Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24553Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 潘永寧 | |
| dc.contributor.author | Chih-Hung Chang | en |
| dc.contributor.author | 張志宏 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:30:40Z | - |
| dc.date.copyright | 2011-08-03 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-27 | |
| dc.identifier.citation | 1. J. F. Cuttino, J.R. Andrews and T.S. Piwonka, “Development in Thin- Wall Iron Casting Technology”, AFS Trans., Vol. 107 , pp. 363-372, 1999.
2. Amjad Javaid, Keith G. Davis and Mahi Sahoo, “Mechanical Properties in Thin- Wall Ductile Iron Castings”, Modern Casting, pp.39-41, June, 2000. 3. S. Dawson and T. Schroeder, “Practical Applications for Compacted Graphite Iron”, AFS Trans., Vol. 112, pp. 813-821, 2004. 4. C. R Loper, M. J. Lalich and H. K. Park, “Microstructure-Mechanical Property Relationship in Compacted (Vermicular) Graphite Cast Iron,” The Proceedings to the 46th International Foundry Congress, Madrid, Spain, 1979. 5. M. G. Day, “Effect of Magnesium Additions on the Structure of Eutectic Graphite,” Bcira Journal, pp. 19-29, Jan. 1971. 6. N. N. Aleksandrov, et al., “Production and Properties of High Duty Iron with Compacted Graphite”, Russian Castings Production, pp. 319-321, 1976. 7. P. C. Liu, C.R. Loper, Jr., T. Kimura and E. N. Pan, “Observations on the Graphite Cast Iron,” AFS Trans., Vol. 89, pp. 65-78, 1981. 8. http://www.xixia-waterpump.com/admin/upload/2009422171020.jpg 9. Y. W. Chao, T. S. Lui and F. T. Shiao, “Characteristics of rapidly solidified cast iron produced by strip casting process”, AFS Trans., Vol. 102, pp. 199-204, 1994. 10. 潘永寧 & C. R. Loper, Jr., “縮狀石墨鑄鐵石墨顯微組織,凝固形成理論,生產方法,品質管制,性能及其應用發展(一)”,鑄工36期, pp.16~25, 1983。 11. 潘永寧 & C. R. Loper, Jr., “縮狀石墨鑄鐵石墨顯微組織,凝固形成理論,生產方法,品質管制,性能及其應用發展(二)”,鑄工37期, pp.15-36, 1983。 12. Y. Gan and C. R. Loper Jr., “Observations on the Formation of Graphite in the Compacted and Spheroidal Graphite Cast Iron,” AFS Trans., Vol. 91, pp. 781-788, 1983. 13. 潘永寧,“薄壁縮狀石墨鑄鐵之研製”,鑄工45期, pp.1~16, 1985。 14. I. G. Chen, F. Martinez and D. M. Setfanescu, “Solidification Behavior of Hypoeutectic and Eutectic Compacted Graphite Cast Irons – Chilling Tendency and Eutectic Cells,” AFS Trans., Vol. 91, pp. 205-216. 1983. 15. 潘永寧,“耐高溫球狀石墨鑄鐵”,機械月刊,第10卷,第8期,第95~101頁,民國73年八月(1984)。 16. C. P. Cheng, S. M. Chen, T. S. Lui and L. H. Chen, “High-Temperature Deformation and Thermal Cranking of Ferritic Spheroidal Graphite Cast Iron,” Metallurigal and Material Trans. A, vol.28A, pp. 325-333, 1997. 17. J. R. Drake, “Cast Irons for Future Diesel Engines”, Modern Casting, vol.72, no. 5, pp. 46-47, 1982. 18. J. F. Janowak, R. B. Gundlach, G. T. Eldis and K. Röhrig, “Technical Advances in Cast Iron Metallurgy”, Int. Cast Met. J. , vol.6, No. 4, pp. 28-42, 1981. 19. J. F. Janowak, J. D. Crawford and K. Röhrig, “Ferritic Nodular Iron for Elevated Temperature Service”, Casting Engineering/Foundry World, vol. 14, pp. 32-41, 1982. 20. Y. J. Park, R. B. Gundlach and J. F. Janowak, “Effects of Molybdenum on Thermal Fatigue Resistance of Ductile and Compacted Graphite Irons”, AFS Trans., Vol. 95, pp. 267-272, 1987. 21. 財團法人中鋼集團教育基金會,鋼鐵材料設計與應用,中國礦冶工程學會,民國85年9月(1996)。 22. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, pp. 2-4, 1992. 23. C. F. Walton and T. J. Opar, Editors, Iron Castings Handbook, Iron Castings Society, Inc., pp. 136-137, 1981. 24. QIT技術人員根據卡賽博士原先著作稍加修定, “球墨鑄鐵第一冊製造實務”,技藝結晶,1992。 25. J. F. Janowak and R. B. Gundlash, “A Modern Approach to Alloying Gray Iron,” AFS Trans., Vol. 90, pp. 847-863, 1982. 26. 潘國桐、廖高宇 譯,“球墨鑄鐵手冊”,中華民國鑄造學會,1994。 27. 歐陽耀傳、邱春豐 ,“鑄鐵中石墨組織與機械性能之關係”,鑄工29期PP.45~59,1985. 28. G.F.Sergeant and E. R. Evans., “The Production and Properties of Compacted Graphite Iron,” The British Foundry man, pp. 115-124, 1978. 29. P. A. Green and A. J. Themas, “Production, Properties and Application of Compacted Graphite Iron,” AFS Trans., Vol. 87, pp. 569-572, 1979. 30. 郝石堅,現代鑄鐵學,冶金工業出版社,2004。 31. Charles F. Walton, Iron Castings Handbook, Iron Castings Society. 32. I. Minkoff, The Physical Metallurgy of cast iron, WILEY, 1983. 33. 中華民國國家標準,“縮狀石墨鑄鐵件”,總號14438,類號G3266。 34. 張中仇、李克銳、吳建基,“關於蠕墨鑄鐵標準的幾點看法”,現代鑄鐵,pp.20~25,2006。 35. http://www.Sintercast.com/ 36. D. M. Stefanescu, R. C. Voigt and C. R. Loper, Jr.,“ The Importance of the Lanthanum/Rare Earth Ratio in the Production of Compacted Graphite Cast Irons,” AFS Trans., Vol. 89, pp. 119-130, 1981. 37. E. N. Pan, and C. R. Loper Jr., “A Study of the Production of Compacted /Vermicular Graphite Cast Irons in Thin Sections,” AFS Trans., Vol. 93, pp. 523-532, 1985. 38. R. D. Schelleng, “Effect of Certain Elements on the Form of Graphite in Cast Irons,” AFS Trans., Vol. 74, pp. 700-708, 1966. 39. K. Röhrig, “Thermal Fatigue of Gray and Ductile Irons”, AFS Trans., Vol. 86, pp. 75-88, 1978. 40. R. P. Skelton, “Introduction to Thermal Shock”, High Temp. Technol., Vol. 8, pp. 78-88, 1990. 41. Y. J. Park, R. B. Gundlach and R. G. Thomas, “Thermal Fatigue Resistance of Gray and Compacted Graphite Irons”, AFS Trans., Vol. 93, pp. 415-422, 1985. 42. Y. J. Park, R. B. Gundlach and J. F. Janowak, “Effects of Molybdenum on Thermal Fatigue Resistance of Ductile and Compacted Graphite Irons”, AFS Trans., Vol. 95, pp. 267-272, 1987. 43. 潘永寧,“耐熱鑄鐵之高溫冶金及應用”,台灣大學機械系講義,2002。 44. 黃振賢,機械材料,新文京開發出版社,民國79年9月(1990)。 45. 張宏源,“薄壁球狀石墨鑄鐵之高溫熱疲勞性質研究”,國立台灣大學機械所碩士論文,2008。 46. 鄭進華,“薄壁縮狀石墨鑄鐵之高溫熱疲勞性質研究”,國立台灣大學機械所碩士論文,2009。 47. E. N. Pan, C. C. Fan and H. Y. Chang, “High Temperature Thermal Fatigue property of Thin-Section Ductile Cast Iron”, AFS Trans., Vol. 118, pp. 265-276, 2010. 48. D. Venugopalan and K. L. Pilon, “Influence of Microstructure on Fatigue Life of As- Cast Ductile Iron”, AFS Trans., Vol. 96, pp. 114-127, 1988. 49. R.C. Voigt and L. M. Eldoky, “Cracj Initiation and Propagation in As-Cast and Fully Pearlitic Ductile Cast Irons”, AFS Trans., Vol. 94, pp. 637-644, 1986. 50. M. Sofue, “Influence of Microstructure Constituents on Fatigue Strength of Spheroidal Graphite Cast Iron”, IMONO,Vol. 53, pp. 635-640, 1981. 51. 李志隆、李深智,“生鐵模材料之耐熱破裂性質研究”,鑄工第20卷第3期,pp. 11-21,1994。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24553 | - |
| dc.description.abstract | 本研究主要目的為建立薄壁6mm縮墨鑄鐵之鑄造技術,研究上探討縮墨鑄鐵冶金參數對顯微組織以及熱疲勞性質之影響,並進一步與片墨鑄鐵及球墨鑄鐵做比較,探討石墨形態對熱疲勞性質之影響,以期獲致在高溫熱循環下之最佳材料選用參數條件。
實驗結果顯示,在添加接種劑0.15%,縮化劑0.4%之處理條件下,於厚度6mm之鑄件可得到95%以上肥粒鐵基地,無碳化物,縮化率達70%以上之高縮墨鑄鐵。碳含量3.07%,矽含量4.16%(碳當量值4.46%),接種劑添加量0.15%,縮化劑添加量0.4%之條件下,可得最佳縮墨鑄鐵顯微組織。使用鎂-矽-稀土合金做為縮化處理劑,殘留鎂量在0.0083%時有最高縮化率80.1%;殘留鎂量在0.0077%至0.0105%之區間時,可得縮化率70%以上之縮墨鑄鐵,超過或低於此區段皆會導致縮化率下降。 在固定碳含量、固定碳當量與固定接種劑、縮化劑添加量之條件下,石墨數均隨著矽含量增加而增加;在固定處理條件下,縮化率隨著碳含量及碳當量的增加而增加。 熱疲勞試驗之結果顯示,縮墨鑄鐵中矽含量與縮化率對熱疲勞壽命為正向相關,對熱疲勞變形量為負向相關,矽含量與縮化率越高,試片熱疲勞壽命越佳,熱疲勞變形量越小;縮化率最高之試片對應最佳之熱疲勞壽命,矽含量最高之試片對應最低之熱疲勞變形量。故,影響縮墨鑄鐵熱疲勞性質好壞的兩項最重要參數為矽含量與縮化率。另,於縮墨鑄鐵中添加0.5%鉬可大幅增加熱疲勞壽命,減少熱疲勞變形量,有效提升熱疲勞性質,對相同縮化率之縮墨鑄鐵3mm試片而言,添加鉬可使熱疲勞壽命增加達80%。 對不同石墨型態鑄鐵之熱疲勞性質而言,片墨鑄鐵熱疲勞膨脹量為最低,但熱疲勞壽命為最差;球墨鑄鐵熱疲勞壽命與縮墨鑄鐵相當,但熱疲勞膨脹量為三者中最大;縮墨鑄鐵熱膨脹量介於片墨鑄鐵與球墨鑄鐵之間,縮化率80%以上之縮墨鑄鐵熱疲勞壽命比球墨鑄鐵更長。故,縮墨鑄鐵擁有最好之抗熱疲勞性質,於需承受熱循環場合之材料選用以高縮化率縮墨鑄鐵為最佳。 由熱疲勞裂紋之顯微觀察,可以發現裂紋從石墨與基地交接處應力集中位置開始生成,隨著熱循環次數與累積熱應力的增加,石墨周圍之獨立小型裂紋成長並互相串連結合成為大型裂紋;裂紋傳播形式為由外而內,藉石墨所在孔洞或沿晶界間傳遞。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:30:40Z (GMT). No. of bitstreams: 1 ntu-100-R98522712-1.pdf: 5132736 bytes, checksum: 9cbe7960ebc2b0dd30aad6d07506840b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書 i 誌謝 .ii 中文摘要 iii ABSTRACT v 目錄 vii 表目錄 ix 圖目錄 x 第一章 緒論 1 1.1前言 1 1.2研究目的 2 第二章 文獻回顧 4 2.1鑄鐵的凝固現象 4 2.1.1穩定與準穩定狀態 4 2.1.2穩定系統的凝固 4 2.2冷卻曲線分析 5 2.3製程參數對薄壁鑄件的影響 6 2.4縮狀石墨鑄鐵 7 2.4.1縮狀石墨鑄鐵的特性 7 2.4.2縮狀石墨的判定 8 2.4.3縮化率評定方法 9 2.4.4縮化劑的影響 9 2.5熱疲勞破壞 11 2.5.1鑄鐵產生高溫熱疲勞破壞的機制 11 2.5.2熱疲勞試驗 12 2.6添加合金元素對高溫性質的影響 13 第三章 實驗目的與方法 26 3.1 實驗目的 26 3.2 實驗設計 26 3.2.1 鑄造流程 26 3.2.2合金設計 26 3.2.3 模型設計與造模 27 3.2.4 熔液處理及澆鑄 27 3.2.5 金相顯微組織之觀察與影像分析 27 3.2.6 縮化率的評定方式 28 3.3耐熱疲勞性質測試 28 第四章 結果與討論 35 4.1 製成條件與合金組成對縮墨鑄鐵顯微組織之影響 35 4.1.1 耐熱薄壁縮墨鑄鐵製程 35 4.1.2 . Si含量對於石墨數之影響 36 4.1.3 參數對於縮化率之影響 36 4.1.4 鑄件厚度對於鑄件顯微組織之影響 37 4.2 參數對縮墨鑄鐵熱疲勞性質之影響 38 4.2.1 縮墨鑄鐵之650°C熱疲勞特性分析 39 4.2.2縮墨鑄鐵800°C熱疲勞特性分析 40 4.3 添加Mo對縮墨鑄鐵熱疲勞性質之影響 42 4.4 石墨形態對鑄鐵熱疲勞性質之影響 43 4.5 石墨鑄鐵熱疲勞破壞之裂紋生成與傳遞 45 第五章 結論 80 附表 82 參考文獻 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 石墨型態 | zh_TW |
| dc.subject | 熱疲勞裂紋 | zh_TW |
| dc.subject | 薄壁縮墨鑄鐵 | zh_TW |
| dc.subject | 熱疲勞性質 | zh_TW |
| dc.subject | 縮化率 | zh_TW |
| dc.subject | Thermal fatigue crack | en |
| dc.subject | Thin-walled compacted graphite cast iron | en |
| dc.subject | Vermicularity | en |
| dc.subject | Graphite morphology | en |
| dc.subject | Thermal fatigue property | en |
| dc.title | 冶金參數對於薄壁縮狀石墨鑄鐵熱疲勞性質之影響 | zh_TW |
| dc.title | Effects of Metallurgical Parameters on Thermal Fatigue Property of Thin-section Compacted Graphite Cast Iron | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許正勳,楊榮顯 | |
| dc.subject.keyword | 薄壁縮墨鑄鐵,縮化率,石墨型態,熱疲勞性質,熱疲勞裂紋, | zh_TW |
| dc.subject.keyword | Thin-walled compacted graphite cast iron,Vermicularity,Graphite morphology,Thermal fatigue property,Thermal fatigue crack, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| Appears in Collections: | 機械工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 5.01 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
