Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24591
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭瑩
dc.contributor.authorYin-Hsun Luen
dc.contributor.author盧音秀zh_TW
dc.date.accessioned2021-06-08T05:32:20Z-
dc.date.issued2005
dc.date.submitted2005-06-22
dc.identifier.citation黃祥恩。1997。水楊酸誘導百合系統性灰黴病之研究。國立台灣大學植物病蟲害學系碩士論文。
鍾瑞洲。1999。百合系統性誘導抗病反應之研究。國立台灣大學植物病蟲害學系碩士論文。
路幼妍。2003。葵百合誘導抗病之研究。國立台灣大學植物病蟲害學系博士論文。
Alba, M. N., culianez-Macia, F. A., Goday, A., Freire, M. A., Nadal, B., and Pages, M. 1994 The maize RNA-binding protein, MA16, is a nucleolar protein located in the dense fibrillar component Plant J. 6:825-834.
Allen, R. D. 1995 Dissection of oxidative stress tolerance using transgenic plants. Plant Phsiol. 107:1049-1054.
Alvarez, M. E., Pennell, R. I., Meijer. P. J., Ishikawa, A., Dixon, R. A., and Lamb, C. 1998 Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773-784.
Apostol, I., Heinstein, P. F., and Low, P. S. 1990 Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol. 90:109-116.
Auh, C. K., and Murphy, T. M. 1995 Plasma membrame redox enzyme is involved in the synthesis of O2 and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant Physiol. 107:1241-1247.
Baker, C. J., and Orlandi, E. W. 1995 Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33:299-321.
Benhamou, N., Kloepper, J. W., Quadt-Hallman, A., and Tuzun, S. 1996 Induction of defense-related unltranstructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919-929.
Berglund, G. I., Carlsson, G. H., Smith, A. T., Szóke, H., Henriksen, A., and Hajdu, J. 2002 The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463-468.
Birnboim, H. C. and Doly, J. 1979 A rapid alkaline extraction procedure for screening recombinant plamid DNA. Nucleic Acid Res, 7:1513.
Board, P., Russell, R. J., Marano, R. J., and Oakeshott, J. G. 1994 Purification, molecular cloning and heterologous expression of a glutathione S-transferase from the Australian sheep blowfly (Lucilia cuprina). Biochem J. 299:425-430.
Bol, J. F., Linthorst, H. J. M., and Cornelissen, B. J. C. 1990 Plant pathogenesis-related proteins induced by virs infection. Annu. Rev. Phytopathol. 28:113-138.
Bolwell, G. p., Butt, V. S., Davies, D. R., and Zimmerlin, A. 1995 The origin of the oxidative burst in plants. Free Radic. Res. 23:517-532.
Bolwell, G. P. 1999 Role of active oxygen species and NO in plant defense responses. Curr. Opin. Biol. 2:287-294.
Borden S. and Higgins, V. J. 2002 Hydrogen peroxide plays a critical role in the defense response of tomato to Cladosporium fulvum. Physiol. Mol. Plant Pathol. 61:227-236.
Bowles, D. J. 1990 Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873-907.
Bowler, C., van Montagu, M., and Inzé, D. 1992 Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116.
Bowler, C., van Camp, W., van Montagu, M., and Inzé, D. 1994 Superoxide dismutase in plants. Crit. Rev. Plant Sci. 13:199-218.
Bradford, M. M. 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Bradley, D. J., Kjellbom, P., and Lamb, C. J. 1992 Elicitor- and wound-induced oxidative cross-linking of a proling-rich plant cell wall protein: a novel, rapid defense. Cell 70:21-30.
Brisson, L. F., Tenhaken, R. and Lamb C. 1994 Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703-1712.
Camp, W. V., Van Montagu, M., and Inzé, D. 1998 H2O2 and NO: redox signals in disease resistance. Trends Plant Sci. 3:330-334.
Carpenter, C. D., Kreps, J. K. and Simon, A. E. 1994 Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104:1015-1025.
Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H. Jr., Van Montagu, M., Inzé, Dirk, I., and Van Camp, W. 1998 Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic plants. Proc. Natl. Acad. Sci. U.S.A. 95:5818-5823.
Chen, Z., Silva, H., and Klessig, D. F. 1993 Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883-1886.
Colonna, S., Gaggero, N., Richelmi, C., and Pasta, P. 1999 Recent biotechnological developments in the use of peroxidases. Trends Biotech. 17:163-168.
Condit, C. M. and Meagher, R. B. 1986 A gene encoding a novel glycine-rich structure protein of petunia. Nature 323:178-181.
Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., and Van Breusegem, F. 2000 Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57:779-795.
De Oliveira, D. E., Seurinck, J., Inzé, D., Van Montagu, M., and Bottermana, J. 1990 Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2:427-436
Delledonne, M., Polverari, A., and Murgia, I. 2003 The function of nitric oxide-mediated signaling and changes in gene expression during the hypersensitive response. Antioxid. Redox Signal 5:33-41.
Dixon, R. A. 1986 The phytoalexin reponse: Elicitation, signaling, and control of host gene expression. Biol. Rev. Camb. Philos. Soc. 61:239-292.
Doke, N. 1983 Involvement of superoxide anion generation in hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophothora infestans. Physiol. Plant Pathol. 23:345-347.
Doke, N., and Ohashi, Y., 1988 Involvement of a superoxide anion genetating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol. Mol. Plant Payhol. 32:163-175.
Fauth, M., Merten, A., Hahn, M. G., Jeblick, W., and Kauss, H. 1996 Competence for elicitation of hydrogen peroxide in hypocotyls of cucumber is induced by branching the cuticle and is enhanced by salicylic acid. Plant Physiol. 110:347-354.
Figueroa-Espinoza, M. C. and Rouau, X. 1998 Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linkinge between feruloylated arabinoxylans. Cereal Chem. 75:259-265.
Franco, L. O., Manes, C. O., Hamdi, S., Sachetto-Martins, G., and de Oliveira, D. E. 2002 Distal regulatory regions restrict the expression of cis-linked genes to the tapetal cells. FEBS Lett. 517:13-18.
Glazener, J. A., Orlandi, E. W., and Baker, J. C. 1996 The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiol. 110:759-763.
Goddemeier, M. L., Wulff, D., and Feix, G. 1998 Root-specific expression of a Zea mays gene encoding a novel glycine-rich protein, zmGRP3. Plant Mol. Boil. 36:799-802.
Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomenech, P., and Pages, M. 1988 A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334:262-264.
Greenberg, J. T. 1997 Programmed cell death in plant-pathgen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:525-545.
Harrak, H., Chamberland, H., Plante, M., Bellemare, G., Lafontaine, J. G., and Tabaeizadeh, Z. 1999 A proline-, threonine-, and glycine-regulated by drought is localized in the cell wall of xylem elements. Plant Physiol. 121:557-564.
Heintzen, C. S., Melzer, S., Fisher, R., Kappeler, S., Apel, K., and Staiger, D. 1994 A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J. 5:799-813.
Ish-Horowicz, D. and Burke, J. F. 1981 Rapid and efficient cosmid cloning. Nucleic Acids Res. 9:2989.
Jabs, T., Dietrich, R. A., and Dangl, J. L. 1996 Intiation of runaway cell death in Arabidopsis mutant by extracellular superoxide. Science 273:1853-1856.
Jana, S. and Choudhuri, M. A. 1982 Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat. Bot. 12:345-354.
Jih, P. J., Chen, Y. C., and Jeng, S. T. 2003 Involvement of hydrogen peroxide and nitric oxide in expression of the Ipomoelin gene from sweet potato. Plant Physiol. 132:381-389.
Kaldenhoff, R. and Richter, G. 1989 Sequence of cDNA for a novel light-induced glycine-rich protein. Nucleic. Acids Res. 17:2853.
Kauss, H. 1987 Some aspects of calcium-dependent regulation in plant metabolism. Annu. Rev. Plant Physiol. 38:47-72.
Keller, B., Sauer, N., and Lamb C. J. 1988 Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J. 7:3625-3633.
Keller, B., Schmid, J., and Lamb, C. J. 1989 Vascular expression of a bean cell wall glycine-rich protein-β-glucuronidase gene fusions in transgenic tobacco. EMBO J. 8:1309-1314.
Kohorn, B. D. 2001 Waks; cell wall associated kinases. Curr. Opin. Cell Biol. 13:529-533.
Lamb, C. J. Lawton, M. A., Dron, M., and Dixon, R. A. 1989 Signals and transduction mechanisms for activation of plant defense against microbial attack. Cell 56:215-224.
Lamb, C., and Dixion, R. A. 1997 The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275.
Larson, R. A. 1988 The antioxidants of higher plants. Phytochemistry 27:969-978.
León, J., Lawton, W., and Raskin, I. 1995 Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol. 108:1673-1678.
Levine, A., Tenhaken, R., Dixon, R, and Lamb, C. 1994 H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593.
Linthorst, H. J. M. 1991 Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci. 10:123-150.
Linthorst, H. J. M., van Loon, L. V., Memelink, J., and Bol, J. F. 1990 Characterization of cDNA clones for virus-inducible glycine-rich proteins from petunia. Plant Mol. Biol. 15:521-523.
Liu, Z., Z., Wang, J., L., Huang, X., Xu, W., H., Liu, Z., M., and Fang, R., X. 2003 The promoter of a rice glycine-rich protein gene, Osgrp-2, confers vascular-specific expression in transgenic plants. Planta 216:824-833.
Low, P. S. and Merida, J. R. 1996 The oxidative burst in plant defense: Function and signal transduction. Physiol. Plant 96:533-542.
Lu, Y. Y. and Chen, C. Y. 1998 Probenazole-induced resistance of lily leaves against Botrytis elliptica. Plant Pathol. Bull. 7:134-140.
Luo, M., Lin, L., Hill, R. D., and Mohapatra, S. S. 1991 Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein. Plant Mol. Biol. 17:1267-1269.
Luvine, A., Tenhaken, R., Dixon, R., and Lamb, C. 1994 H2O2 from the oxidative burst orchestrate the plant hypersensitive disease resistance repose. Cell 79:583-593.
Matsuyama, S., Kawano, S., Takano, H., Uchida, H., Sakai, A., and Kuroiwa, T. 1996 Isolation and developmental expression of male reproductive organ-specific genes in a dioecious campion, Melandrium album (Silene latifolia). Plant J. 10:679-685.
Medhy, M. C. 1994 Active oxygen sepecies in plant defense against pathogens. Plant Physiol. 105:467-472.
Memelink, J., Linthorst, H. J. M., Schilperoort, R. A., and Hoge, H. C. 1990 Tobacco genes encoding acid and basic isoforms of pathogenesis-related proteins display different expression patterns. Plant Mol. Biol. 14:119-126.
Molina, A., Mena, M., Carbonero, P., and Garcia-Olmedo, F. 1997 Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol. Biol. 33:803-810.
Mundy, J. and Chua, N-H. 1988 Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 7:2279-2286.
Orozco-Cárdenas, M. L. and Ryan, C. A. 1999 Hydrogen peroxide is generated systematically in plant leaves by wounding and system via the octadecanoid pathway. Proc. Natl. Acad. Sci. U.S.A. 96:6553-6557.
Park, A. R., Somi, K. C., Yun, U. J. , Lee, S. H., Sachetto-Martins, G., and Park, O. K. 2001 Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich Protein, AtGRP-3. J. Bol. Chem. 276:26688-26693.
Peng, M. and Kuc, J. 1992 peroxidase-generated hydrogen peroxidase as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696-699.
Piedras, P., Hammond-Kosack, K. E., Harrison, K., and Jones, J. D. G. 1998 Rapid Cf-9 and Avr9-dependent production of active oxygen species in tobacco suspension cultures. Mol. Plant-Microb Interact. 11:1155-1166.
Rao, M. V., Paliyath, G., Ormrod, D. P., and Murr, D. P. 1997 Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzyme. Plant Physiol. 115:137-149.
Rasmussen, J. B., Smith, J. A., Williams, S., Burkhart, W., Ward, E., Somerville, S. C., Ryals, J., and Hammerschmidt, R. 1995 cDNA cloning and systemic expression of acidic peroxidases associated with systemic acquired resistance to disease in cucumber. Physiol. Mol. Plant Pathol. 46:389-400.
Raupach, G, S., Liu, L., Murphy, J. F., Tuzun, S., and Kloeper, J. W. 1996 Induction of systemic resistance in cucumber and tomato against cucumber mosaic virus using plant growth-promoting rhizobacteria (PGPR). Plant Dis. 80:891-894.
Richter, C., and Schweizer, M. 1997 Oxidative stress in mitochondria. In: oxidative stress and the molecular biology of antioxidant defenses. Scandalios, J. G. (ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY pp.169-200.
Ringli, C., Keller, B., and Hauf, G. 2001a Hydrophobic interactions of the structural protein GRP1.8 in the cell wall of protoxylem elements. Plant Physiol. 125:673-682.
Ringli, C., Keller, B., and Ryser, U. 2001b Glycine-rich proteins as structural components of plant cell wall. Cell. Mol. Life Sci. 58:1430-1441.
Rohde, W., Rosch, K., and Kroger, K. 1990 Nucleotide sequence of a Hordeum vulgare gene encoding a glycine-rich protein with homology to vertebrate cytokeratins. Plant Mol. Biol. 14:1057-1059.
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Stelner, H.-Y., and Hunt, M. D. 1996 Systemic acquired resistance. Plant Cell 8:1809-1819.
Ryser, U. and Keller, B. 1992 Ultrastructural localization of a bean glycine-rich protein in unlignified primary walls of protoxylem cells. Plant Cell 4:773-783.
Ryser, U., Schorderet, M., Zhao, G.-F., Studer, D., Ruel, K., Hauf G., and Keller, B. 1997 Structural cell-wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein. Plant J. 12:97-111.
Sachetto-Martins, G., Fernandes, L. D., Felix, D. B., and de Oliveira, D. 1995 Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm-derived cells. Int. J. Plant Sci. 460-470.
Sachetto-Martins, G., Franco, L. O., and de Oliveira, D. E. 2000 Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim. Biophy. Acta 1492:1-14.
Sakuta, C., Oda, A., Yamakawa, S., and Satoh, S. 1998 Root-specific expression of genes for novel glycine-rich proteins cloned by use of an antiserum against xylem sap proteins of cucumber. Plant Cell Physiol. 39:1330-1336
Salin, M. L. 1987 Toxic oxygen species and protective systems of the chloroplast. Physiol. Plant 72:681-689.
Sánchez-Casas, P. and Klessig, D. F. 1994 A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol. 106:1675-1779.
Santino, C. G., Stanford, G. L., and Conner, T. W. 1997 Developmental and transgenic analysis of two tomato fruit enhanced genes. Plant Mol. Biol. 33:405-416.
Schopfer, P. 1994 Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiol. 104:1269-1275.
Showalter, A. M. 1993 Structure and function of plant cell wall proteins. Plant Cell 5:9-23.
Smith, J. A., Hammerschmidt, R., and Fulbright, D. W. 1991 Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. Syringae. Physiol. Mol. Plant Pathol. 38:232-235.
Steinert, P. M., Mack, J. W., Korge, B. P., Gan, S. Q., Haynes, A. C., and Steven, J. 1991 Glycine loops in proteins their occurrence in certain intermediate filament chains loricrins and single-stranded RNA binding proteins. Int. J. Biol. Macromol. 13:13-139.
Sturm, A. 1992 A wound-inducible glycine-rich protein from Daucus carota with homology to single stranded nucleic acid binding proteins. Plant Physiol. 99:1689-1692.
Taylor, A. M., Nakano, Y., Mohler, J., and Ingham, P. W. 1993 Contrasting distributions of patched and hedgehog proteins in the Drosophila embryo. Mech. Dev. 42:89-96.
Thibault, J. F., Garreau, C., and Durand, D. 1987 Kinetics and mechanism of reaction of ammonium persulfate with ferulic acid and sugar-beet pectins. Carbohydr. Res. 163:15-27.
Thordal-Christensen, H., Ahang, Z., Wei, Y., and Collinge, D. B. 1997 Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194.
Ueki, S. and Citovsky, V. 2002 The systemic movement of a tobamovirus is inhibited by a cadmiumion-induced glycine-rich protein. Nature Cell Biol. 4:478-485.
Van Kan, J. A. L., Cornelissen, B. J. C., and Bol, J. F. 1988 A virus-inducible tobacco gene encoding a glycine-rich-protein shares putative regulatory element eith the ribulose bisphosphate carboxylase small unit gene. Mol. Plant-Microbe Interact. 1:107-112.
Van Nocker, S. and Vierstra, R. D. 1993 Two cDNAs from Arabidopsis thaliana encode putative RNA binding proteins containing glycine-rich domains. Plant Mol. Biol. 21:695-699.
Vance, C. P., Kirk, T. K., and Sherwood, R. T. 1980 Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18:259-288.
Vranová, E., Inzé, D., and van Breusegem, F. 2002 Signal transdution during oxidative stress. J. Exp. Bot. 53:1227-1236.
Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., van Montagu, M., Inzé, D., and van Camp, W. 1997 Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J. 16:4806-4816.
Willekens, H., Inzé, D., van Montagu, M., and van Camp, W. 1995 Catalase in plants. Mol. Breed. 1:207-228.
Xing, T., Higgins, V. J., and Blumwald, E. 1997 Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to plasma membrane of tomato cells. Plant Cell 9:249-259.
Yang, E. J., Oh, Y. A., Lee, E. S., Park, A. R., Cho, S. K.,Yoo, Y. J., and Park, O. K. 2003 Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochem. Biophys. Res. Commun. 305: 62–868.
Ye, Z.-H. and Varner, J. E. 1991 Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell 3:23-37.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24591-
dc.description.abstract植物對病原之入侵具有多重防禦機制,包括先天及誘導性抗病。依抗病特性不同,可將植物誘導抗性分為 systemic acquired resistance (SAR)、induced systemic resistance (ISR) 及過敏性反應。本實驗室研究葵百合誘導抗病性時,施以水楊酸可有效地降低灰黴病的發病程度,並選殖葵百合受水楊酸誘導表現的基因,獲得一個全長度 cDNA,編碼一含138個胺基酸的蛋白質(LsGRP1),富含甘胺酸,N端具有訊息序列,C 端富含半胱胺酸。本研究純化 LsGRP1 重組蛋白,並製備 anti-LsGRP1 抗體,利用此抗體偵測 LsGRP1 及其類似 GRPs 於葵百合上受到水楊酸誘導表現之情形,結果顯示 LsGRP1 相關蛋白質主要分布於表皮及維管束周鞘。LsGRP1 除了富含甘胺酸外,也含有許多酪胺酸,酪胺酸為極性分子,易與其他極性分子產生氫鍵結合;生體外試驗即指出 LsGRP1 可能具有蛋白質間交互鍵結的能力。分析水楊酸誘導葵百合累積過氧化氫情形,發現過氧化氫大量表現的部位與 LsGRP1 相關蛋白質類似;且在水楊酸誘導24 小時,過氧化氫及 LsGRP1 均大量表現。此等結果暗示 LsGRP1及其類似 GRPs於葵百合中可能具有蛋白質間交互鍵結的能力,扮演強化植物細胞壁的角色。zh_TW
dc.description.abstractPlant defense mechanism induced by pathogen attack includes systemic acquired resistance (SAR), induced systemic resistance (ISR) and hypersensitive response (HR). In the study of SA-induced disease resistance, a cDNA named LsGRP1 (Lilium ‘Star Gazer’ glycine-rich protein 1) was cloned from Lilium hybrid ‘Star Gazer’. In this study, His-LsGRP1 protein was purified from a Escherichia coli strain harboring recombinant plasmid and used to prepare anti-LsGRP1 antiserum which was used to examine the location of SA-induced LsGRP1 and its homologues in ‘Star Gazer’ leaves. The LsGRP1 and its homologues were mainly localized in the leaf epidermis and vascular bundle sheath cells. The glycine-rich domain of LsGRP1 contains several tyrosine-residues which might cross-link to other Tyr-residues in vivo. In vitro experiments indicated that LsGRP1 might have oxidative cross-linking capability. As shown, SA-induced hydrogen peroxide (H2O2) was accumulated in a similar spatial pattern as LsGRP1 and/or its homologues. Moreover, accumulation of H2O2 and LsGRP1-related mRNA transcript simultaneously increased 24 hr after SA treatment. These results indicated that LsGRP1 and/or its homologues might exhibit cross-linking capability and facilitate the fortification of plant cell walls.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:32:20Z (GMT). No. of bitstreams: 1
ntu-94-R91633012-1.pdf: 758538 bytes, checksum: 638b99bed0c73c8e37fb0a0c605ed51f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents壹、 中文摘要…………………………………………………………………………1
貳、 前言………………………………………………………………………………2
參、 前人研究…………………………………………………………………………4
一、百合灰黴病…………………………………………………………………4
二、氧化作用與植物之誘導抗病性…………………………………………….5
2-1 植物之誘導抗病性………………………………………………….…5
2-2 植物活性氧物質…………………………………………………….…6
2-3 植物活性氧物質之氧化作用……………………………………...…..6
2-4 植物氧化作用與細胞壁蛋白質之氧化鍵結……………………….…7
2-5 植物氧化逆境防禦機制…………………………………………….…7
三、植物 GRPs 之特性…………………………………………………………8
3-1 植物細胞壁蛋白質………………………………………………….…8
3-2 GRPs 之結構特性……………………………..……………………...9
3-3 GRPs 於植物上之表現………………………...…………………….10
3-4 GRPs 之誘導反應...…………………………………………………..11
3-5 GRPs 之可能角色……………………………………………………12
3-6葵百合之 LsGRP1……………………………………………………14
肆、 材料與方法……………………………………………………………………..16
一、材料與藥品………………………………………………………………...16
1-1 菌種……………………………………………………….…………..16
1-2 植物材料………………………………………………….…………..16
1-3 化學藥品………………………………………………….…………..16
1-4 酵素……………………………………………………….…………..16
1-5 抗體……………………………………………………….……...…..16
二、LsGRP1 之基因構築……………………………………………...…..….17
2-1 質體 DNA 之小量製備法……………………………………….….17
2-2 引子的設計……………………………………………………….…..17
2-3 LsGRP1 之擴增…………………………………………...…………17
2-4 DNA 膠體電泳法……………………………………………………18
2-5 限制酵素切割………………………………………………………..18
2-6 DNA片段之回收與純化…………………………………………….18
2-7 DNA 黏接反應………………………………………………………19
2-8 大腸桿菌勝任細胞製備……………………………………………..19
2-9 大腸桿菌細胞轉形…………………………………………………..19
2-10 轉形大腸桿菌的篩選………………………………………………20
三、LsGRP1 蛋白質之純化……………………………….………………….20
3-1 細菌產生蛋白質之抽取……………………………………………...20
3-2 親和層析法…………………………………………………………...21
3-3 透析復性蛋白質……………………………………………………...21
3-4 蛋白質濃縮…………………………………………………………...22
3-5 蛋白質含量測定……………………………………………….……..22
3-6 SDS-聚丙烯醯胺膠體電泳分析…………………………...................23
四、LsGRP1 抗體製備………………………………………………………..23
五、西方墨點法………………………………………………………………..24
六、抗體酵素連結免疫反應…………………………………………………...25
七、植物藥劑處理……………………………………………………………..26
八、植物組織免疫轉印偵測…………………………………………………..27
九、過氧化氫之植物組織轉印偵測…………………………………………...27
十、植物過氧化氫定量分析………………………………………..………….27
十一、過氧化氫染色偵測法………………………………………………….27
十二、LsGRP1 蛋白質間交互鍵結作用測試……………………………….28
伍、 結果..……………………………………………………………………………29
一、LsGRP1 預測胺基酸序列分析……………………………….…………..29
二、表現 His-LsGRP1 重組蛋白載體…………....………………………..…30
三、表現 His-LsGRP1 重組蛋白之培養條件測試………………….....…..…30
四、His-LsGRP1 重組蛋白質的純化………………………………...…….…31
五、LsGRP1 抗體之製備…………………………………………….…….….32
六、葵百合 LsGRP1 之組織免疫轉印偵測………………………………..…32
七、葵百合之過氧化氫偵測…………………………………………….….….33
7-1過氧化氫之植物組織轉印偵測………………………………………33
7-2水楊酸誘導葵百合累積過氧化氫……………………………....……33
7-3葵百合受到水楊酸誘導及抑制處理後累積過氧化氫量之檢測……33
7-4利用過氧化氫染劑觀察葵百合葉片受水楊酸誘導之過氧化氫生成累 積情形…................................................................................................34
八、 LsGRP1 蛋白質間交互鍵結作用……………………………………….35
九、 LsGRP1 刪除突變之重組蛋白……………………………..……………36
陸、 討論……………………………………………………………………………..37
柒、 參考文獻………………………………………………………………………..42
捌、 圖表集…………………………………………………………………………..54
表一、供試菌株及質體…………………………………………….………….55
表二、引子對序列…………………………………………….………………..56
表三、自 E. coli JM109(pQGRP1Δ23) 純化 LsGRP1………….................…57
圖一、E. coli JM109(pQGRP1Δ23) 生長量與粗抽蛋白質之關係 (28℃) …58
圖二、E. coli JM109(pQGRP1Δ23) 粗抽蛋白質西方墨點法分析………….59
圖三、IPTG 誘導培養 E. coli JM109(pQGRP1Δ23) 之西方墨點法分析…60
圖四、LsGRP1Δ23 之表現及其表現載體圖譜……………………………….61
圖五、LsGRP1 抗體敏感度分析………………………………………………62
圖六、水楊酸誘導葵百合 LsGRP1 之組織免疫轉印偵測…………………..63
圖七、葵百合之過氧化氫偵測…………………………………………………64
圖八、水楊酸誘導葵百合累積過氧化氫量之檢測…………………………...65
圖九、葵百合受到水楊酸誘導及抑制處理後累積過氧化氫量之檢測………66
圖十、以過氧化氫染劑觀察葵百合葉片受水楊酸誘導後過氧化氫累積情 形………………………………………………………………………..67
圖十一、LsGRP1 蛋白質間交互鍵結作用……………………………………68
圖十二、His-LsGRP1重組蛋白功能區組成……………………………....….69
圖十三、GST-LsGRP1重組蛋白功能區組成………………….....…………...70
圖十四、pGEXGRP1 之質體圖譜及 E. coli JM109(pGEXGRP1)、E. coli JM109(pGEXGRP1Δ23) 及 E. coli JM109(pGEXGRP1Δ23/38) 蛋 白質表現…..........................................................................................71
玖、 英文摘要………………………………………………………………………..72
拾、附錄……………………………………………………………………………...73 圖一、LsGRP1預測胺基酸序列與其他植物 GRPs 之排並分析……………74
圖二、LsGRP1 之 Hydropathic index分析…………………………………..75
圖三、LsGRP1 互補 DNA 序列及其預測胺基酸序列...................................76
dc.language.isozh-TW
dc.title水楊酸誘導葵百合表現 LsGRP1 及累積過氧化氫之分析zh_TW
dc.titleExpression of LsGRP1 and accumulation of hydrogen peroxide in Lilium cv. Star Gazer induced by salicylic aciden
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉瑩,鄭秋萍,葉開溫
dc.subject.keyword蛋白質間交互鍵結,過氧化氫,LsGRP1,水楊酸,系統性誘導抗病,葵百合,zh_TW
dc.subject.keywordhydrogen peroxide,systemic acquired resistance,LsGRP1,salicylic acid,protein oxidative cross-linking,Lilium ‘Star Gazer’,en
dc.relation.page76
dc.rights.note未授權
dc.date.accepted2005-06-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
740.76 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved