請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24533完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林順福 | |
| dc.contributor.author | Yun-ping Wang | en |
| dc.contributor.author | 王雲平 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:29:50Z | - |
| dc.date.copyright | 2005-07-06 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-05 | |
| dc.identifier.citation | Alejandro, G. D., S. G. Razafimandimbison, and S. Liede-Schumann. 2005. Polyphyly of Mssaenda inferred from ITS and trnT-F data and ITS implication for generic limits in Mussaendeae (Rubiaceae). Amer. J. of Bot. 92: 544–557.
Ainouche, A. K. and R. J. Bayer. 1999. Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Amer. J. of Bot. 86: 590–607. Bakker, F. T., J. L. Olsen, and W. T. Stam. 1995. Evolution of nuclear rDNA ITS sequences in the Cladophora albida/ sericea clade (Chlorophyta). J. Mol. Evol. 40: 640-651. Baldwin, B. G., M. J. Sanderson, J. M. Porter, M. F. Wojciechowski, C. S. Campbell, and M. J. Donoghue. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Missouri. Bot. Gard. 82: 247-277. Beardsley, P. M. and R. G. Olmstead. 2002. Redefining Phrymaceae: the placement of Mimulus, tribe Mimuleae, and Phryma. Amer. J. of Bot. 89: 1093-1102. Beardsley, P. M., S. E. Schoenig, J. B. Whittall, and R. G. Olmstead. 2004. Patterns of evolution in western North American Mimulus (Phrymaceae). Amer. J. of Bot. 91: 474-489. Boutin, S. R., N. D. Young, T. C. Olson, Z. H. Yu, R. C. Shoemaker, and C. E. Vallejos. 1995. Genome conservation among three legume genera detected with DNA markers. Genome 38: 928-937. Choi, H. K., J. H. Mun, D. J. Kim, H. Zhu, J. M. Baek, J. Mudge, B. Roe, N. Ellis, J. Doyle, G. B. Kiss, N. D. Young, and D. R. Cook. 2004. Estimating genome conservation between crop and model legume species. Proc. Natl. Acad. Sci. 101: 15289-15294. Crepet, W. L., and D. W Taylor. 1986. Primitive mimosoid flowers from the Paleocene-Eocene and their systematic and evolutionnnary implications. Amer. J. of Bot. 73: 548-563. Cummings, M. P., J. M. Nugent, R. G. Olmstead, and J. D. Palmer. 2003. Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms. Curr. Genet. 43: 131-138. Das, J., S. T. Miller, and D. L. Stern. 2004. Comparison of diverse protein sequences of the nuclear-encoded subunits of cytochrome c oxidase suggests conservation of structure underlies evolving functional sites. Mol. Biol. Evol. 21: 1572-1582. Demesure, B., N. Sodzil, and R. J. Petit. 1995. A set of unisversal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol. Ecol. 4: 129-131. Denda, T., K. Kosuge, K. Watanabe, M. Ito, Y. Suzuki, P. S. Short, and T. Yahara. 1995. Intron length variation of the Adh gene in Brachyscome (Asteraceae). Plant Mole. Biol. 28: 1067-1073. Devos, K. M. and M. D. Gale. 1997. Comparative genetics in the grasses. Plant Mole. Biol. 35: 3-15. Dietrich W. F., J. L. Weber, D. A. Nickerson, and P. Kwok. 2001. Identification and analysis of DNA polymorphisms. In Genome Analysis - A Laboratory Manualo. pp. 135-186. Birren B., E. D. Green, P. Hieter, S. Klapholz, R. M. Myers, H. Riethman, and J. Roskams (eds.) Cold Spring Harbor Laboratory Press. Dillon, S. L., P. K. Lawrence, and R. J. Henry. 2001. The use of ribosomal ITS to determine phylogenetic relationships within Sorghum. Plant Syst. Evol. 230: 97-110. Doebley, J., M. Durbin, E. Golenberg, M. Clegg, and D. Ma. 1990. Evolutionary analysis of the large subunit of carboxylase (RbcL) nucleotide sequence among the grasses (Gramineae). Evolution 44: 1097-1108. Douzery, E. J. P., A. M. Pridgeon, P. Kores, H. P. Linder, H. Kurzweil, and M. W. Chase. 1999. Molecular phylogenetics of diseae (Orchidaceae): a contribution from nuclear ribosomal ITS sequences. Amer. J. of Bot. 86: 887–899. Downie, S. R., R. G. Olmstead, G. Zurawski, D. E. Soltis, P. S. Soltis, J. C. Watson, and J. D. Palmer. 1991. Six independent losses of the chloroplast DNA rp/2 intron in dicotyledons: molecular and phylogenetic implications. Evolution 45: 1245-1259. Doyle, J. J. and J. L. Doyle. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13-15. Doyle, J. J., J. L. Doyle, and J. D. Palmer. 1995. Multiple independent losses of two genes and one intron from legume chloroplast genome. Syst. Bot. 20: 272-294. Doyle, J. J., J. L. Doyle, J. A. Ballenger, E. E. Dickson, T. Kajita, and H. Ohashi. 1997. A phylogeny of the chloroplast gene RbcL in the Leguminosae: taxonomic correlations and insights into the evolution of nodulation. Amer. J. of Bot. 84: 541-554. Duff, R. J. and D.L. Nickrent. 1999. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Amer. J. of Bot. 86: 372–386. Dumolin-Lapegue, S., M. H. Pemonge, and R. J. Petit. 1997. An enlarged set of consensus primers for the study of organell DNA in plants. Mol. Ecol. 6: 393-397. Duvall, M. R. and B. R. Morton. 1996. Molecular phylogenetics of Poaceae: an expanded analysis of rbcL sequence data. Mol. Phylo. Evol. 5: 352-358. Eckardt, N. A. 2001. Everything in its place: conservation of gene order among distantly related plant species. Plant Cell 13: 723-725. Feuillet, C. and B. Keller. 2002. Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann. Bot. 89: 3-10. Fitch, W. M. 1977. On the problem of discovering the most parsimonious tree. Am. Nat. 111: 223-257. Gale, M. D. and K. M. Devos. 1998. Plant comparative genetics after 10 years. Science 282: 656-659. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids. Symp. 41: 95-98. Hamby, R. K. and E. A. Zimmer. 1992. Ribosomal RNA as a phylogenetic tool in plant systematics. In Molecular Systematics of Plants. pp. 50-91. Solits, P. S., D. E. Solits, and J. J. Doyle (eds.) Chapman and Hall, New York, USA. Henry, R. J. 1999. Molecular techniques for the identification of plants. In Applied Plant Biotechnology. Chopra, V L., V. S. Malik, and S. R. Bhat (eds.) Science Publishers, Inc.USA. Herendeen, P. S., W. L. Crepet, and D. L. Dilcher. 1992. The fossil history of the Leguminosae: phylogenetic and biogeographic implications. In Advances in Legumes Systematics, Part 4. pp. 303-316. Herendeen, P. S. and D. L. Dilcher (eds.) Royal Botanic Gardens, Kew, England. Hilu, K. W. and H. Liang. 1997. The matK gene: sequence variation and application in plant systematics. Amer. J. of Bot. 84: 830-839. Hilu, K. W., T. Borsch, K. Muller, D. E. Soltis, P. S. Soltis, V. Savolainen, M. W. Chase, M. P. Powell, L. A. Alice, R. Evans, H. Sauquet, C. Neinhuis, T. A. B. Slotta, J. G. Rohwer, C. S. Campbell, and L. W. Chatrou. 2003. Angiosperm phylogeny based on matK sequence information. Amer. J. of Bot. 90: 1758-1776. Hu, J. M., M. Lavin, M. F. Wojciechowski, and M. J. Sanderson. 2000. Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplast trnK/matK sequences and ITS implications for evolutionary patterns in Papilionoideae. Amer. J. of Bot. 87: 418–430. Jobson, R. W., R. Nielsen, L. Laakkonen, M. Wikström, and V. A. Albert. 2004. Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation. Proc. Natl. Acad. Sci. 101: 18064-18068. Johnson, L. A. and D. E. Soltis. 1995. Phylogenetic inference in Saxifragaceae sensu stricto and Gilia (Polemoniaceae) using matK sequence. Ann. Missouri. Bot. Gard. 82: 149-175. Jordan, W. C., M. W. Courtney, and J. E. Neigel. 1996. Low levels of interspecific genetic variation at a rapidly evolving chloroplast DNA locus in north American duckweeds (Lemnaceae). Amer. J. of Bot. 83: 430-439. Kass, E. and M. Wink. 1995. Molecular phylogeny of the Papilionoideae (Family Legeminosae): rbcL gene sequences versus chemical taxonomy. Bot. Acta. 108: 149-162. Kapraun, D. F. 2005. Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. Ann. Bot. 95: 7-44. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions rough comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Bioinformatics 5:150-163. Kusumi, J., Y. Tsumura, H. Yoshimaru, and H. Tachida. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences Amer. J. of Bot. 87: 1480-1488. Lavin, A., R. T. Pennington, B. B. Klitgaard, J. I. Sprent, H. C. D. Lima, and P. E. Gasson. 2001. The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Amer. J. of Bot. 88: 503–533. Lee, J. M., D. Grant, C. E. Vallejos, and R. C. Shoemaker. 2001. Genome organization in dicots.Ⅱ.arabidopsis as a “bridge species” to resolve genome evolution events among legumes. Theor. Appl. Genet. 103: 765-773. Li, B. N. 1994. Vegetable Breeding and Seed Production. National Institute for Compilation and Translation, Taipei, Taiwan. Liu, C. D. 1998. Studies on the interspecific relationships in the genus Vigna in Taiwan. Ph. D. Dissertation. National Chung-Hsing University, Department of Agronomy, Taiwan. Lockton, S. and B. S. Gaut. 2005. Plant conserved non-coding sequences and paralogue evolution. Trends in Genetics 21: 60-65. Mabberley, D.J. 1997. The Plant Book, 2nd ed. Cambridge University Press, pp. 1-32. Cambridge, UK. Marhold, K., J. Lihova, M. Perny, and W. Bleeker. 2004. Comparative ITS and AFLP analysis of diploid Cardamine (Brassicaceae) taxa from closely related polyploidy complexes. Ann. Bot. 93: 507-520. Matsuoka, Y., Y. Yamazaki, Y. Ogihara, and K. Tsunewaki. 2002. Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Mol. Biol. Evol. 19: 2084-2091. Mayer, M. S. and S. K. Bagga. 2002. The phylogeny of Lens (Leguminosae): new insight from ITS sequence analysis. Plant Syst. Evol. 232: 145-154. Michelangeli, F. A., J. I. Davis, and D. W. Stevenson. 2003. Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Amer. J. of Bot. 90: 93-106. Miyashita, N. T. 2001. DNA variation in the 5’ upstream region of the Adh locus of the wild plants Arabidopsis thaliana and Arabis gemmifera. Mol. Biol. Evol. 18: 164-171. Moller, M. and Q. C. B. Cronk. 1997. Origin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences. Amer. J. of Bot. 84: 956–965. Newbury, H. J. and A. H. Paterson. 2003. Genomic colinearity and its application in crop plant improvement. In Plant Molecular Breeding. pp.60-81. Newbury, H.J. (ed.) CRC press, USA/ Canada. Olmstead, R. G. and P. A. Reeves. 1995. Evidence for the polyphyly of the Scrophulariaceae based on chloroplast RbcL and nahF sequences. Ann. Missouri. Bot. Gard. 82: 176-193. Olsen, K. M., A. Womack, A. R. Garrett, J. I. Suddith, and M. D. Purugganan. 2002. Contrasting evolutionary forces in the Arabidopsis thaliana floral developmental pathway. Genetics 160: 1641-1650. Page, R. D. M. and E. C. Holmes. 1996. Index. In Molecular Evolution: a Phylogenetic Approach. pp.346. Blackwell Science Press. Palmer, J. D. and L. A. Herbon. 1988. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J. Mol. Evol. 28: 87-97. Palmer J. D. 1992. Mitochondria DNA in plant systematics: applications and limitations. In Molecular Systematics of Plants. pp.36-49. Solits P.S., D.E. Solits, and J. J. Doyle (eds.) Chapman and Hall, New York, USA. Pan, C. C. 2002. Studies on Molecular Identification of Taiwan Peanut Varieties. Master thesis, Graduate Institute of Agronomy, National Taiwan University, Taiwan. Paterson, A. H., T. H. Lan, K. P. Reischmann, C. Chang, Y. R. Lin, S. C. Liu, M. D. Burow, S. P. Kowalski, C. S. Katsar, T. A. DelMonte, K. A. Feldmann, K. F. Schertz, and J. F. Wendel. 1996. Toward a unified genetic map of higher plants, transcending the monocot-dicot divergence. Nature Genetics 14: 380-382. Paterson, A. H., J. E. Bowers, B. A. Chapman, D. G. Peterson, J. Rong, and T. M. Wicker. 2004. Comparative genome analysis of monocots and dicots, toward characterization of angiosperm diversity. Curr. Opin. Biotech. 15: 120-125. Raven, P. H. and Polhill, R. M. 1981. Biogeography of the Leguminosae. In Advance in Legume Systematics. pp. 27-34. Polhill, R.M. and P. H. Raven (eds.) Crown, Royal Botanic Gardens, Kew, England. Rozas, L. and R. Rozas. 1999. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15: 174-175. Samuel, R., H. Kathriarachchi, P. Hoffmann, M. H. J. Barfuss, K. J. Wurdack, C. C. Davis, and M. W. Chase. 2005. Molecular phylogenetics of phyllanthaceae: evidence from plastid matK and nuclear PHYC sequences. Amer. J. of Bot. 92: 132-141. Sanderson, M. J. and H. B. Shaffer. 2002. Troubleshooting molecular phylogenetic analysis. Annu. Rev. Ecol. Syst. 33: 49-72. Schnabel, A., P. E. Mcdonel, and J. F. Wendel. 2003. Phylogenetic relationships in Gleditsia (Leguminosae) based on ITS sequences. Amer. J. of Bot. 90: 310–320. Soltis, D. E. and P. S. Soltis. 2001. Choosing an approach and an appropriate gene for phylogenetic analysis. In Molecular Systematics of PlantⅡ–DNA Sequencing. pp.1-42. Soltis, D. E., P. S. Soltis, and J. J. Doyle (eds.) Kluwer Academic Publishers, Boston, USA. Sonnante, G., I. Galasso, and D. Pignone. 2003. ITS sequence analysis and phylogenetic Inference in the genus Lens Mill. Ann. Bot. 91: 49-54, Stanford, A. M., R. Harden, and C. R. Parks. 2000. Biogeography and phylogeny of Castanea, Fagus, and Juglans based on matK and ITS sequence data. Amer. J. of Bot. 87: 872-882. Tajima, F. 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437-460. Tang, J., H. Xia, M. Cao, X. Zhang, W. Zeng, S. Hu, W. Tong, J. Wang, J. Wang, J. Yu, H. Yang, and L. Zhu. 2004. A comparison of rice chloroplast genomes. Plant Physiology 135: 412-420. Tenaillon, M. I., M. C. Sawkins, A. D. Long, R. L. Gaut, J. F. Doebley and B. S. Gaut. 2001. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc. Natl. Acad. Sci. 98: 9161-9166. Terauchi, R., T. Terachi, and N. T. Miyashita. 1997. DNA polymorphism at the Pgi locus of a wild yam, Dioscorea tokoro. Genetics 147: 1899-1914. Thompson, J. D., D.G. Higgins, and T.J. Gibson. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. Thompson, I. R., P. Y. Ladiges, and J. H. Ross. 2001. Phylogenetic studies of the tribe Brongniartieae (Fabaceae) using nuclear DNA (ITS-1) and morphological data. Syst. Bot.. 26: 557-570. Vilgalys, R. and B. L. Sun. 1994. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences. Proc. Natl. Acad. Sci. 91: 4599-4603 Volger, A. P. and R. DeSalle. 1994. Evolution and phylogenetic information content of the ITS-1 region in the tiger beetle Cicindela dorsalis. Mol. Biol. Evol. 11: 393-405. Wakasugi, T., T. Nagai, M. Kapoor, M. Sugita, M. Ito, S. Ito, J. Tsudzuki, K. Nakashima, T. Tsudzuki, Y. Suzuki, A. Hamada, T. Ohta, A. Inamura, K. Yoshinaga, and M. Sugiura. 1997. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: the existence of genes possibly involved in chloroplast division. Proc. Natl. Acad. Sci. 94: 5967-5972. Watterson, G. A. 1975. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 7: 256-276. Wojciechowski, M.F., M. Lavin, and M.J. Sanderson. 2004. A phylogeny of legumes (leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family. Amer. J. of Bot. 91: 1846-1862. Wolfe, K. H., W. H. Li, and P. M. Sharp. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. 84: 9054-9058 Yeh, M. S., F. Maekawa , and H. Yuasa. 1983. Studies on seed morphology and its taxonomic significance in the tribe Phaseoleae (Leguminosae). Res. Inst. Evolut. Biol. Sci. Rep. 2: 1-20 Yeh, M. S. and S. H. Cheng. 1991. Colored Illustration of Leguminous Plant Resources in Taiwan. Council o Agriculture, Taipei, Taiwan. Yoshida, K., N. T. Miyashita, and T. Ishii. 2004. Nucleotide polymorphism in the Adh1 locus region of the wild rice Oryza rufipogon. Theor. Appl, Genet. 109: 1406-1416. Young, N. D., J. Mudge, and T. N. Ellis. 2003. Legumes: more than peas in pod. Curr. Opin. in Plant Bio. 6:199-204. Zhu, Y. L., Q. J. Song, D. L. Hyten, C. P. Van Tassell, L. K. Matukumalli, D. R. Grimm, S. M. Hyatt, E. W. Fickus, N. D. Young and P. B. Cregan, 2003. Single-nucleotide polymorphisms in soybean. Genetics 163: 1123-1134. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24533 | - |
| dc.description.abstract | 本研究係針對包括毛豆、紅豆、落花生、綠豆、豇豆、菜豆、蠶豆、豌豆、刀豆及樹豆等重要豆類作物進行基因體對應區域分析。主要研究目的在探討這十種豆類作物(共46品種)基因體演化之微共線性,評估各豆科作物種內及種間變異程度,利用DNA序列變異進行演化遺傳學之分群分析及估算各豆類作物之演化時間,並且討論DNA序列應用在物種及品種鑑別之可行性。分析區域包含細胞核ITS及Adh1基因體片段、葉綠體RbcL及matK基因、粒線體CoxⅠ及19S rDNA基因。本研究共使用13組引子進行PCR擴增,PCR擴增結果顯示取樣之各基因體區域在豆類作物間具有共線性,擴增產物在物種間具有長度及重複數(copy numbers)之變異,顯示各擴增區域在豆類演化過程中所發生之變異。其中豇豆、落花生、菜豆及毛豆分別具有較低的物種內變異,綠豆在葉綠體基因序列具有較高物種內變異。本研究所偵測得到具高度變異之核內DNA片段適用於物種間的群聚分析,而相對保守的葉綠體基因則較適用於作物間演化關係之追尋,序列保守但常發生大片段變異的粒線體基因之DNA序列較不適合於物種變異分析。試驗結果亦證實核外DNA序列變異可應用於追蹤一個體之親本譜系。系統演化分群分析結果顯示,參試十種豆類作物可區分為三個分化枝(clade),分別為岩黃耆族(Hedysareae)、蠶豆族(Viceae)及菜豆族(Phaseoleae)。其中落花生與其他豆科作物具有最遠的遺傳距離,蠶豆族的碗豆及蠶豆之基因體序列具有高度保守性。以4.2千萬年前菜豆族與蠶豆族的分歧時間作為參考點,利用核內及葉綠體基因所共同建構的演化樹進行蝶型花亞科作物分化時間之估計,結果顯示落花生為最早分化出的物種,約在4.4千萬年前分出。在菜豆族的演化中刀豆屬分化最早,約3.2千萬年前發生,大豆及樹豆約在2.6千萬年前同時分化;菜豆屬與豇豆屬的分歧發生在2.2千萬年前,蠶豆與豌豆的分化約發生在1千萬年前,各作物之屬內分化均在近1千萬年內發生。本研究所探討豆類作物基因體之分子演化關係,及物種間和物種內DNA序列變異之結果,將有助於豆類作物間遺傳資訊之相互參考及利用。 | zh_TW |
| dc.description.abstract | To study the DNA sequence variation between and within legumes, and genomic evolutionary history of legume crops, orthologous genomic regions were sequenced for ten important legume crops (46 varieties), including soybean (Glycine max), peanut (Arachis hypogaea), azuki bean (Vigna angularis), mungbean (V. radiata), cowpea (V. unguiculata), pea (Pisum sativum), broad bean (Vicia faba), jack bean (Canavalia ensiformis/ C. gladiata), common bean (Phaseolus vulgaris/ P. coccineus) and pigeon pea (Cajanus cajan). The analyzed sequences included nuclear ITS region and Adh1 gene, chloroplast genes RbcL and matK, and mitochondria CoxⅠ and 19S rDNA. All surveyed regions were successfully amplified indicating the colinearity of genome. Different sizes and copy numbers of amplified orthologous regions were observed in the legume crops. The cowpea, peanut, Phaseolus and soybean had smaller intra-specific diversity than the other legumes. However, highly diverse DNA sequences were observed in mungbean chloroplast genome. The highly diverse nuclear DNA could supply sufficient variations for classifying closely relative species. Results from cytoplasmic DNA inheritance indicate the DNA sequence variation is applicable for identifying genetically related individuals. Phylogeny constructed with conserved chloroplast genes displayed good resolution for the divergence of species. Due to lack of sufficient nucleotide substitutions, mitochondria DNA sequences are not suitable for phylogenetic analysis. Based on phylogenetic analysis, the surveyed legume crops were grouped into three clades including the tribes Hedysareae, Viceae, and Phaseoleae. The peanut belonging to the tribe Hedysareae was the most diverse to other legumes. The pea and broad bean were grouped into an individual clade. The divergence date of each legume was estimated based on a reference point of the Phaseoleae-Viceae. The divergence of Arachis hypogaea occurred most anciently at 44 Myr ago. In the evolution of the tribe Phaseoleae, the genus Canavalia was first diverged at 32 Myr ago. The divergence of Glycine max occurred at 26 Myr ago, and it was almost at the same time with Cajanus cajan. The date of Vigna-Phaseolus divergence was estimated to be 22 Myr ago. The intra-genus divergence of legumes occurred more recently within the last 10 Myr. Results from DNA sequence variation and genomic evolution would be contributed in sharing and applying the genetic information of legume crops. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:29:50Z (GMT). No. of bitstreams: 1 ntu-94-R92621106-1.pdf: 415009 bytes, checksum: f7c6f0eb105f8f04140808ae4530d840 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of Contents
Abstract (Chinese) Abstract (English) Introduction……………………….…………………………………..1 Materials and methods……………………………………………….7 Results………………………………………………………………15 (1) The genomic colinearity and DNA sequence variation of legumes………………………………………………….15 (2) The specific sequences in each legume species…………18 (3) Genetic distance of inter and intra-specific legumes……..18 (4) Phylogenetic analysis in legume crops………………….…20 (5) The cytoplasmic DNA sequence inheritance of legume….25 Discussion……………………………………………………………30 (1) Genomic colinearity in legume crops……………………..30 (2) DNA sequences variation in orthologous regions…………31 (3) Phylogenetic analysis and divergence date estimation…32 Reference……………………………………………………………35 List of Tables Table 1. List of 10 legume crops surveyed in this study…………..8 Table 2. The primer sets used for specific sequence amplification……………………………………………….12 Table 2-1. The modified primer sets used for amplifying surveyed regions…………………………..……………...13 Table 3. The amplified orthologous regions of 10 legume crops………………………………………………………..16 Table 4. The rates of intra-specific nucleotide substitution in coding and non-coding regions of the surveyed nuclear, chloroplast, and mitochondria DNA sequences for 10 legume crops……………….……...…17 Table 5. The list of specific sequences of each legume crop…...21 Table 6. Pairwise distance among and within legume crops estimated according to the Kimura 2-parameter model based on the all surveyed sequences………..…23 Table 7. The types and positions of variation sequences in the amplified regions of ITS1, Adh1, matK, trnS-trnM and CoxⅠ in 8 soybean and 10 peanut varieties……..29 List of Figures Fig 1. The sequence difference of chloroplast gene matK between two Vigna radiata varieties ………………...…...19 Fig 2. The dendrograme of the maximum parsimony method based on nuclear DNA sequence of 10 legume crops…..24 Fig 3. The dendrograme of the neighbor-joint method based on nuclear DNA sequence of 10 legume crops……………...24 Fig 4. The dendrograme of the maximum parsimony method based on chloroplast DNA sequence of 10 legume crops……………………………………………………….....26 Fig 5. The dendrograme of the neighbor-joint method based on chloroplast DNA sequence of 10 legume crops………….26 Fig 6. The dendrograme of the maximum parsimony method based on mitochondria DNA sequence of 10 legume crops……………………………………………………….....27 Fig 7. The dendrograme of the neighbor-joint method based on mitochondria DNA sequence of 10 legume crops……….27 Fig 8. The phylogenetic tree constructed with the surveyed sequences of nuclear and chloroplast genomes…………28 | |
| dc.language.iso | en | |
| dc.subject | DNA序列 | zh_TW |
| dc.subject | 豆類 | zh_TW |
| dc.subject | 基因體 | zh_TW |
| dc.subject | 對應區域 | zh_TW |
| dc.subject | legume | en |
| dc.subject | DNA sequence | en |
| dc.subject | orthologous regions | en |
| dc.subject | genome | en |
| dc.title | 豆類作物種間及種內基因體對應區域之DNA序列變異 | zh_TW |
| dc.title | DNA Sequence Variation of Orthologous Genomic Regions between and within Legume Crops | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃懿秦,陳榮芳,鄭隨和,黃山內 | |
| dc.subject.keyword | 豆類,基因體,對應區域,DNA序列, | zh_TW |
| dc.subject.keyword | legume,genome,orthologous regions,DNA sequence, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-05 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農藝學研究所 | zh_TW |
| 顯示於系所單位: | 農藝學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 405.28 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
