steven D. Karlen, Scott M. Dyar, Eric A. Margulies, Brad S. Veldkamp, Charusheela Ramanan, Daniel A. Hartzler, Sergei Savikhin, Tobin J. Marks, and Michael R. Wasielewski. Singlet exciton fission in polycrystalline thin films of a slip-stacked perylenediimide. J. Am. Chem. Soc., 135:14701, 2013. [13] W.G. Albrecht, M.E. Michel-Beyerle, and V. Yakhot. Exciton fission in excimer forming crystal. dynamics of an excimer build-up in α-perylene. Chem. Phys., 35:193, 1978. [14] Ryuzi Katoh and Masahiro Kotani. Fission of a higher excited state generated by singlet exciton fusion in an anthracene crystal. Chem. Phys. Lett., 196:108, 1992. [15] H. Najafov, B. Lee, Q. Zhou, L. C. Feldman, and V. Podzorov. Observation of long-range exciton diffusion in highly ordered organic semiconductors. Nat. Mater., 9:938, 2010. [16] Samuel N. Sanders, Elango Kumarasamy, Andrew B. Pun, Michael L. Steigerwald, Matthew Y. Sfeir, and Luis M. Campos. Intramolecular singlet fission in oligoacene heterodimers. Angew. Chem. Int. Edit., 55, 2016. [17] Daniel N. Congreve, Jiye Lee, Nicholas J. Thompson, Eric Hontz, Shane R. Yost, Philip D. Reusswig, Matthias E. Bahlke, Sebastian Reineke, Troy Van Voorhis, and Marc A. Baldo. External quantum efficiency above 100% in a singlet-exciton fission based organic photovoltaic cell. Sci., 340:334, 2013. [18] William Shockley and Hans J. Queisser. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys., 32:510, 1961. [19] M. C. Hanna and A. J. Nozik. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys., 100:074510, 2006. [20] Wai-Lun Chan, Timothy C. Berkelbach, Makenzie R. Provorse, Nicholas R. Monahan, John R. Tritsch, Mark S. Hybertsen, David R. Reichman, Jiali Gao, and X.-Y. Zhu. The quantum coherent mechanism for singlet fission: Experiment and theory. Acc. Chem. Res., 46:1321, 2013. [21] Justin C. Johnson, Arthur J. Nozik, and Josef Michl. The role of chromophore coupling in singlet fission. Acc. Chem. Res., 46:1290, 2013. [22] Paul M. Zimmerman, Charles B. Musgrave, and Martin Head-Gordon. A correlated electron view of singlet fission. Acc. Chem. Res., 46:1339, 2013. [23] C. Jundt, G. Klein, B. Sipp, J. Le Moigne, M. Joucla, and A.A. Villaeys. Exciton dynamics in pentacene thin films studied by pump-probe spectroscopy. Chem. Phys. Lett., 241:84, 1995. [24] Akshay Rao, Mark W. B. Wilson, Sebastian Albert-Seifried, Riccardo Di Pietro, and Richard H. Friend. Photophysics of pentacene thin films: The role of exciton fission and heating effects. Phys. Rev. B, 84:195411, 2011. [25] Akshay Rao, Mark W. B. Wilson, Justin M. Hodgkiss, Sebastian Albert-Seifried, Heinz Bässler, and Richard H. Friend. Exciton fission and charge generation via triplet excitons in pentacene/c60 bilayers. J. Am. Chem. Soc., 132:12698. [26] V.K. Thorsmølle, R.D. Averitt, J. Demsar, D.L. Smith, S. Tretiak, R.L. Martin, X. Chi, B.K. Crone, A.P. Ramirez, and A.J. Taylor. Photoexcited carrier relaxation dynamics in pentacene probed by ultrafast optical spectroscopy: Influence of morphology on relaxation processes. Phys. B, 404:3127, 2009. [27] Thomas S. Kuhlman, Jacob Kongsted, Kurt V. Mikkelsen, Klaus B. Møller, and Theis I. Sølling. Interpretation of the ultrafast photoinduced processes in pentacene thin films. J. Am. Chem. Soc., 132:3431, 2010. [28] Mark W. B. Wilson, Akshay Rao, Jenny Clark, R. Sai Santosh Kumar, Daniele Brida, Giulio Cerullo, and Richard H. Friend. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc., 133:11830, 2011. [29] Lin Ma, Keke Zhang, Christian Kloc, Handong Sun, Maria E. Michel-Beyerle, and Gagik G. Gurzadyan. Singlet fission in rubrene single crystal: direct observation by femtosecond pump-probe spectroscopy. Phys. Chem. Chem. Phys., 14:8307, 2012. [30] Henning Marciniak, Igor Pugliesi, Bert Nickel, and Stefan Lochbrunner. Ultrafast singlet and triplet dynamics in microcrystalline pentacene films. Phys. Rev. B, 79:235318, 2009. [31] Astrid M. Müller, Yuri S. Avlasevich, Klaus Müllen, and Christopher J. Bardeen. Evidence for exciton fission and fusion in a covalently linked tetracene dimer. Chem. Phys. Lett., 421:518, 2006. [32] Jonathan J. Burdett and Christopher J. Bardeen. The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc. Chem. Res., 46:1312, 2013. [33] Heyuan Liu, Xuemin Wang, Lingyun Pan, Li Shen, Xiangyang Wang, Qidai Chen, and Xiyou Li. Synthesis and photophysical properties of a bistetracene compound with slipped stacked structure. J. Photoch. Photobio. A, 340:21, 2017. [34] Justin C. Johnson, Akin Akdag, Matibur Zamadar, Xudong Chen, Andrew F. Schwerin, Irina Paci, Millicent B. Smith, Zdeněk Havlas, John R. Miller, Mark A. Ratner, Arthur J. Nozik, and Josef Michl. Toward designed singlet fission: Solution photophysics of two indirectly coupled covalent dimers of 1,3 diphenylisobenzofuran. J. Phys. Chem. B, 117:4680, 2013. [35] Zirzlmeier Johannes Hetzer Constantin Phelan Brian T. Krzyaniak Matthew D. Reddy S. Rajagopala Coto Pedro B. Horwitz Noah E. Young Ryan M. White Fraser J. Hampel Frank Clark Timothy Thoss Michael Tykwinski Rik R. Wasielewski Michael R. Basel, Bettina S. and Dirk M. Guldi. Unified model for singlet fission within a non conjugated covalent pentacene dimer. Sci. Comm., 8:15171, 2017 [36] Paul M. Zimmerman, Zhiyong Zhang, and Charles B. Musgrave. Singlet fission in pentacene through multi-exciton quantum states. Nat. Chem., 2:648, 2010. [37] L. Sebastian, G. Weiser, and H. Bassler. Charge transfer transitions in solid tetracene and pentacene studied by electroabsorption. Chem. Phys., 61:125, 1981. [38] N.E. Geacintov, J. Burgos, M. Pope, and C. Strom. Heterofission of pentacene excited singlets in pentacene-doped tetracene crystals. Chem. Phys. Lett., 11:504, 1971. [39] Y. Tomkiewicz, R. P. Groff, and P. Avakian. Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals. J. Chem. Phys., 54:4504, 1971. [40] Eric C. Greyson, Josh Vura-Weis, Josef Michl, and Mark A. Ratner. Maximizing singlet fission in organic dimers: Theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. B, 114:14168, 2010. [41] Eric C. Greyson, Brian R. Stepp, Xudong Chen, Andrew F. Schwerin, Irina Paci, Millicent B. Smith, Akin Akdag, Justin C. Johnson, Arthur J. Nozik, Josef Michl, and Mark A. Ratner. Singlet exciton fission for solar cell applications: Energy aspects of interchromophore coupling. J. Phys. Chem. B, 114:14223, 2010. [42] Timothy C. Berkelbach, Mark S. Hybertsen, and David R. Reichman. Microscopic theory of singlet exciton fission. ii. application to pentacene dimers and the role of superexchange. J. Chem. Phys., 138(11), 2013. [43] Timothy C. Berkelbach, Mark S. Hybertsen, and David R. Reichman. Microscopic theory of singlet exciton fission. i. general formulation. J. Chem. Phys., 138:114102, 2013. [44] Paul E. Teichen and Joel D. Eaves. A microscopic model of singlet fission. J. Phys. Chem. B, 116:11473, 2012. [45] N. Monahan and X.-Y. Zhu. Charge transfer-mediated singlet fission. Acc. Chem. Res., 66:601, 2015. [46] Fatemeh Mirjani, Nicolas Renaud, Natalie Gorczak, and Ferdinand C. Grozema. Theoretical investigation of singlet fission in molecular dimers: The role of charge transfer states and quantum interference. J. Phys. Chem. C., 118:14192, 2014. [47] Nicolas Renaud, Paul A. Sherratt, and Mark A. Ratner. Mapping the relation between stacking geometries and singlet fission yield in a class of organic crystals. J. Phys. Chem. Lett., 4:1065, 2013. [48] Remco W.A. Havenith, Hilde D. de Gier, and Ria Broer. Explorative computational study of the singlet fission process. Mol. Phys., 110:2445, 2012. [49] Ethan C. Alguire, Joseph E. Subotnik, and Niels H. Damrauer. Exploring non-condon effects in a covalent tetracene dimer: How important are vibrations in determining the electronic coupling for singlet fission? J. Phys. Chem. A, 119:299, 2015. [50] Xintian Feng, Anatoliy V. Luzanov, and Anna I. Krylov. Fission of entangled spins: An electronic structure perspective. J. Phys. Chem. Lett., 4:3845, 2013. [51] Eric C. Greyson, Josh Vura-Weis, Josef Michl, and Mark A. Ratner. Maximizing singlet fission in organic dimers: Theoretical investigation of triplet yield in the regime of localized excitation and fast coherent electron transfer. J. Phys. Chem. B, 114:14168, 2010. [52] Lee Jiye Wilson Mark W. B. Wu Tony McMahon David P. Parkhurst Rebecca R. Thompson Nicholas J. Congreve Daniel N. Rao Akshay Johnson Kerr Sfeir Matthew Y. Bawendi Moungi G. Swager Timothy M. Friend Richard H. Baldo Marc A. Van Voorhis Troy Yost, Shane R. A transferable model for singlet-fission kinetics. Nat. Chem., 6:492, 2014. [53] Attila Szabo and Neil S. Ostlund. Modern quantum chemistry: Introduction to advanced electronic structure theory. 1996. [54] Naoto Ishikawa, Osamu Ohno, Youkoh Kaizu, and Hiroshi Kobayashi. Localized orbital study on the electronic structure of phthalocyanine dimers. J. Phys. Chem., 96(22):8832, 1992. [55] David Yaron. Nonlinear optical response of conjugated polymers: Essential excitations and scattering. Phys. Rev. B, 54:4609, 1996. [56] T. Pacher, L. S. Cederbaum, and H. Köppel. Approximately diabatic states from block diagonalization of the electronic hamiltonian. J. Chem. Phys., 89:7367–7381, 1988. [57] Benoit Champagne, Denis Jacquemin, Jean-Marie André, and Bernard Kirtman. Ab initio coupled hartree-fock investigation of the static first hyperpolarizability of model all-trans-polymethineimine oligomers of increasing size. J. Phys. Chem. A, 101:3158, 1997. [58] Benoit Champagne, Milena Spassova, Jean-Benoit Jadin, and Bernard Kirtman. Ab initio investigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains. J. Chem. Phys., 116:3935, 2002. [59] Yirong Mo, Wei Wu, and Qianer Zhang. Theoretical resonance energies of benzene, cyclobutadiene, and butadiene. J. Phys. Chem., 98:10048, 1994. [60] Joji Ohshita, Mitsunori Nodono, Hiroyuki Kai, Tsuguo Watanabe, Atsutaka Kunai, Kenji Komaguchi, Masaru Shiotani, Akira Adachi, Koichi Okita, Yutaka Harima, Kazuo Yamashita, and Mitsuo Ishikawa. Synthesis and optical, electrochemical, and electron-transporting properties of silicon-bridged bithiophenes. Organometallics, 18:1453, 1999. [61] Miquel Torrent-Sucarrat, Miquel Sol, Miquel Duran, Josep M. Luis, and Bernard Kirtman. Basis set and electron correlation effects on ab initio electronic and vibrational nonlinear optical properties of conjugated organic molecules. J. Chem. Phys., 118:711, 2003. [62] Giorgio Orlandi, Paolo Palmieri, Riccardo Tarroni, Francesco Zerbetto, and Marek Z. Zgierski. The s0(1ag) s1(1b2u) vibronic transition in benzene: An ab initio study. J. Chem. Phys., 100:2458, 1994. [63] Denis Jacquemin, Benoit Champagne, and Christof Hättig. Correlated frequency dependent electronic first hyperpolarizability of small push-pull conjugated chains. Chem. Phys. Lett., 319:327, 2000. [64] Roos. B, Per Linse, Per E.M. Siegbahn, and Margareta R.A. Blomberg. A simple method for the evaluation of the second-order-perturbation energy from external double excitations with a casscf reference wavefunction. Chem. Phys., 66:197, 1982. [65] Kerstin. Andersson, Per Aake. Malmqvist, Bjoern O. Roos, Andrzej J. Sadlej, and Krzysztof. Wolinski. Second-order perturbation theory with a casscf reference function. J. Phys. Chem., 94:5483, 1990. [66] K. Andersson. Different forms of the zeroth-order hamiltonian in second-order perturbation theory with a complete active space self-consistent field reference function. Theor. Chimica. Acta., 91:31, 1995. [67] N. O. Lipari and C. B. Duke. The electronic structure of polyacenes: Naphthalene through pentacene. J. Chem. Phys., 63, 1975. [68] Sean T. Roberts, R. Eric McAnally, Joseph N. Mastron, David H. Webber, Matthew T. Whited, Richard L. Brutchey, Mark E. Thompson, and Stephen E. Bradforth. Efficient singlet fission discovered in a disordered acene film. J. Am. Chem. Soc., 134:6388, 2012. [69] Karan Aryanpour, Alok Shukla, and Sumit Mazumdar. Theory of singlet fission in polyenes, acene crystals, and covalently linked acene dimers. J. Phys. Chem. C., 119, 2015. [70] Xuejun Zhang, Ying Zhu, Xiaobo Wu, Huipeng He, Gaolei Wang, and Qiaoling Li. Meso-schiff-base substituted porphyrin dimer dyes for dye-sensitized solar cells: synthesis, electrochemical, and photovoltaic properties. Res. Chem. Intermed., 41:4227, 2015. [71] Tao Zhang, Xing Qian, Peng-Fei Zhang, Yi-Zhou Zhu, and Jian-Yu Zheng. A meso meso directly linked porphyrin dimer-based double d-[small pi]-a sensitizer for efficient dye-sensitized solar cells. Chem. Commun., 51:3782–3785, 2015. [72] Tomofumi Hamamura, Joanne Ting Dy, Koichi Tamaki, Jotaro Nakazaki, Satoshi Uchida, Takaya Kubo, and Hiroshi Segawa. Dye-sensitized solar cells using ethynyl linked porphyrin trimers. Phys. Chem. Chem. Phys., 16:4551, 2014. [73] Ximena Zarate, Francisca Claveria-Cadiz, David Arias-Olivares, Angela Rodriguez Serrano, Natalia Inostroza, and Eduardo Schott. Effects of the acceptor unit in dyes with acceptor-bridge-donor architecture on the electron photo-injection mechanism and aggregation in dsscs. Phys. Chem. Chem. Phys., 18:24239, 2016. [74] Yousuke Ooyama, Koji Uenaka, Takuya Kamimura, Shuwa Ozako, Masahiro Kanda, Taro Koide, and Fumito Tani. Dye sensitized solar cell based on an inclusion complex of a cyclic porphyrin dimer bearing four 4-pyridyl groups and fullerene c60. RSC Adv., 6:16150, 2016. [75] Kenji Sunahara, Matthew J. Griffith, Takayuki Uchiyama, Pawel Wagner, David L. Officer, Gordon G. Wallace, Attila J. Mozer, and Shogo Mori. A nonconjugated bridge in dimer-sensitized solar cells retards charge recombination without decreasing charge injection efficiency. ACS Appl. Mater. Interfaces, 5:10824, 2013. [76] Emi Nakano, Katsuya Mutoh, Yoichi Kobayashi, and Jiro Abe. Electrochemistry of photochromic [2.2]paracyclophane-bridged imidazole dimers: Rational understanding of the electronic structures. J. Phys. Chem. A, 118:2288, 2014. [77] Hitoshi Kusama and Kazuhiro Sayama. Theoretical study on the intermolecular interactions of black dye dimers and black dye-deoxycholic acid complexes in dye sensitized solar cells. J. Phys. Chem. C, 116:23906, 2012. [78] Nicholas A. Treat, Fritz J. Knorr, and Jeanne L. McHale. Templated assembly of betanin chromophore on tio2: Aggregation-enhanced light-harvesting and efficient electron injection in a natural dye-sensitized solar cell. J. Phys. Chem. C, 120:9122, 2016. [79] Fujimoto Junko, Manseki Kazuhiro, and Miyaji Hidekazu. Dye-sensitized solar cells using supramolecular porphyrin arrays inspired by π-stacking structures of photosynthetic light-harvesting complexes. Chem. Lett., 43:207, 2014. [80] Tomohiro Higashino, Kenichi Sugiura, Yukihiro Tsuji, Shimpei Nimura, Seigo Ito, and Hiroshi Imahori. A push-pull porphyrin dimer with multiple electron-donating groups for dye-sensitized solar cells: Excellent light-harvesting in near-infrared region. Chem. Lett., 45:1126, 2016. [81] Thibaud Etienne, Laurent Chbibi, Catherine Michaux, Eric A. Perpète, Xavier Ass feld, and Antonio Monari. All-organic chromophores for dye-sensitized solar cells: A theoretical study on aggregation. Dyes. Pigm., 101:203, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2463 | - |
| dc.description.abstract | 單重態分裂是一個描述分子在吸收到一個光子之後進而產生多個三重態激子的過程。這種過程由於被認為可以拿來應用在太陽能電池上而被大家所重視。雖然過去已有許多研究在討論單重態分裂,但是單重態分裂的反應機制仍然有所爭議,例如控制單重態分裂效率的條件和描述單重態分裂的激發態波函數等等。從電子結構著手,我們利用非絕熱基底近似展示了激發態的性質。並且利用有限電子活躍空間的電子組態交互作用闡述了多組態在多并苯二聚體激發態的重要性。藉由過去工作提到的三能態模型,有效哈密頓量展示了基組的選取和電子活躍空間的大小對於電子耦合常數影響很小,但對於電子激發態的能量卻影響很大。在嘗試引入完全電子活躍空間的二階微擾理論之後,結果呈現之強電子耦合及近簡併的性質也解釋了單重態分裂的反應機制,也表示在靜態和動態相關能量之間取得平衡在共軛體系也是相當重要的。最後,我們展示了二聚體中重要的有效電子耦合常數受到結構的影響。在二聚體中的有效電子耦合常數會和單體間的軌域重疊積分有著密切的關係,因此我們可以從單體間的重疊積分來得知分子間的相對方向會對單重態分裂的效率有什麼樣的影響。此方法也從分子結構方向的觀點提供了一個方向來設計高效單重態分裂的染料敏化太陽能電池。 | zh_TW |
| dc.description.abstract | Because of the promising potential in the high-efficiency solar cell,singlet exciton fission (SF), the molecular analog of multiexciton generation in which the absorption of one photon results in the generation of two triplet excitons, has attracted intensive research attention recently. Although the striking research are advancing, the mechanism of SF is still controversial, and some open questions remain, e.g., the key parameters manipulating the occurrence of SF and the excited state wavefunctions involved in it. From an electronic structure point of view, we construct an approximate diabatic basis to unambiguously interpret the character of the excited states, by applying the restricted active space equation of motion single and double approach to show the importance of considering multi-configurational effects in polyacene dimers. Using a three-state model, the effective hamiltonian shows that strong superexchange effective couplings depend on little on the choose of the basis set and the size of the active space while the diabatic state energies depend on a lot. Second order perturbation theory is introduced, the results show strong couplings and near degeneracy condition that explain the ultrafast SF mechanism, which shows striking the balance between static and dynamic correlation is also important in conjugated systems. Finally, we show that dominant effective couplings in a dimer system strongly correlated with the monomeric orbital overlap between two molecules. Hence, in a dimer system, the overlap between two monomers elucidate the dependence of the relative orientation of monomers on the efficiency of SF providing a criterion to the design principle of high SF efficiency dye-sensitized cells. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T06:40:32Z (GMT). No. of bitstreams: 1 ntu-106-R04223150-1.pdf: 4281388 bytes, checksum: 416cc2a1ad1f0d4fe6970667ebac6cc0 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 iii
誌謝 v 摘要 vii Abstract ix 1 Introduction 1 1.1 Singlet Fission 1 1.2 Experimental Development 2 1.3 Theoretical Development 5 1.4 Outlook 7 2 Effective Singlet fission Hamiltonians from RAS-SD-EOM Calculations 9 2.1 Properties of Electronic States in SF 9 2.2 Localization of Molecular Orbitals 10 2.3 Restricted Active Space Single and Double Equation of Motion (RAS-SD-EOM) Method 11 2.4 Three-state Model 13 2.5 Model Dimer Systems 14 2.6 Basis Set Dependence of Effective Hamiltonian in Ethylene dimer 15 2.7 Active Space Dependence of Hamiltonian 18 2.8 Energy Correction by Second Order Perturbation Theory 20 3 The Dependence of Geometrical Change on Couplings 27 3.1 SF Couplings and Orbital Overlaps 27 3.1.1 Four-Electron-Four-Orbital Approximation 27 3.1.2 Expansion of Configurational Couplings 29 3.1.3 Approximation of Two Electron Integrals 30 3.2 Effect of Slip Displacement 31 3.2.1 Ethylene 32 3.2.2 Tetracene 34 3.2.3 Pyrene 36 3.3 Effect of Relative Orientation 37 3.4 Overlap as an Indicator of Couplings 39 3.4.1 2D Mapping of the Overlap Integrals 39 3.4.2 Overlap in Tetracene Crytalline Pair 41 4 Conclusion 45 Bibliography 47 | |
| dc.language.iso | en | |
| dc.subject | 單重態分裂 | zh_TW |
| dc.subject | 電子組態交互作用 | zh_TW |
| dc.subject | 結構效應 | zh_TW |
| dc.subject | 耦合常數 | zh_TW |
| dc.subject | singlet fission | en |
| dc.subject | configuration interaction | en |
| dc.subject | coupling | en |
| dc.subject | structural effect | en |
| dc.title | 二聚體中單重態激發分裂電子耦合之理論計算研究 | zh_TW |
| dc.title | Theoretical Study on Singlet Fission Electronic Couplings in Dimer Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 金必耀(Bih-Yaw Jin),陸駿逸(Chun-Yi Lu) | |
| dc.subject.keyword | 單重態分裂,電子組態交互作用,耦合常數,結構效應, | zh_TW |
| dc.subject.keyword | singlet fission,configuration interaction,coupling,structural effect, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201701715 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-07-21 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 4.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
