Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24576
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳安宇
dc.contributor.authorChih-Hsiu Linen
dc.contributor.author林志修zh_TW
dc.date.accessioned2021-06-08T05:31:40Z-
dc.date.copyright2005-07-14
dc.date.issued2005
dc.date.submitted2005-06-27
dc.identifier.citation[1] Amendment: Media Access Control (MAC) Parameters, Physical Layers, and Management Parameters for 10Gb/s Operation, IEEE Standard 802.3ae-2002.
[2] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding”, IEEE Trans. Inform. Theory, vol. IT-13, no. 2, pp. 260-269, April 1967.
[3] Lucky, at al., principles of Data Communication, McGraw-Hill, New York, 1968.
[4] S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice-Hall, 1996.
[5] M. E. Austin, “decision-feedback equalization for digital communication over dispersive channels,” MIT Lincoln Laboratory, Lexington, Mass, Tech. Rep. 437, 1967.
[6] F. Zhao, G. Mathew, and B. Farhang-Boroujeny, “Techniques for Minimizing Error Propagation in Decision Feedback Detectors for Recording Channels,” IEEE Trans. Mag., Vol. 37, Issue: 1, pp. 592-602, Jan. 2001.
[7] L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv, “Optimum decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-24, pp. 284-287, Jan. 1974.
[8] B. Vucetic and J. Yuan, TURBO CODES Principles and Applications, Kluwer Academic Publishers, 2000.
[9] J. G. Proakis, Digital Communications, 4nd Edition, New York: McGraw-Hill, 2001.
[10] K. K. Parhi, VLSI Digital Signal Processing System, Wiley-Interscience, 1999.
[11] M. Tarrab and A. Feuer, “Convergence and performance analysis of the normalized LMS algorithm with uncorrelated Gaussian data,” IEEE. Trans. Acoust., Speech, Signal Processing, vol. 34, 680-691, July 1988.
[12] S. Koike, “Analysis of adaptive filters using normalized singed regressor LMS algorithm,” IEEE Trans. Signal Processing, vol. 47, pp. 2710-2723, Oct. 1999.
[13] E. Eweda, “Analysis and design of a signed regressor LMS algorithm for stationary and nonstationary adaptive filtering with correlated Gaussian data,” IEEE Trans. Circuits Syst., vol. 37, pp. 1367-1374, Nov. 1990.
[14] D. I. Kim and P. D. Wilde, “Performance Analysis of Singed Self-Orthogonalizing Adaptive Lattice Filter,” IEEE Trans. Circ. Syst. II: Analog and Digital Signal Processing, vol. 47, No. 9, pp. 1227-1237, Oct. 2000.
[15] B. Farhang-Boroujeny, “Fast LMS/Newton algorithms based on autoregressive modeling and their application to acoustic echo cancellation,” IEEE Trans. Signal Processing, vol. 45, pp. 1987-1997, Aug. 1997.
[16] H. H. Loomis, Jr. and B. Sinha, “High speed recursive digital filter realization,” Circuits, Systems, Signal Processing, vol. 3, no. 3, pp. 267-294. 1984.
[17] M. A. Soderstrand, at al., “New approach to clustered look-ahead pipeline IIR digital filters,” IEEE Trans. on Circuits and Systems, Part II: Analog and Digital Signal Processing, vol. 42, pp. 269-274, April 1995.
[18] M. A. Richards, “Application of Deczky’s program for recursive filter design to the design of recursive decimators,” IEEE Trans. on Acoustics, Speech, and Signal Processing, pp. 811-814, Oct. 1982.
[19] H. G. Martinez, and T. W. Parks, “Design of recursive digital filters with optimum magnitude and attenuation poles on the unit circle,” IEEE Trans. on Acoustics Speech, and Signal Processing, vol. ASSP-26, pp. 150-157, April 1978.
[20] B. E. Moision, P. Seigel, and E. Soljanin, ”Error Event Characterization and Coding for the Equalized Lorentzian Channel,” ISIT Cambridge, MA, USA, Aug. 16 – 21, 1998.
[21] T. Oenning and J. Moon, “Modeling the Lorentzian Magnetic Recording Channel with Transition Noise,” IEEE Trans. on Magnetic. vol. 37, no. 1, pp. 583-591, Jan. 2001.
[22] K. K. Parhi, “Pipelining in algorithm with quantizer loops,” IEEE Trans. Circ. Syst., vol. 38, pp. 745-754, July 1991.
[23] N. R. Shanbhag, K. K. Parhi, “Pipelined adaptive ADFE architectures using relaxed look-ahead,” IEEE Trans. Signal Processing, vol. 43, No. 6, pp. 1368-1385, June 1995.
[24] K. K. Parhi, VLSI Digital Signal Processing System, Wiley-Interscience, 1999.
[25] M. D. Yang, An-Yeu Wu, and J. T.(Justin) Lai, “Fast Convergent Pipelined Adaptive DFE Architecture Using Post-Cursor Processing Filter Technique,” in IEEE Trans. Circuits and Systems Part II: Analog and Digital Signal Processing, vol. 51, no. 2, pp. 57-60, Feb. 2004.
[26] M. D. Yang, An-Yeu Wu, and J. T.(Justin) Lai, “High-Performance VLSI Architecture of Adaptive Decision Feedback Equalizer Based on Predictive Parallel Branch Slicer (PPBS) Scheme,” in IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 12, no. 2, pp. 218-226, Feb. 2004.
[27] S. Kasturia and J.H. Winters, “Techniques for high-speed implementation of nonlinear cancellation,” IEEE J. Select. Areas Commun., vol. 9, no. 5, pp. 711-717, June 1991.
[28] Eshraghi, T. Fiez. K. Winter, and T. Fisher, “Design of a new squaring function for the Viterbi algorithm,” IEEE J.Solid-State Circuits, vol. 29, pp. 1102-1107, Sep. 1994.
[29] A. A. Hiasat and A. S. Abdel-Aty-Zohdy, “ Combinational logic approach for implementing an improved approximate squaring function,” IEEE J. Solid-State Circuits, vol. 34 pp. 236-240, Feb. 1999.
[30] K. K. Parhi, “Fast low-power VLSI binary addition”, in Proc. Of 1997 IEEE International Conference on Computer Design (ICCD), pp. 676-684, Oct. 1997.
[31] Oscar Agazzi, et al., Measurements of DMD-Challenged Fibers at 3.125Gb/s, IEEE 802.3ae Meeting, Irvine, Jan 2001.
[32] Oscar Agazzi, et al., DSP-Based Equalization for Optical Channels, IEEE 802.3ae Meeting, New Orleans, Sept 2000.
[33] Kamran Azadet Erich F. Haratsch, Helen Kim, et al. “Equalization and FEC techniques for optical transceivers,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 317-327, Mar 2002.
[34] “適用於10GBASE-LX4光纖通訊系統之類比等化器設計” ,陳平, 國立台灣大學電機工程研究所碩士論文,中華民國九十三年七月.
[35] “適用於高速通訊系統的動態功率調節之可適性決策回饋等化器設計”, 王博民,國立台灣大學電子工程研究所碩士論文,中華民國九十二年七月.
[36] Simon Haykin, Communication Systems, 4th Edition, John Wiley & Sons, Inc., 2001.
[37] Oscar Agazzi, ”A Link Model for Equalized Optical Receivers”, IEEE 802.3ae Equalization Ad Hoc, March 11, 2001.
[38] I. Korn, Digital Communication, Taipei publications trading company, 1985.
[39] S. Verdu’, “Minimum probability of error for asynchronous Gaussian multiple-access channels,” IEEE Trans. Information Theory, no. 32, pp. 85-96, Jan. 1986.
[40] S. Verdu’, “Optimum sequence detection of asynchronous multiple access communications,” Abstr 1983 IEEE Int. on Information Theory, pp. 80, Sept. 1983.
[41] R. Lupas and S. Verdu’, “Optimum near-far resistance of linear detectors for code-division multiple-access channels,” IEEE Trans. Information Theory, 35: pp 123-136, Jan. 1989.
[42] Y. Yoon, R. Kohno, and H. Imai. “A spread-spectrum multi-access system with co-channel interference cancellation over multi-path fading channels,” IEEE Journal on Selected Areas in Communications, vol. 11, no. 7, pp. 1067-1075. Sept. 1993.
[43] L. Wei and C. Schlegel, “Synchronous DS-CDMA system with improved decorrelating decision feedback multi-user detection,” IEEE Trans. Vehicular Technology, vol. 43, no. 3, pp. 767-772, Aug. 1994.
[44] A. Duel-Hallen, “Decorrelating decision feedback detectors for synchronous CDMA,” IEEE Trans. Communications, no. 41, pp. 285-290, Feb. 1995.
[45] http://www.ieee802.org/3/an/index.html.
[46] J.R Treichler, I. Fijalkow, and Jr. C.R. Johnson, “Fractionally spaced equalizers,” IEEE Signal Processing Magazine, vol. 13, issue: 3, pp. 65–81, May 1996.
[47] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, “Statistical and Adaptive Signal Processing – Spectral Estimations, Signal Modeling, Adaptive Filtering and Array Processing,” international edition, McGraw-Hill, 200.
[48] K, Poulton, et al. “A 6-bit, 4 GSa/s ADC fabricated in a GaAs HBT process,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1994. Technical Digest 1994., 16th Annual , 16-19, pp. 240– 243, Oct. 1994.
[49] J. Xicheng, M. C. F. Chang,” A 1-GHz signal bandwidth 6-bit CMOS ADC with power-efficient averaging,” IEEE Journal of Solid-State Circuits, vol. 40, Issue: 2, pp. 532-535, Feb. 2005.
[50] M. Choi and A. A. Abidi, “A 6 b 1.3 Gsample/s A/D converter in 0.35 μm CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1847–1858, Dec. 2001.
[51] P. Scholtens and M. Vertregt, “A 6-b 1.6-Gsamples/s flash ADC in 0.18 μm CMOS using averaging termination,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1599–1609, Dec. 2002.
[52] J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, Jr. G. D. Forney, ”MMSE decision-feedback equalizers and coding. I. Equalization results,” IEEE Transactions on Communications, vol. 43, Issue: 10, pp. 2582 – 2594, Oct. 1995.
[53] J. M. Cioffi, G. P. Dudevoir, M. V. Eyuboglu, Jr. G. D. Forney, ”MMSE decision-feedback equalizers and coding. II. Coding results,” IEEE Transactions on Communications, vol. 43, Issue: 10, pp. 2582 – 2594, Oct. 1995.
[54] N. Al-Dhahir, J. M. Cioffi, ” MMSE decision-feedback equalizers: finite-length results,” IEEE Transactions on Information Theory, vol. 41, Issue: 4, pp. 961 – 975, July 1995.
[55] M. Tomlinson, “New automatic equalizer employing module arithmetic,” Electron. Lett., vol. 7, no 5/6, pp. 138-139, Mar. 1971.
[56] H. Harashima and H. Miyakawa, “Matched-transmission technique for channels with intersymbol interference,” IEEE Trans. Commun., vol. COM-20, pp. 774-779, Aug. 1972.
[57] A. P. Liavas, “Tomlinson-Harashima Precoding With Partial Channel Knowledge,” IEEE Trans. Commun., vol. 53, no. 1, pp. 5-9, Jan. 2005.
[58] R. Price, “Nonlinear feedback-equalized PAM versus capacity for noisy filter channels,” in Proc. Int. Conf. commun., June 1972, pp.22-12-22-17.
[59] J. E. Mazo and J. Salz, “On the Transmitted Power in Generalized Partial Response,” IEEE Trans. Commun., vol. COM-24, no. 3, pp. 348-351, Mar. 1976.
[60] T. Meng and D.G. Messerschmitt, “Arbitrarily high sampling rate adaptive filters,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 35, no. 4, pp. 455-470, 1987.
[61] G. Long F. Ling, and J.G. Proakis, “The LMS algorithm with delayed coefficient adaptation,” IEEE Trans. on Acoustics, Speech, and Signal Processing, vol. 37, no. 9, pp. 1397-1405, 1989.
[62] S.C. Douglas, “Simplified stochastic gradient adaptive filters using partial updating,” in Proc. 1994 IEEE on Digital Signal Processing, pp. 265-268, Oct. 1994.
[63] M. Godavarti, A.O. Hero, “Stability bounds on step-size for the partial update LMS algorithm,” in Proc. of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 1677 - 1680, March 1999.
[64] M. Godavarti, A.O. Hero, “Stability analysis of the sequential partial update LMS algorithm,” in Proc. of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 7, pp. 3857-3860, May 2001.
[65] J. Sanubari, “Fast convergence LMS adaptive filters employing fuzzy partial updates,” in Proc. of TENCON 2003 Conference on Convergent Technologies for Asia-Pacific Region, vol. 4, pp. 1334 - 1337, Oct. 2003.
[66] H. N. Kim, S. I. Park, and S. W. Km, “Performance analysis of error propagation effects in the DFE for ATSC DTV receivers,” IEEE Tran. Broadcasting, vol. 49 Issue: 3, pp249 -257, Sept. 2003.
[67] V. Yu. Krachkovsky, et al., ”Error propagation evaluation for RLL-constrained DFE read channels,” IEEE Trans. Mag., vol. 34 Issue: 1 , pp. 147 -152 Jan. 1998.
[68] J. E Smee and N. C. Beaulieu, “Error-rate evaluation of linear equalization and decision feedback equalization with error propagation” IEEE Trans. Comm., vol. 46 Issue: 5 , pp. 656 -665, May 1998.
[69] M. Chiani, “Introducing erasures in decision-feedback equalization to reduce error propagation,“ IEEE Trans. Comm., vol. 45, Issue: 7, pp. 757 -760,July 1997.
[70] M. Russel and J.W. M. Bergmans, “A technique to reduce error propagation in M-ary decision feedback equalization,” IEEE Trans. Commun., vol. 43, pp. 2878–2881, Dec. 1995.
[71] A. Fertner, “Improvement of bit-error-rate in decision feedback equalizer by preventing decision error propagation,” IEEE Trans. Signal Processing, vol. 46, pp. 1872–1877, July 1998.
[72] G. Mathew, Y. X. Lee, and V. Y. Krachkovsky, “A novel threshold technique for minimizing error propagation in MDFE read channel,” in Proc. IEEE GLOBECOM Conf., Sydney, Australia, Nov. 1998, pp. 2898–2903.
[73] H. Ueno, “Suppression method for error propagation on MDFE,” presented at the 2nd MDFE Consortium Meet., Akita, Japan, Oct. 1997.
[74] H. Ueno, T. Suguwara, K. Shimoda, and H. Mutoh, “A method for suppressing error propagation in (1,7) MDFE detectors,” IEEE Trans. Magn., vol. 35, pp. 2289–2291, Sept. 1999.
[75] N. Likhanov, Y. X. Lee, and G. Mathew, “Error propagation suppression in MDFE and M2DFE detectors,” presented at the 4th MDFE Consortium Meeting, Singapore, Apr. 1998.
[76] Intel website:http://www.intel.com/update/departments/netcomm/nc04001.pdf
[77] C. D. Mee and E. D. Daniel, Magnetic Recording Handbook. New York: McGraw-Hill, 1990.
[78] K. J. Wang and S. J. Chern, “Adaptive Bayesian decision feedback equalizer for radio channel with high-power amplifier”, Proc. Natl. Sci.Counc. ROC(A), vol. 24, No. 1, pp. 61-72, 2000.
[79] N. Al-Dhahir, A.F. Naguib, and A.R. Calderbank, “Finite-length MIMO decision feedback equalization for space-time block-coded signals over multipath fading channels,” IEEE Trans. Veh. Technol., vol. 50, no. 4, pp. 1176 –1182, July 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24576-
dc.description.abstract可適應性等化器(adaptive equalizers)在近代的數位通訊系統收器中扮演著關鍵的模組,因為等化器設計的好壞經常決定系統能傳輸的最大速率及品質,而且它所秏的計算量占了系統的總計算量中相當大的一部分。所以不論在研究上和實際應用上,等化器都佔有相當的重要性。目前研究重心仍為設計更快的通訊系統和更高密度的儲存裝置,然而隨著傳輸速率的增加和儲存裝置密度的提高,通道的失真產生的碼際干擾(intersymbol interference, ISI)對傳輸訊號造成的失真越來越嚴重。因此,設計一個高抗雜訊、高抗失真且能在高速下操作的等化器將是非常重要且必需的研究議題。
傳統的迴饋決策等化器(decision feedback equalizer)能有效的抑制碼際干擾,卻會因錯誤的決策而造成錯誤蔓延(error propagation),進而造成系統的錯誤率提高和連續錯誤長度(burst error length)增加等效應。在本論文的第一部份,我們提出多層軟性迴饋決策等化器(soft threshold-based multi-layer decision feedback equalizer, STM-DFE)演算法來抑制錯誤蔓延。模擬顯示多層軟性迴饋決策等化器能有效降低錯誤率和連續錯誤長度。在磁帶儲存通道上模擬,多層軟性迴饋決策等化器的性能甚至超過完美迴饋決策等化器(假設迴饋決策皆為正確) 。
此外超大型積體電路的實作上,多層軟性迴饋決策等化器比傳統迴饋決策等化器增加的額外硬體相當少。本論文的第二部份探討等化器在高速的應用上,我們提出的兩階段預算法(two-stage precomputation)能有效的降低多層軟性迴饋決策等化器在高速應用上的硬體成本。同時我們提出了其相對應的可適應性演算法來降低硬體成本和能量消秏。在10GBase-LX4光纖通訊系統的應用上,多層軟性迴饋決策等化器更將類比數位轉換器(analog-to-digital converter)所需的精確度從8位元降至6位元。利用此演算法,我們可以減輕設計類比數位轉換器困難度、複雜度及降低所需的硬體成本。
zh_TW
dc.description.abstractAn adaptive equalizer plays a key role at the receiver in modern digital transmission systems. The design of this equalizer is important since it determines the transmission quality attainable. Also, the equalizer occupies a high portion of the computational complexity in implementing the demodulator. Theses properties have made it the focus of much analytical and practical design. Recently, many researches of interest in communication systems are to increase transmission rate and recording density. However, with the increase of transmission rate and recording density, the signals propagating the channel suffer from serious channel distortion, which causes intersymbol interference (ISI). Hence, to design a robust and high-speed equalizer becomes important and necessary.
A decision feedback equalizer (DFE) is an efficient scheme to suppress this ISI. However, most cost-effective DFE implementations suffer from the phenomenon of error propagation, which degrades system performance in the sense of bit error rate (BER) or signal-to-noise ratio (SNR). In this thesis, we propose a soft-threshold-based multi-layer DFE (STM-DFE) algorithm to suppress the error propagation. Simulation results show that the proposed STM-Algorithm can efficiently reduce the BER and burst error length (BEL). When being applied to a practical Lorentzian channel and channels of different eigenvalue spread, the STM algorithm even outperforms the ideal DFE (IDFE) system (in an IDFE, symbols are assumed to be correctly fed back without propagation errors).
In VLSI implementations of the STM-DFE, the hardware overhead is negligible compared with a conventional DFE. The direct implementation can be applied to low-speed application such as magnetic data storage systems. In addition, for high-speed applications, we propose a two-stage precomputation scheme to lower the hardware overhead. A new adaptive algorithm to update for a DFE with precomputation scheme is also proposed so that both hardware complexity and power consumption can be saved. Finally, we consider the application of the STM-DFE to 10GBase-LX4 systems. With the help of the STM-DFE, we can perform effective EQ, and the required bit number of ADC can be reduced from 8 to 6. That is, STM-DFE can help to ease the ADC precision requirement, and help to save the silicon cost in implementing the receiver ICs.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:31:40Z (GMT). No. of bitstreams: 1
ntu-94-F89921096-1.pdf: 8312090 bytes, checksum: d8a8b87e5988826a610fd05743fb44cc (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract - 1 -
Lists of Figures - 7 -
List of Tables - 12 -
Chapter 1 Introduction - 13 -
1.1 Research Motivation - 15 -
1.2 Research Contributions - 19 -
1.3 Thesis Organization - 22 -
Chapter 2 Implementation Impairments of Existing Decision Feedback Equalizers - 24 -
2.1 Review of Equalizer Designs - 24 -
2.2 Error Propagation in DFE - 28 -
Chapter 3 Soft Threshold-based Multi-layer Decision Feedback Equalizer - 36 -
3.1 System model - 36 -
3.2 2-layer STM-Algorithm - 37 -
3.2.1 2-layer STM Algorithm - 39 -
3.2.2 MAP Detection in Stage 2 - 40 -
3.2.3 Boundaries of Decision Regions in Stage 2 - 42 -
3.2.4 Optimal Threshold Value L for Minimizing BER - 44 -
3.3 Higher-order Layer of the STM Algorithm - 47 -
3.3.1 Detection Scheme in the N-layer STM Algorithm - 47 -
3.3.2 Calculation of Threshold Value in the N-layer STM Algorithm - 49 -
3.4 Operations of the STM Algorithm - 50 -
3.5 Numerical Analysis and Simulation Results - 51 -
3.6 STM-Engine - 57 -
3.6.1 Operations of the STM-Engine - 58 -
3.6.2 Low-cost Architecture of the STM-Engine - 59 -
Chapter 4 High-speed VLSI architectures - 62 -
4.1 Review of the Implementation method of a DFE - 62 -
4.2 Precomputation Approaches for High-speed Applications - 65 -
4.2.1 Generalized Na-tap FBF - 65 -
4.2.2 Partial Precomputation Scheme - 66 -
4.2.3 Two-Stage precomputation Scheme - 69 -
4.3 High-speed Architecture of the STM-DFE - 72 -
4.3.1 Threshold Detector/ Data Detector Algorithm - 73 -
4.3.2 Threshold Detector/ Data Detector Architecture - 76 -
4.3.3 Overall System Architecture of the 2-Layer STM-DFE - 78 -
4.4 Precomputation-based LMS (PBLMS) Algorithm - 79 -
4.4.1 Precomputation-based LMS - 80 -
4.4.2 Learning Curve of the PBLMS - 81 -
4.4.3 VLSI Architecture of the PBLMS - 84 -
Chapter 5 STM-DFE Design for 10GBase-LX4 Systems - 86 -
5.1 Simulation Environment of 10GBase-LX4 Systems - 87 -
5.1.1 Simulated Channel Configuration - 87 -
5.1.2 Analog Equalization in 10GBase-LX4 Systems - 90 -
5.2 Parameters Assignment for the STM-DFE - 93 -
5.2.1 Number of Taps in FFF and FBF - 93 -
5.2.2 Floating-point Analysis - 97 -
5.2.3 Fixed-point Analysis - 99 -
5.3 Simulation Results - 104 -
5.4 VLSI architecture - 107 -
Chapter 6 Conclusions and Future Researches - 114 -
dc.language.isoen
dc.title高性能迴饋決策等化器演算法及硬體架構設計zh_TW
dc.titleHigh-performance Decision Feedback Equalizer Algorithms and Architecturesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree博士
dc.contributor.oralexamcommittee曹恒偉,闕志達,王晉良,吳文榕,陳紹基,周世傑,黃穎聰
dc.subject.keyword迴饋決策等化器,10Gbase乙太網路,zh_TW
dc.subject.keywordSTM-DFE,DFE,10Gbase LX4,en
dc.relation.page121
dc.rights.note未授權
dc.date.accepted2005-06-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
8.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved