Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24609
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳美玲
dc.contributor.authorKun-Ta Yangen
dc.contributor.author楊昆達zh_TW
dc.date.accessioned2021-06-08T05:33:07Z-
dc.date.copyright2005-06-15
dc.date.issued2005
dc.date.submitted2005-05-19
dc.identifier.citationAkao M, O’Rourke B, Teshima Y, Seharaseyon J, Marbán E (2003) Mechanistically distinct steps in the mitochondrial death pathway triggered by oxidative stress in cardiac myocytes. Circ Res. 92:186-194.
Alvarez J, Montero M, Garcia-Sancho J (1991) Cytochrome P450 may link intracellular Ca stores with plasma membrane Ca influx. Biochem. J. 274:193-197.
Baethmann A, Maier-Hauff K, Schurer L, Lange M, Guggenbichler C., Vogt W., Jacob K. and Kempski O (1989) Release of glutamate and of free fatty acids in vasogenic brain edema. J Neurosurg. 70:578-591.
Blaustein MP (1991) The energetics and kinetics of sodium-calcium exchange in barnacle muscles, squid axons, and mammalian heart: the role of ATP. In Electrogenic transport: fundamental principles and physiological implications. (Blaustein, M.P., and Lieberman, M. eds). pp. 129-147, Raven Press, New York, USA.
Boitier E, Rea R, Duchen MR (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J. Cell Biol. 145:795-808.
Bolli R, Mohamed OJ, Patel BS, Aruoma OI, Halliwell B, Lai EK, McCay PB (1989) Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy began at the time of reperfusion: evidence that myocardial ‘stunning’ is a manifestation of reperfusion injury. Circ Res. 65:607-622.
Bowes J, McDonald MC, Piper J, Thiemermann C (1999) Inhibitors of poly(ADP-ribose) synthetase protect rat cardiomyocytes against oxidant stress. Cardiovasc Res. 41:126-134.
Braun F-J, Aziz O, Putney JW, Jr. (2003) 2-aminoethoxydiphenyl borane activates a novel calcium-permeable cation channel. Mol. Pharmacol. 63:1304-1311.
Braun F-J, Broad LM, Armstrong DL, Putney JW, Jr. (2001) Stable activation of single Ca2+ release-activated Ca2+ channels in divalent cation-free solution. J. Biol. Chem. 276:1063-1070.
Breittmayer J-P, Pelassy C, Cousin J-L, Bernard A, Aussel C (1993) The inhibition by fatty acids of receptor-mediated calcium movements in Jurkat T-cells is due to increased calcium extrusion. J. Biol. Chem. 268:20812-20817.
Broad LM, Cannon TR, Taylor CW (1999) A non-capacitative pathway activated by arachidonic acid is the major Ca2+ entry mechanism in rat A7r5 smooth muscle cells stimulated with low concentrations of vasopressin. J Physiol. (London) 517:121-134.
Buja LM, Entman ML (1998) Modes of myocardial cell injury and cell death in ischemic heart disease. Circulation. 98:1355-1357.
Chang W-C, Parekh AB (2004) Close functional coupling between Ca2+ released-activated Ca2+ channels, arachidonic acid release, and leukotriene C4 secretion. J. Biol. Chem. 279:29994-29999.
Chen W-H, Chen C-R, Yang K-T, Chang W-L, Su M-J, Wu C-C, Wu M-L. (2001) Arachidonic acid-induced H+ and Ca2+ increases in both the cytoplasm and nucleoplasm of rat cerebellar granule cells. J. Physiol. (London) 537:497-510.
Chen W-H, Chu K-C, Wu S-J, Wu J-C, Shui H-A, Wu M-L (1999) Early metabolic inhibition-induced intracellular sodium and calcium increase in rat cerebellar granule cells. J. Physiol. (London) 515:133-146.
Chen Z, Alcayaga C, Suárez-Isla BA, O’Rourke B, Tomaselli G, Marbán E (2002) A ‘minimal’ sodium channel construct consisting of ligated S5-P-S6 segments forms a toxin-activatable ionophore. J. Biol. Chem. 277:24653-24658.
Chow SC, Ansotegui IJ, Jondal M (1990) Inhibition of receptor-mediated calcium influx in T cells by unsaturated non-esterified fatty acids. Biochem. J. 267:727-732.
Clague JR, Langer GA. (1994) The pathogenesis of free-radical-induced calcium leak in cultured rat cardiomyocytes. J. Mol. Cell. Cardiol. 26:11-21.
Clapham DE (2003) TRP channels as cellular sensors. Nature. 426:517-524.
Collins TJ, Lipp P, Berridge MJ, Bootman MD (2001) Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J. Biol. Chem. 276:26411-26420.
Colucci WS (1997) Molecular and cellular mechanisms of myocardial failure. Am. J. Cardiol. 80:15L-25L.
Corretti MC, Koretsune Y, Kusuoka H, Chacko VP, Zweier JL, Marbán E (1991) Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts. J. Clin. Invest. 88:1014-1025.
Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341:233-249.
Crow MT, Mani K, Nam Y-J, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res. 95:957-970.
Csordás G, Madesh M, Antonsson B, Hajnóczky G (2002) tcBid promotes Ca2+ signal propagation to the mitochondria: control of Ca2+ permeation through the outer mitochondrial membrane. EMBO J. 21:2198-2206.
Czapski GA, Cakala M, Kopczuk D, Strosznajder JB (2004) Effect of poly(ADP-ribose) polymerase inhibitors on oxidative stress evoked hydroxyl radica level and macromolecules oxidation in cell free system of rat brain cortex. Neurosci Lett. 356:45-48.
Dhillon HS, Dose JM, Scheff SW, Prasad MR (1997) Time course of changes in lactate and free fatty acids after experimental brain injury and relationship to morphologic damage. Exp Neurol. 146:240-249.
Dobrydneva Y, Blackmore P (2001) 2-aminoethoxydiphenyl borate directly inhibits store-operatedd calcium entry channels in human platelets. Mol. Pharmacol. 60:541-552.
Dumont EAWJ, Hofstra L, van Heerde WL, van den Eijnde S, Doevendans PAF, DeMuinck E, Daemen MARC, Smits JFM, Frederik P, Wellens HJJ, Daemen MJAP, Reutelingsperger CPM (2000) Cardiomyocyte death induced by myocardial ischemia and reperfusion: measurement with recombinant human annexin-V in a mouse model. Circulation. 102:1564-1568.
Fazeli MS (1992) Synaptic plasticity: on the trial of the retrograde messenger. Trands Neurosci. 15:115-117.
Gill C, Mestril R, Samali A (2002) Losing heart: the role of apoptosis in heart disease- a novel therapeutic target? FASEB J. 16:135-146.
Gincel D, Zaid H, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem. J. 358:147-155.
Green D, Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends in Cell Biol. 8:267-271.
Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260:3440-3450.
Hajnóczky G, Csordás G, Yi M (2002) Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 32:363-377.
Halliwell B, and Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219:1-14.
Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Molecular Cell. 9:163-173.
Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jüngling E, Zitt C, Lückhoff A (2002) Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J. 371:1045-1053.
Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770-776.
Hill K, McNulty S, Randall AD (2004) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn-Schmiedebergs Arch Pharmacol. 370:227-237.
Hool LC, Arthur PG (2002) Decreasing cellular hydrogen peroxide with catalase mimics the effects of hypoxia on the sensitivity of the L-type Ca2+ channel to β-adrenergic receptor stimulation in cardiac myocytes. Circ. Res. 91:601-609.
Horwitz LD, Fennessey PV, Shikes RH and Kong Y (1994) Marked reduction in myocardial infarct size due to prolonged infusion of an antioxidant during reperfusion. Circulation. 89:1792-1801.
Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353-356.
Hoth M, Penner R (1993) Calcium release-activated calcium current in rat mast cells. J. Physiol. 465:359-386.
Huang C, Li J, Ke Q, Leonard SS, Jiang B-H, Zhong X-S, Costa M, Castranova V, Shi X. (2002) Ultraviolet-induced phosphorylation of p70s6k at Thr389 and Thr421/Ser424 involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C. Cancer Res. 62:5689-5697.
Ide T, Tsutsui H, Kinugawa S, Sucmatsu N, Hayashidani S, Ichikawa K, Utsumi H, Machida Y, Egashira K, Takeshita A (2000) Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. Circ Res. 86:152-157.
Iwasawa K, Nakajima T, Hazama H, Goto A, Shin WS, Toyo-oka T, Omata M. (1997) Effects of extracellular pH on receptor-mediated Ca2+ influx in A7r5 rat smooth muscle cells: involvement of two different types of channel. J. Physiol. 503:237-251.
Jacob R (1990) Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J. Physiol. 421:55-77.
Jacobson MD, Weil M, Raff MC (1996) Role of Ced-3/ICE-family proteases in staurosporine-induced programmed cell death. J Cell Biol. 133:1041-1051.
Jayaraman S, Song Y, Vetrivel L, Shanker L, Verkman AS (2001) Noninvasive in vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and pH. J. Clin. Invest. 107:317-324.
Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweier JL (1991) Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J. Biol. Chem. 266:2354-2361.
Kato K, Uruno K, Saito K, Kato H (1991) Both arachidonic acid and 1-oleoyl-2-acetyl glycerol in low magnesium solution induce long-term potentiation in hippocampal CA1 neurons in vitro. Brain Res. 563:94-100.
Katsuki H, Okuda S. (1995) Arachidonic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol. 46:607-636.
Khoo C, Helm J, Choi HB, Kim SU, McLarnon JG (2001) Inhibition of store-operated Ca2+ influx by acidic extracellular pH in cultured human microglia. Glia 36:22-30.
Kimura J, Watano T, Kawahara M, Sakai E, Yatabe J (1999) Direction-independent block of bi-directional Na/Ca exchange current by KB-R7943 in guinea-pig cardiac myocytes. Br. J. Pharmacol. 128:969-974.
Krause E, Pfeiffer F, Schmid A, chulz I (1996) Depletion of intracellular calcium stores activates a calcium conducting nonselective cation current in mouse pancreatic acinar cells. J. Biol. Chem. 271:32523-32528.
Küpper JH, de Murcia G, Bürkle A (1990) Inhibition of poly(ADP-ribosylation by overexpressing the poly(ADP-ribose) polymerase DNA-binding domain in mammalian cells. J. Biol. Chem. 265:18721-18724.
Leist M, Jäättelä M (2001) Four deaths and a funeral: from caspases to alternative mechanisms. Nature Mol Cell Biol. 2:1-10.
Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 185(8):1481-1486.
Lin WW, Chuang DM (1993) Extracellular ATP stimulates inositol phospholipid turnover and calcium influx in C6 glioma cells. Neurochem Res. 18:681-687.
Lizard G, Fournel S, Genestier L, Dhedin N, Chaput C, Flacher M, Mutin M, Panaye G, Revillard J-P (1995) Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytometry. 21:275-283.
Lo K-J, Luk H-N, Chin T-Y, Chueh S-H (2002) Store depletion-induced calcium influx in rat cerebellar astrocytes. Br. J. Pharmacol. 135:1383-1392.
MacCumber MW, Ross CA, Snyder SH (1990) Endothelin in brain: receptors, mitogenesis, and biosynthesis in glial cells. Proc. Natl. Acad. Sci. 87:2359-2363.
Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis: an overview of cell death. Am J Pathol. 146:3-15.
Malayev A, Nelson DJ (1995) Extracellular pH modulates the Ca2+ current activated by depletion of intracellular Ca2+ stores in human macrophages.J Membr Biol. 146:101-11.
Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J. Biol. Chem. 273:10223-10231.
Matsumura K, Jeremy RW, Schaper J and Becker LC (1998) Progression of myocardial necrosis during reperfusion of ischemic myocardium. Circulation. 97:795-804.
McHugh D, Flemming R, Xu S-Z, Perraud A-L (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem. 278:11002-11006.
Meves H. (1994) Modulation of ion channels by arachidonic acid. Prog Neurobiol. 43, 175-186.
Mignen O, Thompson JL, Shuttleworth TJ (2001) Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways. J. Biol. Chem. 276:35676-35638.
Mignen O, Thompson JL, Shuttleworth TJ (2003) Ca2+_ selectivity and fatty acid specificity of the noncapacitative, arachidonate-regulated Ca2+ (ARC) channels. J. Biol. Chem. 278:10174-10181.
Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell. 108:595-598.
Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 112:481-490.
Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. TINS 23:166-174
Nieminen A-L, Byrne AM, Brian H, Lemasters JJ (1997) Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol. 272:C1286-C1294.
Ohno M, Takemura G, Ohno A, Misao J, Hayakawa Y, Minatoguchi S, Fujiwara T, Fujiwara H (1998) “Apoptotic” myocytes in infarcts area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with in situ nick end-labeling. Circulation. 98:1422-1430.
Ormerod MG, Sun X-M, Snowden RT, Davies R, Fearnhead H, Cohen GM. Increased membrane permeability of apoptotic thymocytes: a flow cytometric study. Cytometry. 1993:14:595-602.
Park C-O, Xiao X-H, Allen DG (1999) Changes in intracellular Na+ and pH in rat heart during ischemia: role of Na+/H+ exchanger. Am. J. Physiol. 276:H1581-H1590.
Parone PA, Martinou JC (2002) Mitochondria: regulating the inevitable. Biochimie 84:105-111.
Peeters GA, Kohmoto O, Barry WH (1989) Detection of La3+ influx in ventricular cells by indo-1 fluorescence. Am. J. Physiol. 256:C351-C357.
Pellmar TC (1991) Fatty acids modulate excitability in guinea-pig hippocampal slices. Neuroscience 45:273-280.
Perraud A-L, Fleig A, Dunn CA, Bagley LA, Launay P, Schmitz C, Stokes AJ, Zhu Q, Bessman MJ, Penner R, Kinet J-P, Scharenberg AM (2001) ADP-ribose gating of the calcium-permeable TRRPC2 channel revealed by nudix motif homology. Nature. 411:595-599.
Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F (2001) The mitochondrial permeability transition, release of cytochrome c and cell death. J. Biol. Chem. 276:12030-12034
Pieper AA, Walles T, Wei G, Clements EE, Verma A, Snyder SH, Zweier JL (2000) Myocardial postischemic injury is reduced by polyADPribose polymerase-1 gene disruption. Mol Med. 6:271-282.
Powis DA, Clark CL, O’brien KJ (1994) Lanthanum can be transported by the sodium-calcium exchange pathway and directly triggers catecholamine release from bovine chromaffin cells. Cell Calcium 16:377-390.
Prakriya M, Lewis RS (2001) Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2-aminoethyldiphenyl borate (2-APB) occurs independently of IP3 receptors. J. Physiol. 536:3-19.
Putney JW, Jr. (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1-12.
Randriamampita C, Trautmann A (1990) Arachidonic acid activates Ca2+ extrusion in macrophages. J. Biol. Chem. 265:18059-18062.
Rapizzi E, Pinton P, Szabadkai G, Wieckowksi MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE, Rizzuto R (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J. Cell Biol. 159:613-624.
Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95:189-196.
Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J. Physiol. (London) 529:37-47.
Sánchez JA, Carcía MC, Sharma VK, Young KC, Matlib MA, Sheu S.-S (2001) Mitochondria regulate inactivation of L-type Ca2+ channels in rat heart. J. Physiol. 536:387-396.
Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K (2001) Immunocyte Ca2+ influx system mediated by LTRPC2. Science. 293:1327-1330.
Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki L-M (1997) Apoptosis in human acute myocardial infarction. Circulation. 95:320-323.
Siesjo BK, Ingvar M, Westerberg E. (1982) The influence of bicuculline-induced seizures on free fatty acid concentrations in cerebral cortex, hippocampus, and cerebellum. J Neurochem. 39:796-802.
Su M-J, Chang G-J, Wu M-H, Kuo S-C (1997) Electrophysiological basis for the antiarrhythmic action and positive inotropy of HA-7, a furoquinoline alkaloid derivative, in rat heart. Br. J. Pharmacol. 122:1285-1298.
Suleiman M-S, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Ther. 89:29-46.
Supattapone S, Simpson AWM, Ashley CC (1989) Free calcium rise and mitogenesis in glial cells caused by endothelin. Biochem. Biophys. Res. Commun. 165:1115-1122.
Susin SA, Daugas E, Ravagnan L, Samejima K, Zamzami N, Loeffler M, Costantini P, Ferri KF, Irinopoulou T, Prévost M-C, Brothers G, Mak TW, Penninger J, Earnshaw WC, Kroemer G (2000) Two distinct pathways leading to nuclear apoptosis. J Exp Med. 192:571-579.
Takemura H, Hughes AR, Thastrup O, Putney JW, Jr. (1989) Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J. Biol. Chem. 264:12266-12271.
Trepakova ES, Gericke Y, Hirakawa RM, Weisbrod RA, Cohen VM, Bolotina VM (2001) Properties of a native cation channel activated by Ca2+ store depletion in vascular smooth muscle cells. J. Biol. Chem. 276:7782-7790.
Tsai K-L, Wang S-M, Chen C-C, Fong T-H, Wu M-L (1997) Mechanism of oxidative stress-induced intracellular acidosis in rat cerebellar astrocytes and C6 glioma cells. J. Phsyiol. (London) 502:161-174.
Tsien R, Pozzan T (1989) Measurement of cytosolic free Ca2+ with quin2. Methods in Enzymol. 172:230-262.
Van Lookeren Campagne M, Gill R. (1996) Ultrastructural morphological changes are not characteristic of apoptotic cell death following focal cerebral ischemia in the rat. Neurosci. Lett. 213;111-114.
Vieira HLA, Haouzi D, Hamel CEI, Jacotot E, Belzacq A-S, Brenner C, Kroemer G (2000) Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide. Cell Death Differ. 7:1146-1154.
Virág L, Szabó C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev. 54:375-429.
Wang SM, Lo MC, Shang C, Kao SC, Tseng YZ (1998) Role of M-line proteins in sarcomeric titin assembly during cardiac myofibrillogenesis. J. Cell. Biochem. 71:82-95.
Wehage E, Eisfeld J, Heiner I, Jüngling E, Zitt C, Lückhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide: a splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem. 277:23150-23156.
Wendt-Gallitelli MF, Isenberg G (1985) Extra- and intracellular lanthanum: modified calcium distribution, inward currents and contractility in guinea pig ventricular preparations. Pflugers Arch 405:310-322.
Wu M-L, Chen C–C, Su M-J (2000) Possible mechanism(s) of arachidonic acid-induced intracellular acidosis in rat cardiac myocytes. Circ. Res. 86:e55-e62.
Wu M-L, Chen W-H, Liu I-H, Tseng C-D, Wang S-M (1999) A novel effect of cAMP on capacitative Ca entry in cultured rat cerebellar astrocytes. J. Neurochem. 73:1318-1328.
Wu M-L, Kao E-F, Liu I-H, Wang B-S, Lin-Shiau S-Y (1997) Capacitative Ca2+ influx in glial cells in inhibited by glycolytic inhibitors. Glia 21:315-326.
Yang K-T, Pan S-F, Chien C-L, Hsu S-M, Tseng Y-Z, Wang S-M, Wu M-L (2004) Mitochondrial Na+ overload is caused by oxidative stress and leads to activation of the caspase 3-dependent apoptotic machinery. FASEB J. 10.1096/fj.03-1038fje.
Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, Masker K, Miller BA (2003) A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem. 278:16222-16229.
Zweifach A, Lewis RS (1993) Mitogen-regulated Ca2+ current of T lymphocytes is activated by depletion of intracellular Ca2+ stores. Proc. Natl. Acad. Sci. 90:6259-6299.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24609-
dc.description.abstract缺血再灌流(ischemic-reperfusion)產生過量的活性氧物質(reactive oxygen species)是導致細胞死亡的主要因子之一。在動物模式中,電子顯微鏡可觀察到在同一個心肌細胞(cardiomyocytes)會同時出現細胞凋亡(apoptic)及細胞死亡(necrotic)的特徵。我們利用雷射共軛焦顯微鏡(confocal)記錄動態心肌細胞,發現給予過氧化氫(H2O2)產生的氫氧自由基(OH•; hydroxyl radical)會顯著的增加細胞質(cytosol)及粒線體(mitochondria)的鈉離子(Na+)及鈣離子(Ca2+)濃度,氫氧自由基造成鈣離子過度負荷(overload)是由於細胞內的鈉離子過度負荷而活化鈉鈣交換器(Na-Ca exchanger)的反向運轉所造成的。心肌細胞在H2O2處理40分鐘後換回不含H2O2的培養液中,等待4.5及16小時, 心肌細胞凋亡(apoptosis)的比例會從0小時的4%增加到4.5小時的55%及16小時的85%,若以無鈉溶液可完全阻斷氫氧自由基所引發細胞凋亡,若以無鈣溶液則無法阻斷。另一方面利用Na-ionophores(在無鈣溶液中)單獨提高細胞內鈉離子濃度超過30 mM而不改變鈣離子濃度即可引發caspase 3-dependent細胞凋亡,顯示細胞內鈉離子過度負荷即可引發細胞凋亡。我們也發現當粒線體而非細胞質內鈉離子濃度的增加,會造成粒線體雙層膜上之滲透轉換孔道(permeation transition pore)的開啟,接著引發cytochrome c的釋放。由我們的發現可推論H2O2所引發粒線體的鈉離子濃度過度負荷是一個導致細胞凋亡機制的重要上游訊息。
本實驗進一步去探討活性氧物質所引起的細胞腫脹性死亡(oncosis)的機制;由以上的實驗已經証實細胞凋亡是因為H2O2引起粒腺體內鈉離子過度負荷造成cytochrome c的釋放及caspase-3的活化;而細胞死亡主要是由於poly(ADP-ribose) polymerases (PARPs)的活化,造成細胞內ATP/ NAD+的排空所引起。本實驗也發現H2O2在心肌細胞所引發粒腺體內鈉離子(及鈣離子)過度負荷主要是因為開啟(melastatin-related transient receptor potential 2, TRPM2) channels其原因如下:(1) 利用免疫化學染色(immuncytochemical)顯示心肌細胞細胞膜上可被TRPM2的抗體所標示。(2) 利用細胞膜嵌制技術 (patch-clamp technique)發現在加入H2O2後可偵測到鈉離子及鈣離子電流;另外在pipette solution中加入可開啟TRPM2的化學物質(β-NAD+或ADP-ribose, ADPR),與H2O2所引發鈉離子及鈣離子電流,在電生理的特徵是很相似的。(3) 內生性的NAD+及ADPR的量在加入H2O2後會大量增加,若降低NAD+及ADPR的量則會抑制H2O2所引起細胞內鈉離子及鈣離子的過度負荷。(4) clotrimazole是TRPM2 channel是阻斷劑,可抑制ADPR開啟TRPM2所引起的電流,也會抑制H2O2所引發鈉離子過度負荷。很重要的,同時處理clotrimazole及DHQ (PARP的阻斷劑),可幾乎完全抑制H2O2所引發細胞凋亡及細胞死亡的路徑。
已知花生四烯酸(Arachidonic acid, AA)在生理及病理上扮演重要角色。在論文第二部份利用初級培養的大鼠神經膠質細胞(astrocyte)來探討花生四烯酸作用,發現:(1) endothelin-1或thapsigargin (Tg)可引發填充性鈣離子流(CCE),此填充性鈣離子流會被2-aminothoxydiphenyl borane (2-APB)或La3+所阻斷。(2) 花生四烯酸(10
zh_TW
dc.description.abstractOverproduction of reactive oxygen species (ROS) is one of the major causes of cell death in ischemic reperfusion injury, and, in animal models, electron microscopy has shown mixed apoptotic and necrotic characteristics in the same myocyte (i.e. oncosis). Using time-lapse confocal recording of live cardiomyocytes, I have shown that H2O2 (OH•) causes a marked increase in Na+ and Ca2+ levels in both the cytosol ([Na]cyt, [Ca]cyt) and mitochondria ([Na]m, [Ca]m). The H2O2-induced intracellular Na+ ([Na]i) overload contributes to the H2O2-induced [Ca]cyt/[Ca]m overload via activation of the reverse mode of the Na-Ca exchanger. When myocytes are treated for 40 min with 100 μM H2O2 in normal medium, then returns to H2O2-free medium, the percentage of apoptotic cells increases from 4% at 0 h to 55% and 85% at 4.5 and 16 h, respectively. H2O2-induced apoptosis is completely prevented using Na-free, but not Ca-free, medium. When a Na+ ionophore cocktail in Ca-free medium is used instead of H2O2 to increase the [Na]i by more than 30 mM without any change in the [Ca]i, cytochrome c release and caspase 3-dependent apoptosis occurres, showing that [Na]i overload per se induces apoptosis. I also show that the increase in the mitochondrial, but not the cytosolic, Na+ levels results in the opening of the permeation transition pore, followed by cytochrome c release. These findings therefore suggest that H2O2-induced [Na]m overload is an important upstream signal for the apoptotic machinery.
My study further identifies a novel pathway for ROS-induced oncosis in which the apoptotic features are caused by H2O2-induced mitochondrial Na+ ([Na]m) overload, resulting in cytochrome c release and caspase 3 activation, while the necrotic features are caused by PARP activation, resulting in ATP/NAD+ depletion. I also show that opening of novel TRPM2 channels in cardiomyocytes is involved in the H2O2-induced [Na+]m (and [Ca2+]m) overload, since: (i) immunocytochemical studies show that the plasmalemma is labeled by anti-TRPM2 antibody, (ii) the patch-clamp technique shows that Na+ and Ca2+ currents are activated by addition of H2O2 or by inclusion in the pipette solution of either of two specific messengers (β-NAD+ or ADPR), which open the TRPM2 channel, and that the electrophysiological properties induced are very similar, (iii) endogenous NAD+ and ADPR levels are increased by H2O2, while a decrease in their levels inhibits H2O2-induced [Na]i/[Ca]i overload, and (iv) clotrimazole, a putative TRPM2 channel inhibitor, which inhibits the ADPR/TRPM2-induced current, also inhibits the H2O2-induced Na+ overload. Importantly, co-treatment with clotrimazole and DHQ (a PARP inhibitor) nearly completely abolishes the H2O2-induced apoptotic and necrotic processes. These results therefore suggest that activation of both TRPM2 and PARP is involved in the myocyte oncosis. This could be a novel therapeutic target in I/R-induced myocyte loss.
It has been shown that arachidonic acid (AA) plays important physiological or pathophysiological roles. In the second part of my study, I have found in cultured rat astrocytes that: (i) endothelin-1 or thapsigargin (Tg) induces store-depleted activated Ca2+ entry (CCE), which is inhibited by 2-aminoethoxydiphenyl borane (2-APB) or La3+; (ii) AA (10 μM) and other unsaturated fatty acids (8,11,14-eicosatrienoic acid and y-linoleic acid) have an initial inhibitory effect on the CCE, due to AA- or fatty acid-induced internal acid load; (iii) after full activation of CCE, AA induces a further Ca2+ influx, which is not inhibited by 2-APB or La3+, indicating that AA activates a second Ca2+ entry pathway, which coexists with CCE; and (iv) Tg or AA activates two independent and co-existing non-selective cation channels and the Tg-induced currents are initially inhibited by addition of AA or weak acids. A possible pathophysiological effect of the AA-induced [Ca]i overload is to cause delayed cell death in astrocytes.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:33:07Z (GMT). No. of bitstreams: 1
ntu-94-D88441002-1.pdf: 12294626 bytes, checksum: 3eee6e1130a12ed73b4b2c5afdff4d61 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsContents ................................................1
Abstract ................................................3
Abstract in Chinese (中文摘要) ..........................6
Chapter 1 Introduction ...............................9
Chapter 2 Materials and Methods ......................14
Chapter 3 Mitochondrial Na+ overload is caused by oxidative stress and leads to activation of the caspase 3-dependent apoptotic machinery
Results ................................................30
Discussion .............................................38
Figures ................................................41
Chapter 4 Involvement of TRPM2 and poly(ADP-ribose) polymerase activation in caspase 3-dependent and caspase 3-independent oncotic cell death induced by oxidative stress
Results ................................................53
Discussion .............................................60
Figures ................................................62
Chapter 5 Arachidonic acid inhibits capacitative Ca2+ entry and activates noncapacitative Ca2+ entry in cultured astrocytes
Results ................................................76
Discussion .............................................80
Figures ................................................84
Chapter 6 Concluding Remarks and prospectives.........92
Chapter 7 References .................................94
dc.language.isoen
dc.title氧化壓力及花生四烯酸引起細胞質及粒腺體內離子失衡和細胞死亡關係之探討zh_TW
dc.titleOxidative stress- and arachidonic acid-induced cytosolic and mitochondrial ion disturbances resulting in cell deathen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee王淑美,蘇銘嘉,錢宗良,林琬琬
dc.subject.keyword鈉離子,鈣離子,細胞死亡,細胞凋亡,粒腺體,填充性鈣離子流,花生四烯酸,zh_TW
dc.subject.keywordsodium,necrosis,mitochondria,apoptosis,arachidonic acid,capacitative calcium entry,calcium,en
dc.relation.page104
dc.rights.note未授權
dc.date.accepted2005-05-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
12.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved