Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24515
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorShu-Cheng Chinen
dc.contributor.author金書正zh_TW
dc.date.accessioned2021-06-08T05:29:05Z-
dc.date.copyright2005-07-15
dc.date.issued2005
dc.date.submitted2005-07-09
dc.identifier.citation[1] J. Black, H. Lockwood, and S. Mayburg, J. Appl. Phys. 34, 178 (1962).
[2] N. Holonyak, Jr., and S.F. Bevacqua, Appl. Phys. Lett. 1, 82 (1962).
[3] R.D. Dupuis, ' IEEE J. Quant. Electr., QE-23, p. 651 (1987).
[4] M.G. Craford, IEEE Circuits and Dev. 8, 25 (1992).
[5] R.A. Metzger, Comp. Semicond. 1, 26 (1995).
[6] G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, Appl. Phys. Lett. 68, 2541 (1996).
[7] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, J. Appl. Phys. 81, 6332 (1997).
[8] A. F. Wright et al., Appl. Phys. 82, 2833 (1997).
[9] C. Deger, E. Born, H. Angerer, O. Ambacher, M. Stutzmann, J. Homsteiner, E. Riha, and G. Fischerauer, Appl. Phys. Lett. 72, 2400 (1998).
[10] F. Bernardini, Fiorentini, and D.Vanderbilt, Phys. Rev. B 56, R10024 -R10027 (1997).
[11] S. H. Park and S. L. Chuang, J. Appl. Phys. 87, 353 (2000).
[12] Christian Wetzel, Shugo Nitta,Tetsuya Takeuchi, Shigeo Yamaguchi, H. Amano and I. Akasaki, J. Nitride Semicond. Res. 3, 31 (1998).
[13] G. B. Stringfellow, J. Cryst. Growth 58, 194 (1982).
[14] R Singh, D Doppalapudi, TD Moustakas, LT Romano, Appl. Phys. Lett.70, 1089-1091 (1997).
[15] N. A. El-Masry, E. L. Piner, S. X. Liu, S. M. Bedair, Appl. Phys. Lett.72, 40 (1998).
[16] Y Sato, S Sato, Jpn. J. Appl. Phys. 36 , 4295 (1997).
[17] S. Nakamura, Mater. Sci. Eng. B 50, 272 (1997).
[18] V.A. Elyukhin, S.A. Nikishin, Semicond. Sci. Technol.11, 917-920 (1996).
[19] I. Ho, G.B. Stringfellow, Appl. Phys. Lett.69, 2701 (1996).
[20] I. H. Ho, G. B. Stringfellow, Mater. Res. Soc. Symp.Proc. 449, 871 (1997)..
[21] S. Y. Karpov, MRS Internet J. Nitride Semicond. Res. 3, 16 (1998).
[22] S. Yu. Karpov, Yu. N. Makarov, M. S. Ramm, Sci. Forum 264/268, 1189-1192 (1988).
[23] G. P. Yablonskii, E. V. Lutsenko, V. N. Pavlovskii, I. P. Marko, A. L. Gurskii, V. Z. Zubialevich, O. Schoen, H. Protzmann, M. Luenenbuerger, B. Schineller, and M. Heuken, Phys. Status Solidi A 188, 79 (2001).
[24] W. Van der Stricht, I. Moerman, P. Domeester, L. Considine, E. J. Thrush, and J. A. Crawley, MRS Internet J. Nitride Semicond. Res. 2, 16 (1997).
[25] M. Poschenrieder, F. Schulze, J. Blaessing, A. Dadgar, A. Diez, J. Christen, and A. Krost, Appl. Phys. Lett. 81, 1591 (2002)..
[26] R. W. Martin, P. R. Edwards, R. Pecharroman-Gallego, C. Liu, C. J. Deatcher, I. M. Watson, and K. P. O’Donnell, J. Phys. D 35, 604 (2002)..
[27] T. Matsuoka, N. Yoshimoto, T. Sasaki, A. Katsui, J. Electron. Mater. 21, 157-163 (1992)..
[28] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Swgawa, Solid State Commun. 103, 459 (1997).
[29] R. Katoh, A. Furube, K. Hara, S. Murata, H. Sugihara, H. Arakawa, M. Tachiya, J. Phys. Chem. B 106, 12957 (2002).
[30] S. Roy, S. Bull. Basu Mater. Sci. 25, 513 (2002).
[31] N. Ohashi, K. Kataoka, T. Ohgaki, T. Miyagi, H. Haneda, K. Morinaga, Appl. Phys. Lett. 83, 4857 (2003).
[32] P. Sharma, S. Kumar, K. Sreenivas, J. Mater. Res. 18, 545 (2003).
[33] Q. Wan, C. L. Lin, X. B. Yu, T. H. Wang, Appl. Phys. Lett. 84, 124 (2004).
[34] Z. R. Dai, Z. W. Pan, Z. L. Wang, AdV. Funct. Mater. 13, 9 (2003).
[35] C. H. Chia, T. Makino, K. Tamura, Y. Segawa, A. Ohtomo, H. Koinuma, Appl. Phys. Lett. 82, 1848 (2003).
[36] S. W. Kim, Sz. Fujita, Sg. Fujita, Appl. Phys. Lett. 81, 5036 (2002).
[37] B. P. Zhang, N. T. Binh, Y. Segawa, K. Wakatsuki, N. Usami, Appl. Phys. Lett. 83, 1635 (2003).
[38] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001).
[39] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 291, 1947 (2001).
[40] J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, Nano Lett. 3, 235 (2003).
[41] H. T. Ng, J. Li, M. K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Science 300, 1249 (2003).
[42] J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, D. Steeves, B. Kimball, W. Porter, Appl. Phys. A 78, 539 (2004).
[43] J. Hu, Y. Bando, Liu and Z. Adv. Mater. 15, 1000 (2003).
[44] J. Zhang, L. Sun, C. Liao, C. Yan, Chem. Commun., 262 (2002).
[45] G. P. Yablonskii, V. N. Pavlovskii, E. V. Lutsenko, V. Z. Zubialevich, and A. L. Gurskii, Appl. Phys. Lett. 85, 5158 (2004).
[46] B.P. Zhang, K. Wakatsuki, N.T. Binh, N. Usami, and Y. Segawa, Thin Solid Films 449, 12 (2004).
[47] E. C. Lin, M. D. Thesis, National Taiwan University (2003).
[48] C. Y. Chen, M. D. Thesis, National Taiwan University (2004).
[49] M. K. Chen, M. D. Thesis, National Taiwan University (2004).
[50] C. M. Wu, M. D. Thesis, National Taiwan University (2004).
[51] B. P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, and H. Koinuma, J. Phys. Chem. B, 3.9 (2004).
[52] Hawley, M. Raistrick, I. D. Beery, J. G. Houlton, R. J. Science 251, 1587 (1991).
[53] D. McKie and Christine McKie, “Essentials of Crystallography” p.172
[54] N. W. Ashcroft and N. D. Mermin, “Solid State Physics” p. 96-101
[55] T. Schuhrke, M. M¨andl, J. Zweck, H. Hoffmann, Ultramicroscopy 45, 411 (1992).
[56] W.H. Press, W.T. Vetterling, S.A. Teukolsky, B.P. Flannery, Numerical Recipes in C, 1st ed. (Univerity Press, Cambridge 1992).
[57] L. D. Marks, Ultramicroscopy 62, 43 (1996).
[59] A. Rosenauer, S. Kaiser, T. Reisinger, J. Zweck, W. Gebhardt, D. Gerthsen, Optik 102, 63 (1996).
[60] M. M. J. Treacy, J. M. Gibson, J. Vac. Sci. Technol. B 4 (6), 1458 (1986).
[61] H. Chen, A. R. Smith, R. M. Feenstra, D. W. Greve, and J. E. Northrup, MRS Internet J. Nitride Semicond. Res. 451, 695 (1999).
[62] T. M. Smeeton, M. J. Kappers, J. S. Barnard, and C. J. Humphreys, Proceeding of Symposium Y, MARS Fall Meeting (2003).
[63] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff., Appl. Phys. Lett. 80 4741(2002)
[64] X.M. Sun, X. Chen, Z.X. Deng, and Y.D. Li, Mater. Chem. Phys. 78, 99 (2002).
[65] G. Kresse, O. Dulub, and U. Diebold, Phys. Rev. B 68, 245409 (2003)
[66] S. K. Hong, H. J. Ko, Y Chen, and T. Yao, J. Crys. Growth 209, 537 (2000)
[67] Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S. H. Wei, Phys. Rev B 70, 193206 (2004)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24515-
dc.description.abstract本研究中,我們比較四片具有不同長晶條件的氮化銦鎵�氮化鎵多重量子井樣品的奈米結構及光學特性,其中三片具有不同的量子井層長晶溫度,我們發現在愈低溫成長之樣品中銦的平均含量愈高,同時,增幅分解的的現象也愈來愈顯著,然而,晶體結構的品質卻愈差。此外,發光波長隨著長晶溫度的降低也愈來愈長。另外一片樣品中,我們在生長位障層時通入氫氣,經由氫氣的通入,銦原子會更加的侷限在量子井層,而且可以抑制增幅分解的發生,並且由x光繞射儀的結果來看,此樣品之晶體品質是四片樣品之中最好的。在本研究的第二部份中,我們比較三片長在氧化鋁上的氧化鋅薄膜樣品,我們發現在高溫成長(450 ℃)時,薄膜結構會轉換成柱狀結構,而且經由高解析度之穿透式電子顯微鏡影像,我們發現在高溫成長的氧化鋅與氧化鋁介面層具有不同的晶體指向,從x光繞射儀可更進一步計算,氧化鋅層相對於氧化鋁層在c軸有一個三十度的旋轉角,這個三十度的旋轉角可以降低氧化鋅與氧化鋁的晶格不匹配,進而使表面能量下降。最後,我們發現,高溫成長的樣品也有比較好的發光效率。zh_TW
dc.description.abstractIn this research, we compare the nanostructure and optical property of four InGaN/GaN multiple quantum well samples with different growth conditions. The quantum wells of three of these samples were grown at different temperatures. The incorporated indium content becomes higher as the growth temperature decreases. The crystalline quality of a sample with a higher indium content becomes worse. Spinodal decomposition is stronger at a lower growth temperature. In addition, the photon emission wavelength is longer in a sample of a growth temperature. In growing the fourth sample, H2 flow was added to the growth chamber in growing barrier layers (undoped GaN). We find that spinodal decomposition is suppressed and indium atoms are well confined in the InGaN layers. From the X-ray diffraction (XRD) results, the crystalline quality of this sample is the best among the four samples. The second part of this research is to study the nanostructures of three ZnO thin films grown on sapphire. We observed that the ZnO thin film changes into rod-like structure at high growth temperature (450 ℃). In this sample, there is an orientation twist (30 degrees) with respect to the c-axis at the interface between ZnO and sapphire. We obtained different electron diffraction patterns between ZnO and sapphire from transmission electron microscopy (TEM) for confirming this twist. The twisted structure reduces the lattice mismatch between ZnO and sapphire, which leads to a lower surface energy. The sample of high-temperature growth has higher photon emission efficiency.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:29:05Z (GMT). No. of bitstreams: 1
ntu-94-R92941051-1.pdf: 18497809 bytes, checksum: 1bd20537c8266d6a526a3278e669ee88 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsChapter 1 Introduction
1.1 Development of Light-Emitting Devices………………………..1
1.2 Crystal Structure of Gallium Nitrides (GaN)……………………2
1.3 Piezoelectric Fields in InGaN/GaN Multiple Quantum Wells
1.3.1 Strain Effect………………………………………………3
1.3.2 Polarization……………………………………………….4
1.4 Phase Separation and Spinodal Decomposition…………………5
1.5 InGaN Layers Grown at Different Growth Temperatures………9
1.6 Introduction to Zinc Oxide (ZnO)……………………………..10
1.7 Research Motivation…………………………………………...13
Chapter 2 Analysis Methods
2.1 Sample Preparation for Cross-Sectional TEM…………………29
2.2 Transmission Electron Microscopy (TEM)……………………31
2.3 X-ray Diffraction (XRD)………………………………………33
2.4 Strain-State Analysis (SSA)
2.4.1 Noise Reduction by Wien Filter………………………...36
2.4.2 Reference Lattice Method………………………………38
2.5 Photoluminescence (PL)……………………………………….41
Chapter 3 Characteristics of InGaN/GaN Multiple Quantum Wells with Different Growth Temperatures
3.1 Sample Descriptions…………………………………………...55
3.2 Comparison of InGaN/GaN MQWs with Different Growth Temperatures…………………………………………………...57
3.3 Comparison of InGaN/GaN MQWs with and without H2 Flow in Barriers…………………………………………………………61
3.4 Nanostructure Alteration upon Electron Beam Exposure……...63
3.5 Discussions…………………………………………………….63
Chapter 4 Nano-structure Study of Zinc Oxide Thin Films Grown on Sapphire
4.1 Sample Descriptions…………………………………………...89
4.2 Material Analysis Results……………………………………...90
4.3 Photoluminescence Results……………………………………95
Chapter 5 Conclusions……………………………………...117
References………………………………………………………….119
dc.language.isoen
dc.subject氧化鋅薄膜zh_TW
dc.subject氮化銦鎵/氮化鎵多重量子井zh_TW
dc.subject穿透式電子顯微鏡zh_TW
dc.subjectZnOen
dc.subjectInGaN MQWsen
dc.subjectTEMen
dc.title具有不同長晶溫度之氮化銦鎵/氮化鎵多重量子井與成長在氧化鋁上之氧化鋅薄膜特性研究zh_TW
dc.titleCharacteristics of InGaN/GaN Multiple Quantum Wells with Different Growth Temperatures and Zinc Oxide Thin Films Grown on Sapphireen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊哲人,馬廣仁,黃建璋
dc.subject.keyword氮化銦鎵/氮化鎵多重量子井,氧化鋅薄膜,穿透式電子顯微鏡,zh_TW
dc.subject.keywordInGaN MQWs,ZnO,TEM,en
dc.relation.page123
dc.rights.note未授權
dc.date.accepted2005-07-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
18.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved