Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24531
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王淑美
dc.contributor.authorHsiang-Hsi Chengen
dc.contributor.author鄭翔禧zh_TW
dc.date.accessioned2021-06-08T05:29:45Z-
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citationAkita H, Creer MH, Yamada KA, Sobel BE, Corr PB. 1986. Electrophysiologic effects of intracellular lysophosphoglycerides and their accumulation in cardiac lymph with myocardial ischemia in dogs. J Clin Invest 78:271-280.
Bailey J, Phillips RJ, Pollard AJ, Gilmore K, Robson SC, Europe-Finner GN. 2002. Characterization and functional analysis of cAMP response element modulator protein and activating transcription factor 2 (ATF2) isoforms in the human myometrium during pregnancy and labor: identification of a novel ATF2 species with potent transactivation properties. J Clin Endocrinol Metab 87:1717-1728.
Beardslee MA, Laing JG, Beyer EC, Saffitz JE. 1998. Rapid turnover of connexin43 in the adult rat heart. Circul Res 83:629-635.
Bowling N, Huang X, Sandusky GE, Fouts RL, Mintze K, Esterman M, Allen PD, Maddi R, McCall E, Vlahos CJ. 2001. Protein kinase C-alpha and -epsilon modulate connexin-43 phosphorylation in human heart. J Mol Cell Cardiol 33:789-798.
Clarkson CW, Ten Eick RE. 1983. On the mechanism of lysophosphatidylcholine-induced depolarization of cat ventricular myocardium. Circul Res 52:543-556.
Corr PB, Snyder DW, Lee BI, Gross RW, Keim CR, Sobel BE. 1982. Pathophysiological concentrations of lysophosphatides and the slow response. Am J Physiol 243:H187-195.
Croset M, Brossard N, Polette A, Lagarde M. 2000. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J 345 Pt 1:61-67.
Darrow BJ, Fast VG, Kleber AG, Beyer EC, Saffitz JE. 1996. Functional and structural assessment of intercellular communication. Increased conduction velocity and enhanced connexin expression in dibutyryl cAMP-treated cultured cardiac myocytes. Circul Res 79:174-183.
Doble BW, Ping P, Kardami E. 2000. The epsilon subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circul Res 86:293-301.
Echetebu CO, Ali M, Izban MG, MacKay L, Garfield RE. 1999. Localization of regulatory protein binding sites in the proximal region of human myometrial connexin 43 gene. Mol Human Reprod 5:757-766.
Fallon RF, Goodenough DA. 1981. Five-hour half-life of mouse liver gap-junction protein. J Cell Biol 90:521-526.
Friend DS, Gilula NB. 1972. Variations in tight and gap junctions in mammalian tissues. J Cell Biol 53:758-776.
Fujimoto K, Nagafuchi A, Tsukita S, Kuraoka A, Ohokuma A, Shibata Y. 1997. Dynamics of connexins, E-cadherin and alpha-catenin on cell membranes during gap junction formation. J Cell Sci 110 ( Pt 3):311-322.
Gross RW, Corr PB, Lee BI, Saffitz JE, Crafford WA, Jr., Sobel BE. 1982. Incorporation of radiolabeled lysophosphatidyl choline into canine Purkinje fibers and ventricular muscle. Electrophysiological, biochemical, and autoradiographic correlations. Circul Res 51:27-36.
Guo R, Liu L, Barajas L. 1998. RT-PCR study of the distribution of connexin 43 mRNA in the glomerulus and renal tubular segments. Am J Physiol 275:R439-447.
Hara S, Shike T, Takasu N, Mizui T. 1997. Lysophosphatidylcholine promotes cholesterol efflux from mouse macrophage foam cells. Atertio Thromb Vasc Biol 17:1258-1266.
Herve JC, Dhein S. 2006. Pharmacology of cardiovascular gap junctions. Adv Cardiol 42:107-131.
Hirata K, Miki N, Kuroda Y, Sakoda T, Kawashima S, Yokoyama M. 1995. Low concentration of oxidized low-density lipoprotein and lysophosphatidylcholine upregulate constitutive nitric oxide synthase mRNA expression in bovine aortic endothelial cells. Circul Res 76:958-962.
Hong CW, Kim TK, Ham HY, Nam JS, Kim YH, Zheng H, Pang B, Min TK, Jung JS, Lee SN, Cho HJ, Kim EJ, Hong IH, Kang TC, Lee J, Oh SB, Jung SJ, Kim SJ, Song DK. 2010. Lysophosphatidylcholine increases neutrophil bactericidal activity by enhancement of azurophil granule-phagosome fusion via glycine.GlyR alpha 2/TRPM2/p38 MAPK signaling. J Immunol 184:4401-4413.
Hoque AN, Hoque N, Hashizume H, Abiko Y. 1995. A study on dilazep: II. Dilazep attenuates lysophosphatidylcholine-induced mechanical and metabolic derangements in the isolated, working rat heart. Jap J Pharmacol 67:233-241.
Huang YS, Tseng YZ, Wu JC, Wang SM. 2004. Mechanism of oleic acid-induced gap junctional disassembly in rat cardiomyocytes. J Mol Cell Cardiol 37:755-766.
Jalink K, van Corven EJ, Moolenaar WH. 1990. Lysophosphatidic acid, but not phosphatidic acid, is a potent Ca2(+)-mobilizing stimulus for fibroblasts. Evidence for an extracellular site of action. J Biol Chem 265:12232-12239.
Kanemitsu MY, Lau AF. 1993. Epidermal growth factor stimulates the disruption of gap junctional communication and connexin43 phosphorylation independent of 12-0-tetradecanoylphorbol 13-acetate-sensitive protein kinase C: the possible involvement of mitogen-activated protein kinase. Mol Biol Cell 4:837-848.
Kaprielian RR, Gunning M, Dupont E, Sheppard MN, Rothery SM, Underwood R, Pennell DJ, Fox K, Pepper J, Poole-Wilson PA, Severs NJ. 1998. Downregulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation 97:651-660.
Kume N, Cybulsky MI, Gimbrone MA, Jr. 1992. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J Clin Invest 90:1138-1144.
Laing JG, Tadros PN, Westphale EM, Beyer EC. 1997. Degradation of connexin43 gap junctions involves both the proteasome and the lysosome. Exp Cell Res 236:482-492.
Lampe PD. 1994. Analyzing phorbol ester effects on gap junctional communication: a dramatic inhibition of assembly. J Cell Biol 127:1895-1905.
Lampe PD, Lau AF. 2000. Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205-215.
Lou LL, Lloyd SJ, Schulman H. 1986. Activation of the multifunctional Ca2+/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme. Proc Natl Acad Sci U S A 83:9497-9501.
Ma H, Hashizume H, Hara A, Yazawa K, Abiko Y. 1999. Protective effect of quinaprilat, an active metabolite of quinapril, on Ca2+-overload induced by lysophosphatidylcholine in isolated rat cardiomyocytes. Jap J Pharmacol 79:17-24.
Mackay K, Mochly-Rosen D. 2001. Arachidonic acid protects neonatal rat cardiac myocytes from ischaemic injury through epsilon protein kinase C. Cardiovasc Res 50:65-74.
Magishi K, Kimura J, Kubo Y, Abiko Y. 1996. Exogenous lysophosphatidylcholine increases non-selective cation current in guinea-pig ventricular myocytes. Pflugers Arch 432:345-350.
Man RY, Wong T, Choy PC. 1983. Effects of lysophosphoglycerides on cardiac arrhythmias. Life Sci 32:1325-1330.
Matsumoto T, Kobayashi T, Kamata K. 2007. Role of lysophosphatidylcholine (LPC) in atherosclerosis. Curr Med Chem 14:3209-3220.
McNutt NS, Weinstein RS. 1970. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol 47:666-688.
Murugesan G, Fox PL. 1996. Role of lysophosphatidylcholine in the inhibition of endothelial cell motility by oxidized low density lipoprotein. J Clin Invest 97:2736-2744.
Musil LS, Goodenough DA. 1991. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques. J Cell Biol 115:1357-1374.
Okita M, Gaudette DC, Mills GB, Holub BJ. 1997. Elevated levels and altered fatty acid composition of plasma lysophosphatidylcholine(lysoPC) in ovarian cancer patients. Int J Cancer 71:31-34.
Pogwizd SM, Onufer JR, Kramer JB, Sobel BE, Corr PB. 1986. Induction of delayed afterdepolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycerides. Circul Res 59:416-426.
Prokazova NV, Zvezdina ND, Korotaeva AA. 1998. Effect of lysophosphatidylcholine on transmembrane signal transduction. Biochemistry (Mosc) 63:31-37.
Quinn MT, Parthasarathy S, Steinberg D. 1988. Lysophosphatidylcholine: a chemotactic factor for human monocytes and its potential role in atherogenesis. Proc Natl Acad Sci U S A 85:2805-2809.
Rook MB, de Jonge B, Jongsma HJ, Masson-Pevet MA. 1990. Gap junction formation and functional interaction between neonatal rat cardiocytes in culture: a correlative physiological and ultrastructural study. J Membr Biol 118:179-192.
Saez JC, Nairn AC, Czernik AJ, Fishman GI, Spray DC, Hertzberg EL. 1997. Phosphorylation of connexin43 and the regulation of neonatal rat cardiac myocyte gap junctions. J Mol Cell Cardiol 29:2131-2145.
Saito T, Wolf A, Menon NK, Saeed M, Alves C, Bing RJ. 1988. Lysolecithins as endothelium-dependent vascular smooth muscle relaxants that differ from endothelium-derived relaxing factor (nitric oxide). Proc Natl Acad Sci U S A 85:8246-8250.
Salameh A, Krautblatter S, Karl S, Blanke K, Gomez DR, Dhein S, Pfeiffer D, Janousek J. 2009. The signal transduction cascade regulating the expression of the gap junction protein connexin43 by beta-adrenoceptors. Br J Pharmacol 158:198-208.
Sasagawa T, Okita M, Murakami J, Kato T, Watanabe A. 1999. Abnormal serum lysophospholipids in multiple myeloma patients. Lipids 34:17-21.
Schonwasser DC, Marais RM, Marshall CJ, Parker PJ. 1998. Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 18:790-798.
Sedis SP, Sequeira JM, Altszuler HM. 1990. Coronary sinus lysophosphatidylcholine accumulation during rapid atrial pacing. Am J Cardiol 66:695-698.
Sedlis SP, Corr PB, Sobel BE, Ahumada GG. 1983. Lysophosphatidyl choline potentiates Ca2+ accumulation in rat cardiac myocytes. Am J Physiol 244:H32-38.
Shah MM, Martinez AM, Fletcher WH. 2002. The connexin43 gap junction protein is phosphorylated by protein kinase A and protein kinase C: in vivo and in vitro studies. Mol Cell Biochem 238:57-68.
Shaikh NA, Downar E. 1981. Time course of changes in porcine myocardial phospholipid levels during ischemia. A reassessment of the lysolipid hypothesis. Circul Res 49:316-325.
Sobel BE, Corr PB, Robison AK, Goldstein RA, Witkowski FX, Klein MS. 1978. Accumulation of lysophosphoglycerides with arrhythmogenic properties in ischemic myocardium. J Clin Invest 62:546-553.
Sohl G, Willecke K. 2004. Gap junctions and the connexin protein family. Cardiovasc Res 62:228-232.
Solan JL, Lampe PD. 2005. Connexin phosphorylation as a regulatory event linked to gap junction channel assembly. Biochim Biophys Acta 1711:154-163.
Takahashi M, Okazaki H, Ogata Y, Takeuchi K, Ikeda U, Shimada K. 2002. Lysophosphatidylcholine induces apoptosis in human endothelial cells through a p38-mitogen-activated protein kinase-dependent mechanism. Atherosclerosis 161:387-394.
VanSlyke JK, Deschenes SM, Musil LS. 2000. Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell 11:1933-1946.
Ver Donck L, Verellen G, Geerts H, Borgers M. 1992. Lysophosphatidylcholine-induced Ca(2+)-overload in isolated cardiomyocytes and effect of cytoprotective drugs. J Mol Cell Cardiol 24:977-988.
Warn-Cramer BJ, Lampe PD, Kurata WE, Kanemitsu MY, Loo LW, Eckhart W, Lau AF. 1996. Characterization of the mitogen-activated protein kinase phosphorylation sites on the connexin-43 gap junction protein. J Biol Chem 271:3779-3786.
Wei CJ, Xu X, Lo CW. 2004. Connexins and cell signaling in development and disease. Annu Rev Cell Dev Biol 20:811-838.
Woodley SL, Ikenouchi H, Barry WH. 1991. Lysophosphatidylcholine increases cytosolic calcium in ventricular myocytes by direct action on the sarcolemma. J Mol Cell Cardiol 23:671-680.
Xu Y. 2002. Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochim Biophys Acta 1582:81-88.
Ye X. 2008. Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update 14:519-536.
Yuan Y, Schoenwaelder SM, Salem HH, Jackson SP. 1996. The bioactive phospholipid, lysophosphatidylcholine, induces cellular effects via G-protein-dependent activation of adenylyl cyclase. J Biol Chem 271:27090-27098.
Zembowicz A, Tang JL, Wu KK. 1995. Transcriptional induction of endothelial nitric oxide synthase type III by lysophosphatidylcholine. J Biol Chem 270:17006-17010.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24531-
dc.description.abstract溶血磷脂膽鹼(Lysophosphatidylcholine, lysolecithins,簡稱LPC)是phophatidylcholine經由phospholipase A2的氧化作用而產生的。溶血磷脂膽鹼的生理濃度大約介於5–180 μM。目前的研究指出,缺血的心臟會造成溶血磷脂膽鹼的堆積,並造成心律不整(arrhythmogenesis)以及縮收異常(contractile dysfunction),但目前並沒有太多相關的研究去探討溶血磷脂膽鹼對於心肌細胞間隙接合(gap junction)所可能造成的影響。我們主要的研究目的便是希望探討溶血磷脂膽鹼對於心肌細胞間隙接合的作用以及影響。首先,細胞處理溶血磷脂膽鹼後並不影響細胞存活。雖然在心肌細胞的自發性收縮平均速率上沒有產生變化,但可以觀察到有快慢不一的現象。利用dye transfer技術評估其間隙接合的能力,發現溶血磷脂膽鹼處理後使dye transfer的距離變短,證明加入溶血磷脂膽鹼的處理確實會在短時間內使間隙接合能力(gap junction intercellular communication ; GJIC)下降。我們也發現溶血磷脂膽鹼處理後,會造成PKCalpha的活化,活化的PKCalpha會對Connexin43-ser368 ¬(P0)位置進行磷酸化並導致GJIC功能下降,而PKCalpha抑制劑(ev1-2)的前處理則可以恢復下降的GJIC功能。另外,我們發現溶血磷脂膽鹼處理後引起細胞內鈣離子濃度上升、PKCalpha和CaMKII的活化、以及Cx43在心肌細胞內的分布由細胞膜散落到細胞質。而鈣離子螯合劑(BAPTA-AM)、PKCalpha、CaMKII的抑制劑(Gö6976、KN93)都可有效的恢復經溶血磷脂膽鹼處理而下降的GJIC功能,而Gö6976、KN93還可以恢復溶血磷脂膽鹼引起的Cx43分布位置改變。同時,溶血磷脂膽鹼可以使P2-Cx43及P1-Cx43表現量以及Cx43的mRNA表現量上升,但前項結果並不會受到Gö6976以及KN93的處理而恢復。因此我們認為溶血磷脂膽鹼引起的P2-Cx43及P1-Cx43磷酸化的增加有可能是經由其他的激酶參與,此推論需要進一步的研究證實,待未來有更多的時間可以補足這方面的研究。zh_TW
dc.description.abstractLysophosphatidylcholine (lysolecithins, referred to LPC) is oxidized from phosphatidylcholine by phospholipase A2. The physiological concentration of LPC in the blood is about 5-180 μM. LPC is accumulated during heart ischemia and contributes to arrhythmia and contractile dysfunction. However, the mechanism underlying LPC-induced damage remains unclear. We aimed to study the effects of LPC on cardiomyocyte gap junction. First, LPC did not affect cell survival. Although LPC did not alter the spontaneous contraction rates of cardiomyocytes, but arrhythmic beating was found. In functional study of scrape loading dye transfer assay, the distance of dye transfer decreased after LPC treatment, indicated that LPC impaired the gap junction intercellular communication (GJIC). We also found LPC treatment induced PKCalpha activation. This activation of PKCalpha increased the phosphorylation of connenix43-Ser368(P0-Cx43) and led to the decreased GJIC. Pre-treatment with the PKCalpha inhibitor (eV1-2) could restore the function of GJIC. In addition, we found that LPC increased intracellular calcium, induced activation of PKCalpha and CaMKII, and altered the distribution of Cx43 from the membrane to the cytoplasm. The calcium chelator (BAPTA-AM), PKCalpha inhibitor (Gö6976), and CaMKII inhibitor (KN93) could recover the function of GJIC. Gö6976 and KN93also recover the LPC-induced Cx43 redistribution. The expression of P2-Cx43 and P1-Cx43 also increased 1.3 folds after LPC treatment, but were not prevented by Gö6976 and KN93. Thus, LPC-induced phosphorylation of P2-Cx43 and P1-Cx43 might include other kinase. The hypothesis needs further studies to elucidate.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:29:45Z (GMT). No. of bitstreams: 1
ntu-100-R98446006-1.pdf: 1831852 bytes, checksum: d68b1ebb84d7a6505be7597ba314a530 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目 錄
誌謝………………………………………………………………i
中文摘要……………………………………………………… ii
Abstract……………………………………………………… iv
目錄………………………………………………………………1
第一章 緒論……………………………………………………4
一、 溶血磷脂膽鹼…………………………………………4
二、 溶血磷脂膽鹼與心血管疾病之關係…………………5
三、 間隙接合蛋白磷酸化之調控…………………………6
四、 間隙接合………………………………………………7
五、 研究動機………………………………………………8
第二章 材料與方法……………………………………………9
一、 新生大白鼠心肌細胞初級培養(primary cell culture) …9
二、 心肌收縮速率之測量…………………………………9
三、 DAPI與PI染色…………………………………………10
四、 MTT試驗………………………………………………10
五、 實驗使用之抗體以及藥物……………………………10
六、 藥物處理(drug treatment) ………………………11
七、 免疫螢光染色(immunofluorescence staining) …11
八、 Scrape loading / Dye transfer (SL/DT) ………11
九、 流式細胞儀分析(flow cytometry analysis) ……12
十、 西方墨點分析法(Western blot analysis) ………12
十一、 統計分析(statistic analysis) …………………14
第三章 實驗結果………………………………………………16
一、 溶血磷脂膽鹼對於心肌細胞存活度的影響…………16
二、 溶血磷脂膽鹼對於心肌細胞間隙接合蛋白功能的影響…16
三、 溶血磷脂膽鹼對於心肌細胞Cx43分布的影響…………17
四、 溶血磷脂膽鹼藉由活化PKC………………………………18
五、 溶血磷脂膽鹼活化PKCalpha並造成Cx43-Ser368磷酸化
上升………………………………………………………18
六、 PKCalpha的活化對於溶血磷脂膽鹼處理之心肌細胞Cx43
分布之影響………………………………………………19
七、 溶血磷脂膽鹼造成細胞內鈣離子濃度增加,並藉由鈣離子濃
度增加以及PKCalpha與CaMKII的活化影響GJIC………19
八、 PKCalpha及CaMKII的活化對於溶血磷脂膽鹼處理之心肌
細胞Cx43分布之影響……………………………………19
九、 溶血磷脂膽鹼處理活化CaMKII與PKCalpha以及鈣離子、
KN93與eV1-2對溶血磷脂膽鹼所引起PKCalpha活化的影
響…………………………………………………………20
十、 溶血磷脂膽鹼處理造成Cx43表現增加…………………21
十一、 溶血磷脂膽鹼處理影響proteasome對於心肌細胞Cx43分布之
影響………………………………………………………22
第四章 討論…………………………………………………………23
第五章 參考文獻……………………………………………………28
第六章 圖片及圖片說明……………………………………………34
圖1、溶血磷脂膽鹼對於心肌細胞存活度的影響…………………34
圖2、不同時間的溶血磷脂膽鹼處理對於心肌細胞GJIC之影響…35
圖3、不同濃度溶血磷脂膽鹼處理對於心肌細胞GJIC之影響……36
圖4、不同時間的溶血磷脂膽鹼處理對於心肌細胞Cx43分布之影
響………………………………………………………………37
圖5、不同濃度的溶血磷脂膽鹼處理對於心肌細胞Cx43分布之影
響………………………………………………………………38
圖6、eV1-2對於溶血磷脂膽鹼處理之心肌細胞GJIC之影響………39
圖7、溶血磷脂膽鹼處理活化PKCalpha以及Cx43-Ser368磷酸化程
度上升…………………………………………………………40
圖8、抑制劑eV1-2對於LPC引起的Cx43-Ser368磷酸化的影響……42
圖9、eV1-2對於溶血磷脂膽鹼處理之心肌細胞Cx43分布之影響…43
圖10、溶血磷脂膽鹼引發心肌細胞內鈣離子濃度上升……………44
圖11、KN93、Gö6976、BAPTA對於溶血磷脂膽鹼處理之心肌細胞GJIC
之影響…………………………………………………………45
圖12、KN93、Gö6976對於溶血磷脂膽鹼處理之心肌細胞Cx43分布之影
響………………………………………………………………47
圖13、溶血磷脂膽鹼處理活化CaMKII………………………………48
圖14、溶血磷脂膽鹼處理活化PKCalpha以及BAPTA對於PKCalpha活
化的影響………………………………………………………49
圖15、eV1-2及KN93對於溶血磷脂膽鹼引起的PKCalpha活化之影
響………………………………………………………………51
圖16、溶血磷脂膽鹼處理造成Cx43表現增加………………………52
圖17、溶血磷脂膽鹼處理造成Cx43 mRNA表現增加…………………53
圖18、Gö6976、KN93對於溶血磷脂膽鹼處理之心肌細胞Cx43表現量之
影響……………………………………………………………54
圖19、MG132及cycloheximide對於溶血磷脂膽鹼處理之心肌細胞Cx43
分布之影響……………………………………………………55
附錄一、Cx43結構圖及磷酸化位置圖………………………………56
附錄二、模式圖………………………………………………………57
dc.language.isozh-TW
dc.title溶血磷脂膽鹼對於新生大鼠心肌細胞間隙接合的影響zh_TW
dc.titleEffects of Lysophosphatidylcholine on Gap Junction in Neonatal Rat Cardiomyocytesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳玉怜,鄭瓊娟,吳建春
dc.subject.keyword溶血磷脂膽鹼,間隙接合蛋白43,間隙接合,鈣離子,心肌細胞,心律不整,蛋白質基&#37238,C,間隙接合細胞間溝通,zh_TW
dc.subject.keywordlysophosphatidylcholine, Cx43, gap junction,Ca2+,cardiomyocyte,arrhythmia,PKC,GJIC,en
dc.relation.page57
dc.rights.note未授權
dc.date.accepted2011-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨生物細胞學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.79 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved