Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24527
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林順福
dc.contributor.authorYa-Ching Yangen
dc.contributor.author楊雅淨zh_TW
dc.date.accessioned2021-06-08T05:29:35Z-
dc.date.copyright2005-07-06
dc.date.issued2005
dc.date.submitted2005-07-06
dc.identifier.citationAltschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403- 410.
Barry, G.F. 2001. The use of the Monsanto draft rice genome sequence in research. Plant Physiol. 125: 1164-1165.
Bautista, N.S., Solis, R., Kamijima, O., and Ishii, T. 2001. RAPD, RFLP and SSLP analyses of phylogenetic relationships between cultivated and wild species of rice. Genes Genet. Syst. 76: 71-79.
Buell, C.R. 2002. Obtaining the sequence of the rice genome and lessons learned along the way. Trends Plant Sci. 12: 538-542.
Corneille, S., Lutz, K., and Maliga, P. 2000. Conservation of RNA editing between rice and maize plastids: are most editing events dispensable? Mol. Gen. Genet. 264: 419-424.
Enomoto, S.-I., Ogihara, Y., and Tsunewaki, K. 1985. Studies on the origin of crop species by restriction endonuclease analysis of organellar DNA. I. Phylogenetic relationships among ten cereals revealed by the restriction fragment patterns of chloroplast DNA. Jpn. J. Genet. 60: 411-424.
Ewing, B., Hillier, L., Wendl, M.C., and Green P. 1998a. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175- 185.
Ewing, B. and Green P. 1998b. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8: 186-194.
Ge, S., Sang, T., Lu, B.-R., and Hong D.-Y. 1999. Phylogeny of rice genome with emphasis on origins of allotetraploid. Proc. Natl. Acad. Sci. USA 96: 14400-14405.
Glaszmann, J.C. 1987. Isozymes and classification of Asian rice varieties. Theor. Appl. Genet. 74: 21-30.
Goff, S. A. 1999. Rice as a model for cereal genomics. Curr. Opin. Plant Biol. 2: 86-89.
Goff, S.A., Ricke, D., Lan, T.-H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchson, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A., and Briggs, S. 2002. A draft sequence of the rice genome (Oryza sativa L. japonica). Science 296: 92-100.
Gowda, M., Venu, R.C., Roopalakshmi, K., Sreerekha, M.V., and Kulkarni, R.S. 2003. Advances in rice breeding, genetics and genomics. Molecular Breed. 11: 337-352.
Hirai, A., Ishibashi, T., Morikami, A., Iwatsuki, N., Shinozaki, K., and Sugiura, M. 1985. Rice chloroplast DNA: a physical map of ribulose 1,5-bisphosphate carboxylase and the 32-kDa photosystem II reaction center protein. Theor. Appl. Genet. 70: 117-122.
Hiratsuka, J., Shimada, H., Wittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.-R., Meng, B.-Y., Li, Y.-Q., Kanno, A., Nishizawa, Y., Hirai, A., Shinozaki, K., and Sugiura, M. 1989. The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217: 185-194.
Huang, C.Y., Ayliffe, M.A., and Timmis, J.N. 2003. Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422: 72-76.
Ishii, T., Terachi, T., Mori, N., and Tsunewaki, K. 1993. Comparative study on the chloroplast, mitochondrial and nuclear genome differentiation in two cultivated rice species, Oryza sativa and Oryza glaberrima, by RFLP analyses. Theor. Appl. Genet. 86: 88-96.
Ishii, T., Terachi, T., and Tsunewaki, K. 1988. Restriction endonuclease analysis of chloroplast DNA from A-genome species of rice. Jpn. J. Genet. 63: 523-536.
Ishii, T. , Terachi, T., and Tsunewaki, K. 1986. Restriction endonuclease analysis of chloroplast DNA from cultivated rice species, Oryza sativa and Oryza glaberrima. Jpn. J. Genet. 61: 537-541.
Ishii, T. and Tsunewaki, K. 1991. Chloroplast genome differentiation in Asian cultivated rice. Genome 34: 818-826.
Ishii, T., Xu, Y., and McCouch, S.R. 2001. Nuclear- and chloroplast-microsatellite variation in A-genome species of rice. Genome 44: 658-666.
Kanno, A. and Hirai, A. 1993. A transcription map of the chloroplast genome from rice (Oryza sativa). Curr. Genet. 23: 166-174.
Kanno, A. and Hirai, A. 1992. Comparative studies of the structure of chloroplast DNA from four species of Oryza: cloning and physical maps. Theor. Appl. Genet. 83: 791-798.
Kanno, A., Watanable, N., Nakamura, I., and Hirai, A. 1993. Variation in chloroplast DNA from rice (Oryza sativa): differences between deletions mediated by short direct-repeat sequences within a single species. Theor. Appl. Genet. 86: 579-584.
Kapoor, S. and Sugiura, M. 1998. Expression and regulation of plastid genes. In Photosynthesis: A Comprehensive Treatise, ed. AS Raghavendra, pp. 72-86. Cambridge: Cambridge Univ. Press.
Katoh, Y., Katoh, M., Takada, Y., and Omori, M. 2003. Genetic diversity within cultivated teas based on nucleotide sequence comparison of ribosomal RNA maturase in chloroplast DNA. Euphytica 134: 287-295.
Kawata, M., Harada, T., Shimamoto, Y., Oono, K., and Takaiwa, F. 1997. Short inverted repeats function as hotspots of intermolecular recombination giving rise to oligomers of deleted plastid DNAs (ptDNAs). Curr. Genet. 31: 179-184.
Kelchner, S.A. and Wendel J. F. 1996. Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr. Genet. 30: 259-262.
Khush, G.S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Mol. Biol. 35: 25-34.
Martin, W. 2003. Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc. Natl. Acad. Sci. USA 100: 8612-8614.
Martin, W., Stoebe, B., Goremykin, V., Hansmann, S., Hasegawa, M., and Kowallik, K.V. 1998. Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162-165.
Matsuo, T. 1952. Genecological studies on cultivated rice (in Japanese). Bull Nat. Inst. Agric. Sci. Jpn. D. 3: 1-111.
Matsuo, M., Ito, Y., Yamauchi, R., and Obokata, J. 2005. The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Plant Cell 17: 665-675.
Moon, E., Kao, T.-H., and Wu, R. 1988. Rice mitochondrial genome contains a rearranged chloroplast gene cluster. Mol. Gen. Genet. 213: 247-253.
Morinaga, T. 1954. Classification of rice varieties on the basis of affinity. In: International Rice Commission. Working Party on Rice Breeding. Rep. 5th Meeting. pp 1-14.
Nakazono, M. and Hirai, A. 1993. Identification of the entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice. Mol. Gen. Genet. 236: 341-346.
Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A., and Kadowaki, K. 2002. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genomics 268: 434-445.
Ogihara, Y., Terachi, T., and Sasakuma T. 1988. Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc. Natl. Acad. Sci. USA 85: 8573-8577.
Palmer, J.D. 1985. Comparative organization of chloroplast genome. Annu. Rev. Genet. 19: 325-354.
Provan, J., Corbett, G., McNicol, J.W., and Powell, W. 1997. Chloroplast DNA variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chloroplast simple sequence repeats. Genome 40: 104-110.
Provan, J., Corbett, G., McNicol, J.W., Morgante, M., and Powell, W. 1996. DNA fingerprints of rice (Oryza sativa) obtained from hypervariable chloroplast simple sequence repeats. Proc. R. Soc. Lond. Ser. B. Bio. Sci. 263: 1275-1281.
Shimada, H. and Sugiura, M. 1991. Fine structure features of the chloroplast genome: comparison of the sequenced chloroplast genomes. Nucleic Acids Res. 19: 983-995.
Stegemann, S., Hartmann, S., Ruf, S., and Bock, R. 2003. High-frequency gene transfer from the chloroplast genome to the nucleus. Proc. Natl. Acad. Sci. USA 100: 8828-8833.
Stern, D.B. and Palmer, J.D. 1984. Extensive and widespread homologies between mitochondrial DNA and chloroplast DNA in plants. Proc. Natl. Acad. Sci. USA 81: 1946-1950.
Sugiura, M. 2003. History of chloroplast genomics. Photosynth. Res. 76: 371-377.
Sugiura, M., Hirose, T., and Sugita, M. 1998. Evolution and mechanism of translation in chloroplasts. Annu. Rev. Genet. 32: 437-459.
Tang, J., Xia, H., Cao, M., Zhang, X., Zeng, W., Hu, S., Tong, W., Wang, Jun, Wang, Jian, Yu, J., Yang, H., and Zhu, L. 2004. A comparison of rice chloroplast genomes. Plant Physiol. 135: 412-420.
Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.
Triboush, S.O., Danilenko, N.G., and Davydenko, O.G. 1998. A method for isolation of chloroplast DNA and mitochondrial DNA from sunflower. Plant Mol. Bio. Rep. 16: 183-189.
Yamane, K. Lü, N., and Ohnishi, O. 2005. Chloroplast DNA variations of cultivated radish and its wild relatives. Plant Sci. 168: 627-634.
Yu, J., Hu, S., Wang, J., Wong, G. K.-S., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, Y., Liu, Jing, Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, Lin, Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, Jianping, Qi, Q., Liu, Jinsong, Li, Li, Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, Jinsong, He, S., Zhang, Jianguo, Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, Wanyong, Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, Juan, Zhao, W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, Jing, Liu, Song, Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Mao, B., Zheng, Weimou, Chen, S., Guo, W., Li, G., Liu, Siqi, Tao, M., Wang, Jian, Zhu, H., Yuan, L., and Yang, H. 2002. A draft sequence of the rice genome (Oryza sativa L. spp. Indica). Science 296: 79-92.
Yuan, Q., Hill, J., Hsiao, J., Moffat, K., Ouyang, S., Cheng, Z., Jiang, J., and Buell, C.R. 2002. Genome sequencing of a 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Mol. Genet. Genomics 267: 713-720.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24527-
dc.description.abstract高等植物之葉綠體基因體在結構上一般區分為大單一拷貝(LSC)區域、小單一拷貝(SSC)區域與一組倒置重複序列(IRs),而水稻葉綠體之基因體大小約為134.5-kb,目前已知至少包含4個rRNA基因、30個tRNA基因及超過100個具蛋白質功能的基因。本研究在整理及歸納前人有關限制酵素剪切所造成品種間之DNA長度多型性後,發現秈稉稻之間特定區域的葉綠體DNA序列確實存在長度及單一核苷酸的變異,又考量目前國際有關水稻葉綠體DNA變異之研究只採用三個品種互相比較,且其中兩個屬於稉稻另一為秈稻品種,無法深入探討亞種間或亞種內品種之DNA序列變異。因此,本研究以秈稻及稉稻各九個品種為材料,欲釐清秈稉稻亞種之間及亞種內特有的葉綠體DNA序列變異,並進一步探討這些變異可能影響之葉綠體基因,以及葉綠體DNA與粒線體DNA及核內DNA的演化關係。在總定序長度約576-kb內,共發現97個秈稉稻之間特有的變異,包括27個插入或缺失的片段(InDel),以及70個單一核苷酸多型性(SNP)。亞種間變異中, LSC區域內發生InDel機率遠高於其他區域,有0.03%;而SNP的變異率則以SSC區域內最高,LSC區域次之。另外,在LSC區域內的76 kb附近也發現稉稻高雄139號獨有的一段35-bp的DNA序列插入;而嘉農秈6號、高雄秈2號、台中在來一號與台中秈17號的葉綠體基因體也存在兩個特有且相鄰的SNPs。因而亞種內的葉綠體DNA序列變異以秈稻品種間(6.6x10-3/kb)較稉稻品種間(8.3x10-4/kb)有較大之變異。由於發現所有秈稻與稉稻亞種間具有逆向互補序列存在,可知DNA序列倒置(Inversion)現象發生在兩個亞種分化之前;另外,僅有秈稻亞種內在葉綠體基因體不同區域發現逆向互補序列,可知DNA序列倒置亦發生在亞種分化後之秈稻品種。根據BLAST搜尋的結果,葉綠體具序列變異之DNA片段轉移至核內各染色體的平均事件約為6.42次,相近於轉移至粒線體基因體的7次,可以得知葉綠體DNA片段併入核內或粒線體基因體甚為頻繁。而葉綠體單一拷貝DNA序列內的變異區域轉移至核內基因體的平均次數為6.05,重複序列內變異區域的平均次數則為14.0,約為前者的兩倍,結果也顯示葉綠體DNA片段轉移至核內基因體的頻度大致上沒有區域性的偏好。本研究結果不但有助於瞭解水稻品種間葉綠體DNA之變異,亦有助於探討葉綠體基因與重要農藝性狀之關係。zh_TW
dc.description.abstractChloroplast genomes in higher plants generally contain two large inverted repeats (IRs), separated by a large single copy region (LSC) and a small single copy region (SSC). In rice, the chloroplast genome is about 134.5-kb in length and comprises at least four rRNA genes, 30 tRNA genes, and over 100 genes that encoding proteins. By summarizing previous studies on DNA polymorphisms resulted from restriction sites analysis in Oryza, the inter-subspecific length-polymorphisms and SNPs between the chloroplast genomes of Japonica and Indica rice were verified. The cpDNAs have been sequenced completely only in three varieties (the Japonica type, Nipponbare and PA64S; and the Indica type, 93-11), and the relative variation between/within subspecies is still unclear due to lack of more representive varieties. In this study, nine varieties of each subspecies were used to elucidate inter- or intra-subspecific chloroplast variations, the chloroplast genes related to these variations, and the evolutionary relationships among chloroplast, nuclear and mitochondrial DNA. In a total sequence of 576-kb in length, 97 variations in the rice chloroplast genomes between Japonica and Indica, including 27 InDels and 70 SNPs, were detected. In the inter-subspecific variations, the InDel rate in the LSC region (0.03%) was much higher than the other regions, and the highest SNP rate was in the SSC region, followed by the LSC region. In addition, an I-35 was found around the 76 kb in the LSC region existed in KS139 merely, and two adjacent SNPs specifically emerged in CHS6, KSS2, TCN1, and TCS17. And the frequency of variation among Indica varieties was 6.6x10-3 per kb larger than that among Japonica varieties (8.2x10-4 per kb). Based on the differences in reverse-complementary sequence variations between Indica and Japonica varieties, and within Indica varieties, the timings of inversion incidents could be traced back at pre- or post-differentiation stages of rice subspecies, respectively. According to the results from BLAST queries, the average number of cpDNA fragments integrated into the nuclear chromosomes was 6.42, which was near to the number of seven of cpDNA flux to the mitochondrial genome, and it appeared that the occurrence of cpDNA transferring to the nuclear or mitochondrial genomes was frequently. And the averaged transferring frequency for a single copy cpDNA fragment was 6.05, and the transferred frequency for cpDNA fragments in the inverted repeat regions was twice (14 on average) more than the single copy regions. It also indicated that the cpDNA fragments transferring to the nuclear genome were distributed evenly over the chloroplast genome. Results of this study not only contribute the information on chloroplast DNA variations among varieties, but also facilitate further researches on the relation between chloroplast genes and important agronomic traits of rice.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:29:35Z (GMT). No. of bitstreams: 1
ntu-94-R92621114-1.pdf: 307340 bytes, checksum: d4d4747832ed294c7e05624ad031f935 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsAbstract (Chinese)
Abstract (English)
Introduction………………………………………………………01
Materials and methods.…………………………………………07
Results
Chloroplast genomic variations between Japonica and Indica subspecies…………………………………………………………12
Inter-subspecific nucleotide length-polymorphisms………13
Inter-subspecific single nucleotide polymorphisms………19
Intra-subspecific variations…………………………………25
DNA transfer from chloroplasts to nucleus and mitochondria ………………………………………………………………………27
Discussion
Inter-subspecific variations…………………………………30
Major and minor chloroplast genotypes within Japonica and Indica rice subspecies…………………………………………34
Occurrence of InDels and inversions…………………………35
Genes related to cpDNA sequence variations………………36
Intra-subspecific variations…………………………………38
cpDNA transfer……………………………………………………39
Conclusion…………………………………………………………40
Reference……………………………………………………………41
dc.language.isoen
dc.subject葉綠體基因體zh_TW
dc.subjectDNA序列倒置zh_TW
dc.subject重複序列zh_TW
dc.subject酸多型性zh_TW
dc.subject單一核&#33527zh_TW
dc.subject插入及缺失zh_TW
dc.subject亞種間(內)變異zh_TW
dc.subject秈稉zh_TW
dc.subjectinter- (intra-) subspecific variations between Japonica and Indica riceen
dc.subjectDNA sequence inversionen
dc.subjectrepeat sequencesen
dc.subjectSNPen
dc.subjectInDelen
dc.subjectchloroplast genomeen
dc.title秈稻與稉稻品種間之葉綠體DNA序列變異zh_TW
dc.titleChloroplast DNA Variation between and within Japonica and Indica Rice Subspeciesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃懿秦,邢禹依,古新梅,鄭隨和
dc.subject.keyword葉綠體基因體,秈稉,亞種間(內)變異,插入及缺失,單一核&#33527,酸多型性,重複序列,DNA序列倒置,zh_TW
dc.subject.keywordchloroplast genome,inter- (intra-) subspecific variations between Japonica and Indica rice,InDel,SNP,repeat sequences,DNA sequence inversion,en
dc.relation.page45
dc.rights.note未授權
dc.date.accepted2005-07-06
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
300.14 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved