請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24509完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂紹俊 | |
| dc.contributor.author | Hui-Ching Yang | en |
| dc.contributor.author | 楊惠晴 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:28:50Z | - |
| dc.date.copyright | 2011-10-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-27 | |
| dc.identifier.citation | 李曜宏(2008)NF-κB 及Oct-2 在脂多醣透過MEK/ERK 訊息傳遞路徑活化巨噬細胞表現G-CSF 之過程中所扮演的角色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文
黃宇澤(2010)探討受LPS刺激的小鼠巨噬細胞中Oct-2在G-CSF表現過程中所扮演的角色。國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文 Adler, B.K., Salzman, D.E., Carabasi, M.H., Vaughan, W.P., Reddy, V.V., and Prchal, J.T. (2001). Fatal sickle cell crisis after granulocyte colony-stimulating factor administration. Blood 97, 3313-3314. Adler, V., Qu, Y., Smith, S.J., Izotova, L., Pestka, S., Kung, H.F., Lin, M., Friedman, F.K., Chie, L., Chung, D., Boutjdir, M., and Pincus, M.R. (2005). Functional interactions of Raf and MEK with Jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic Ras signaling pathway. Biochemistry 44, 10784-10795. Akira, S., and Takeda, K. (2004). Toll-like receptor signalling. Nat Rev Immunol 4, 499-511. Arnosti, D.N., Merino, A., Reinberg, D., and Schaffner, W. (1993). Oct-2 facilitates functional preinitiation complex assembly and is continuously required at the promoter for multiple rounds of transcription. EMBO J 12, 157-166. Attalah, H.L., Azoulay, E., Yang, K., Lasclos, C., Jouault, H., Soussy, C.J., Guillot, T., Brochard, L., Brun-Buisson, C., Harf, A., and Delclaux, C. (2002). Granulocyte colony-stimulating factor enhances host defenses against bacterial pneumonia following peritonitis in nonneutropenic rats. Crit Care Med 30, 2107-2114. Bachleda, P., and Dvorak, Z. (2008). Pharmacological inhibitors of JNK and ERK kinases SP600125 and U0126 are not appropriate tools for studies of drug metabolism because they activate aryl hydrocarbon receptor. Gen Physiol Biophys 27, 143-145. Basak, C., Pathak, S.K., Bhattacharyya, A., Mandal, D., Pathak, S., and Kundu, M. (2005). NF-kappaB- and C/EBPbeta-driven interleukin-1beta gene expression and PAK1-mediated caspase-1 activation play essential roles in interleukin-1beta release from Helicobacter pylori lipopolysaccharide-stimulated macrophages. J Biol Chem 280, 4279-4288. Boneberg, E.M., and Hartung, T. (2002). Molecular aspects of anti-inflammatory action of G-CSF. Inflamm Res 51, 119-128. Borsch-Haubold, A.G., Pasquet, S., and Watson, S.P. (1998). Direct inhibition of cyclooxygenase-1 and -2 by the kinase inhibitors SB 203580 and PD 98059. SB 203580 also inhibits thromboxane synthase. J Biol Chem 273, 28766-28772. Bozinovski, S., Jones, J.E., Vlahos, R., Hamilton, J.A., and Anderson, G.P. (2002). Granulocyte/macrophage-colony-stimulating factor (GM-CSF) regulates lung innate immunity to lipopolysaccharide through Akt/Erk activation of NFkappa B and AP-1 in vivo. J Biol Chem 277, 42808-42814. Campbell, I.K., Rich, M.J., Bischof, R.J., and Hamilton, J.A. (2000). The colony-stimulating factors and collagen-induced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF. J Leukoc Biol 68, 144-150. Chou, Y.Y., Gao, J.I., Chang, S.F., Chang, P.Y., and Lu, S.C. (2011). Rapamycin inhibits lipopolysaccharide induction of granulocyte-colony stimulating factor and inducible nitric oxide synthase expression in macrophages by reducing the levels of octamer-binding factor-2. FEBS J 278, 85-96. Chou, Y.Y., and Lu, S.C. (2011). Inhibition by rapamycin of the lipoteichoic acid-induced granulocyte-colony stimulating factor expression in mouse macrophages. Arch Biochem Biophys 508, 110-119. Christopher, M.J., and Link, D.C. (2007). Regulation of neutrophil homeostasis. Curr Opin Hematol 14, 3-8. Coles, L.S., Diamond, P., Occhiodoro, F., Vadas, M.A., and Shannon, M.F. (2000). An ordered array of cold shock domain repressor elements across tumor necrosis factor-responsive elements of the granulocyte-macrophage colony-stimulating factor promoter. J Biol Chem 275, 14482-14493. Colotta, F., Re, F., Polentarutti, N., Sozzani, S., and Mantovani, A. (1992). Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80, 2012-2020. Cornish, A.L., Campbell, I.K., McKenzie, B.S., Chatfield, S., and Wicks, I.P. (2009). G-CSF and GM-CSF as therapeutic targets in rheumatoid arthritis. Nat Rev Rheumatol 5, 554-559. Cui, T.X., Kwok, R., and Schwartz, J. (2008). Cooperative regulation of endogenous cAMP-response element binding protein and CCAAT/enhancer-binding protein beta in GH-stimulated c-fos expression. J Endocrinol 196, 89-100. Cui, T.X., Lin, G., LaPensee, C.R., Calinescu, A.A., Rathore, M., Streeter, C., Piwien-Pilipuk, G., Lanning, N., Jin, H., Carter-Su, C., Qin, Z.S., and Schwartz, J. (2011). C/EBPbeta mediates growth hormone-regulated expression of multiple target genes. Mol Endocrinol 25, 681-693. Cui, T.X., Piwien-Pilipuk, G., Huo, J.S., Kaplani, J., Kwok, R., and Schwartz, J. (2005). Endogenous CCAAT/enhancer binding protein beta and p300 are both regulated by growth hormone to mediate transcriptional activation. Mol Endocrinol 19, 2175-2186. D'Souza, A., Jaiyesimi, I., Trainor, L., and Venuturumili, P. (2008). Granulocyte colony-stimulating factor administration: adverse events. Transfus Med Rev 22, 280-290. Demetri, G.D., and Griffin, J.D. (1991). Granulocyte colony-stimulating factor and its receptor. Blood 78, 2791-2808. Dhillon, A.S., Hagan, S., Rath, O., and Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene 26, 3279-3290. Dibbert, B., Weber, M., Nikolaizik, W.H., Vogt, P., Schoni, M.H., Blaser, K., and Simon, H.U. (1999). Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. Proc Natl Acad Sci U S A 96, 13330-13335. Dong, C., Davis, R.J., and Flavell, R.A. (2002). MAP kinases in the immune response. Annu Rev Immunol 20, 55-72. Dumitru, C.D., Ceci, J.D., Tsatsanis, C., Kontoyiannis, D., Stamatakis, K., Lin, J.H., Patriotis, C., Jenkins, N.A., Copeland, N.G., Kollias, G., and Tsichlis, P.N. (2000). TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103, 1071-1083. Dunn, S.M., Coles, L.S., Lang, R.K., Gerondakis, S., Vadas, M.A., and Shannon, M.F. (1994). Requirement for nuclear factor (NF)-kappa B p65 and NF-interleukin-6 binding elements in the tumor necrosis factor response region of the granulocyte colony-stimulating factor promoter. Blood 83, 2469-2479. Engelman, J.A., Lisanti, M.P., and Scherer, P.E. (1998). Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem 273, 32111-32120. Eyles, J.L., Hickey, M.J., Norman, M.U., Croker, B.A., Roberts, A.W., Drake, S.F., James, W.G., Metcalf, D., Campbell, I.K., and Wicks, I.P. (2008). A key role for G-CSF-induced neutrophil production and trafficking during inflammatory arthritis. Blood 112, 5193-5201. Eyles, J.L., Roberts, A.W., Metcalf, D., and Wicks, I.P. (2006). Granulocyte colony-stimulating factor and neutrophils--forgotten mediators of inflammatory disease. Nat Clin Pract Rheumatol 2, 500-510. Franzke, A. (2006). The role of G-CSF in adaptive immunity. Cytokine Growth Factor Rev 17, 235-244. Gough, A., Clapperton, M., Rolando, N., Foster, A.V., Philpott-Howard, J., and Edmonds, M.E. (1997). Randomised placebo-controlled trial of granulocyte-colony stimulating factor in diabetic foot infection. Lancet 350, 855-859. Hanlon, M., Sturgill, T.W., and Sealy, L. (2001). ERK2- and p90(Rsk2)-dependent pathways regulate the CCAAT/enhancer-binding protein-beta interaction with serum response factor. J Biol Chem 276, 38449-38456. Hareng, L., Meergans, T., von Aulock, S., Volk, H.D., and Hartung, T. (2003). Cyclic AMP increases endogenous granulocyte colony-stimulating factor formation in monocytes and THP-1 macrophages despite attenuated TNF-alpha formation. Eur J Immunol 33, 2287-2296. Hu, J., Roy, S.K., Shapiro, P.S., Rodig, S.R., Reddy, S.P., Platanias, L.C., Schreiber, R.D., and Kalvakolanu, D.V. (2001). ERK1 and ERK2 activate CCAAAT/enhancer-binding protein-beta-dependent gene transcription in response to interferon-gamma. J Biol Chem 276, 287-297. Jiang, B., Xu, S., Hou, X., Pimentel, D.R., Brecher, P., and Cohen, R.A. (2004). Temporal control of NF-kappaB activation by ERK differentially regulates interleukin-1beta-induced gene expression. J Biol Chem 279, 1323-1329. Johnson, G.L., and Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298, 1911-1912. Kamakura, S., Moriguchi, T., and Nishida, E. (1999). Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus. J Biol Chem 274, 26563-26571. Kamio, N., Akifusa, S., Yamaguchi, N., and Yamashita, Y. (2008). Induction of granulocyte colony-stimulating factor by globular adiponectin via the MEK-ERK pathway. Mol Cell Endocrinol 292, 20-25. Kawakami, M., Tsutsumi, H., Kumakawa, T., Abe, H., Hirai, M., Kurosawa, S., Mori, M., and Fukushima, M. (1990). Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76, 1962-1964. Kiehntopf, M., Herrmann, F., and Brach, M.A. (1995). Functional NF-IL6/CCAAT enhancer-binding protein is required for tumor necrosis factor alpha-inducible expression of the granulocyte colony-stimulating factor (CSF), but not the granulocyte/macrophage CSF or interleukin 6 gene in human fibroblasts. J Exp Med 181, 793-798. Lawlor, K.E., Campbell, I.K., Metcalf, D., O'Donnell, K., van Nieuwenhuijze, A., Roberts, A.W., and Wicks, I.P. (2004). Critical role for granulocyte colony-stimulating factor in inflammatory arthritis. Proc Natl Acad Sci U S A 101, 11398-11403. Lawrence, M.C., McGlynn, K., Park, B.H., and Cobb, M.H. (2005). ERK1/2-dependent activation of transcription factors required for acute and chronic effects of glucose on the insulin gene promoter. J Biol Chem 280, 26751-26759. Lawrence, M.C., McGlynn, K., Shao, C., Duan, L., Naziruddin, B., Levy, M.F., and Cobb, M.H. (2008). Chromatin-bound mitogen-activated protein kinases transmit dynamic signals in transcription complexes in beta-cells. Proc Natl Acad Sci U S A 105, 13315-13320. Lee, S., Shuman, J.D., Guszczynski, T., Sakchaisri, K., Sebastian, T., Copeland, T.D., Miller, M., Cohen, M.S., Taunton, J., Smart, R.C., Xiao, Z., Yu, L.R., Veenstra, T.D., and Johnson, P.F. (2010). RSK-mediated phosphorylation in the C/EBP{beta} leucine zipper regulates DNA binding, dimerization, and growth arrest activity. Mol Cell Biol 30, 2621-2635. Lee, S.T., Chu, K., Jung, K.H., Ko, S.Y., Kim, E.H., Sinn, D.I., Lee, Y.S., Lo, E.H., Kim, M., and Roh, J.K. (2005). Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 1058, 120-128. Lidke, D.S., Huang, F., Post, J.N., Rieger, B., Wilsbacher, J., Thomas, J.L., Pouyssegur, J., Jovin, T.M., and Lenormand, P. (2010). ERK nuclear translocation is dimerization-independent but controlled by the rate of phosphorylation. J Biol Chem 285, 3092-3102. Lucas, M., Zhang, X., Prasanna, V., and Mosser, D.M. (2005). ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus. J Immunol 175, 469-477. Lyman, G.H., Kuderer, N.M., and Djulbegovic, B. (2002). Prophylactic granulocyte colony-stimulating factor in patients receiving dose-intensive cancer chemotherapy: a meta-analysis. Am J Med 112, 406-411. Mascia, F., Cataisson, C., Lee, T.C., Threadgill, D., Mariani, V., Amerio, P., Chandrasekhara, C., Souto Adeva, G., Girolomoni, G., Yuspa, S.H., and Pastore, S. (2010). EGFR regulates the expression of keratinocyte-derived granulocyte/macrophage colony-stimulating factor in vitro and in vivo. J Invest Dermatol 130, 682-693. Meng, Z.H., Dyer, K., Billiar, T.R., and Tweardy, D.J. (2000). Distinct effects of systemic infusion of G-CSF vs. IL-6 on lung and liver inflammation and injury in hemorrhagic shock. Shock 14, 41-48. Merchant, J.L., Du, M., and Todisco, A. (1999). Sp1 phosphorylation by Erk 2 stimulates DNA binding. Biochem Biophys Res Commun 254, 454-461. Metcalf, D. (2010). The colony-stimulating factors and cancer. Nat Rev Cancer 10, 425-434. Mukerjee, R., Sawaya, B.E., Khalili, K., and Amini, S. (2007). Association of p65 and C/EBPbeta with HIV-1 LTR modulates transcription of the viral promoter. J Cell Biochem 100, 1210-1216. Muller, M.M., Ruppert, S., Schaffner, W., and Matthias, P. (1988). A cloned octamer transcription factor stimulates transcription from lymphoid-specific promoters in non-B cells. Nature 336, 544-551. Nakamura, H., Ueki, Y., Sakito, S., Matsumoto, K., Yano, M., Miyake, S., Tominaga, T., Tominaga, M., and Eguchi, K. (2000). High serum and synovial fluid granulocyte colony stimulating factor (G-CSF) concentrations in patients with rheumatoid arthritis. Clin Exp Rheumatol 18, 713-718. Nguyen-Jackson, H., Panopoulos, A.D., Zhang, H., Li, H.S., and Watowich, S.S. (2010). STAT3 controls the neutrophil migratory response to CXCR2 ligands by direct activation of G-CSF-induced CXCR2 expression and via modulation of CXCR2 signal transduction. Blood 115, 3354-3363. Nicola, N.A., Metcalf, D., Johnson, G.R., and Burgess, A.W. (1979). Separation of functionally distinct human granulocyte-macrophage colony-stimulating factors. Blood 54, 614-627. Nicola, N.A., Metcalf, D., Matsumoto, M., and Johnson, G.R. (1983). Purification of a factor inducing differentiation in murine myelomonocytic leukemia cells. Identification as granulocyte colony-stimulating factor. J Biol Chem 258, 9017-9023. Nishizawa, M., and Nagata, S. (1990). Regulatory elements responsible for inducible expression of the granulocyte colony-stimulating factor gene in macrophages. Mol Cell Biol 10, 2002-2011. Novak, R., Jacob, E., Haimovich, J., Avni, O., and Melamed, D. (2010). The MAPK/ERK and PI3K pathways additively coordinate the transcription of recombination-activating genes in B lineage cells. J Immunol 185, 3239-3247. Ohori, M. (2008). ERK inhibitors as a potential new therapy for rheumatoid arthritis. Drug News Perspect 21, 245-250. Ohori, M., Takeuchi, M., Maruki, R., Nakajima, H., and Miyake, H. (2007). FR180204, a novel and selective inhibitor of extracellular signal-regulated kinase, ameliorates collagen-induced arthritis in mice. Naunyn Schmiedebergs Arch Pharmacol 374, 311-316. Panopoulos, A.D., and Watowich, S.S. (2008). Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 42, 277-288. Park, B.H., Qiang, L., and Farmer, S.R. (2004). Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes. Mol Cell Biol 24, 8671-8680. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22, 153-183. Pham, T.H., Langmann, S., Schwarzfischer, L., El Chartouni, C., Lichtinger, M., Klug, M., Krause, S.W., and Rehli, M. (2007). CCAAT enhancer-binding protein beta regulates constitutive gene expression during late stages of monocyte to macrophage differentiation. J Biol Chem 282, 21924-21933. Piwien-Pilipuk, G., MacDougald, O., and Schwartz, J. (2002). Dual regulation of phosphorylation and dephosphorylation of C/EBPbeta modulate its transcriptional activation and DNA binding in response to growth hormone. J Biol Chem 277, 44557-44565. Platanias, L.C. (2003). Map kinase signaling pathways and hematologic malignancies. Blood 101, 4667-4679. Putland, R.A., Sassinis, T.A., Harvey, J.S., Diamond, P., Coles, L.S., Brown, C.Y., and Goodall, G.J. (2002). RNA destabilization by the granulocyte colony-stimulating factor stem-loop destabilizing element involves a single stem-loop that promotes deadenylation. Mol Cell Biol 22, 1664-1673. Ramji, D.P., and Foka, P. (2002). CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365, 561-575. Rao, K.M. (2001). MAP kinase activation in macrophages. J Leukoc Biol 69, 3-10. Ray, A., and Ray, B.K. (1995). Lipopolysaccharide-mediated induction of the bovine interleukin-6 gene in monocytes requires both NF-kappa B and C/EBP binding sites. DNA Cell Biol 14, 795-802. Roberts, P.J., and Der, C.J. (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310. Root, R.K., and Dale, D.C. (1999). Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: comparisons and potential for use in the treatment of infections in nonneutropenic patients. J Infect Dis 179 Suppl 2, S342-352. Rossetti, M., Gregori, S., and Roncarolo, M.G. (2010). Granulocyte-colony stimulating factor drives the in vitro differentiation of human dendritic cells that induce anergy in naive T cells. Eur J Immunol 40, 3097-3106. Rutella, S. (2007). Granulocyte colony-stimulating factor for the induction of T-cell tolerance. Transplantation 84, S26-30. Rutella, S., Pierelli, L., Bonanno, G., Sica, S., Ameglio, F., Capoluongo, E., Mariotti, A., Scambia, G., d'Onofrio, G., and Leone, G. (2002). Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells. Blood 100, 2562-2571. Saccani, S., and Natoli, G. (2002). Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev 16, 2219-2224. Schneider, A., Kruger, C., Steigleder, T., Weber, D., Pitzer, C., Laage, R., Aronowski, J., Maurer, M.H., Gassler, N., Mier, W., Hasselblatt, M., Kollmar, R., Schwab, S., Sommer, C., Bach, A., Kuhn, H.G., and Schabitz, W.R. (2005a). The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis. J Clin Invest 115, 2083-2098. Schneider, A., Kuhn, H.G., and Schabitz, W.R. (2005b). A role for G-CSF (granulocyte-colony stimulating factor) in the central nervous system. Cell Cycle 4, 1753-1757. Shannon, M.F., Pell, L.M., Lenardo, M.J., Kuczek, E.S., Occhiodoro, F.S., Dunn, S.M., and Vadas, M.A. (1990). A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes. Mol Cell Biol 10, 2950-2959. Shaw, G., and Kamen, R. (1986). A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46, 659-667. Shuman, J.D., Sebastian, T., Kaldis, P., Copeland, T.D., Zhu, S., Smart, R.C., and Johnson, P.F. (2004). Cell cycle-dependent phosphorylation of C/EBPbeta mediates oncogenic cooperativity between C/EBPbeta and H-RasV12. Mol Cell Biol 24, 7380-7391. Solaroglu, I., Cahill, J., Jadhav, V., and Zhang, J.H. (2006). A novel neuroprotectant granulocyte-colony stimulating factor. Stroke 37, 1123-1128. Spooner, C.J., Sebastian, T., Shuman, J.D., Durairaj, S., Guo, X., Johnson, P.F., and Schwartz, R.C. (2007). C/EBPbeta serine 64, a phosphoacceptor site, has a critical role in LPS-induced IL-6 and MCP-1 transcription. Cytokine 37, 119-127. Su, S.C., Hua, K.F., Lee, H., Chao, L.K., Tan, S.K., Yang, S.F., and Hsu, H.Y. (2006). LTA and LPS mediated activation of protein kinases in the regulation of inflammatory cytokines expression in macrophages. Clin Chim Acta 374, 106-115. Takahashi-Yanaga, F., Shiraishi, F., Hirata, M., Miwa, Y., Morimoto, S., and Sasaguri, T. (2004). Glycogen synthase kinase-3beta is tyrosine-phosphorylated by MEK1 in human skin fibroblasts. Biochem Biophys Res Commun 316, 411-415. Takeda, K., and Akira, S. (2004). TLR signaling pathways. Semin Immunol 16, 3-9. Takeda, K., and Akira, S. (2005). Toll-like receptors in innate immunity. Int Immunol 17, 1-14. Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376. Thiel, M.J., Schaefer, C.J., Lesch, M.E., Mobley, J.L., Dudley, D.T., Tecle, H., Barrett, S.D., Schrier, D.J., and Flory, C.M. (2007). Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. Arthritis Rheum 56, 3347-3357. Verhaeghe, C., Remouchamps, C., Hennuy, B., Vanderplasschen, A., Chariot, A., Tabruyn, S.P., Oury, C., and Bours, V. (2007). Role of IKK and ERK pathways in intrinsic inflammation of cystic fibrosis airways. Biochem Pharmacol 73, 1982-1994. Vicent, G.P., Ballare, C., Nacht, A.S., Clausell, J., Subtil-Rodriguez, A., Quiles, I., Jordan, A., and Beato, M. (2006). Induction of progesterone target genes requires activation of Erk and Msk kinases and phosphorylation of histone H3. Mol Cell 24, 367-381. Vinson, C.R., Sigler, P.B., and McKnight, S.L. (1989). Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246, 911-916. Watari, K., Asano, S., Shirafuji, N., Kodo, H., Ozawa, K., Takaku, F., and Kamachi, S. (1989). Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood 73, 117-122. Welte, K., Gabrilove, J., Bronchud, M.H., Platzer, E., and Morstyn, G. (1996). Filgrastim (r-metHuG-CSF): the first 10 years. Blood 88, 1907-1929. Xiao, Y.Q., Freire-de-Lima, C.G., Schiemann, W.P., Bratton, D.L., Vandivier, R.W., and Henson, P.M. (2008). Transcriptional and translational regulation of TGF-beta production in response to apoptotic cells. J Immunol 181, 3575-3585. Yang, C.M., Luo, S.F., Hsieh, H.L., Chi, P.L., Lin, C.C., Wu, C.C., and Hsiao, L.D. (2010). Interleukin-1beta induces ICAM-1 expression enhancing leukocyte adhesion in human rheumatoid arthritis synovial fibroblasts: involvement of ERK, JNK, AP-1, and NF-kappaB. J Cell Physiol 224, 516-526. Yoon, S., and Seger, R. (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24, 21-44. Zavala, F., Abad, S., Ezine, S., Taupin, V., Masson, A., and Bach, J.F. (2002). G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. J Immunol 168, 2011-2019. Zehorai, E., Yao, Z., Plotnikov, A., and Seger, R. (2010). The subcellular localization of MEK and ERK--a novel nuclear translocation signal (NTS) paves a way to the nucleus. Mol Cell Endocrinol 314, 213-220. Zhang, H.M., Li, L., Papadopoulou, N., Hodgson, G., Evans, E., Galbraith, M., Dear, M., Vougier, S., Saxton, J., and Shaw, P.E. (2008). Mitogen-induced recruitment of ERK and MSK to SRE promoter complexes by ternary complex factor Elk-1. Nucleic Acids Res 36, 2594-2607. Zhang, L., Yang, M., Wang, Q., Liu, M., Liang, Q., Zhang, H., and Xiao, X. (2011). HSF1 regulates expression of G-CSF through the binding element for NF-IL6/CCAAT enhancer binding protein beta. Mol Cell Biochem 352, 11-17. Zwergal, A., Quirling, M., Saugel, B., Huth, K.C., Sydlik, C., Poli, V., Neumeier, D., Ziegler-Heitbrock, H.W., and Brand, K. (2006). C/EBP beta blocks p65 phosphorylation and thereby NF-kappa B-mediated transcription in TNF-tolerant cells. J Immunol 177, 665-672. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24509 | - |
| dc.description.abstract | 顆粒性白血球群落刺激因子(Granulocyte-colony stimulating factor, G-CSF)是一個造血性醣蛋白,分子量約19.6 kDa。G-CSF最主要的功能,是刺激嗜中性白血球前驅細胞的分化,並促進嗜中性白血球的產生,往發炎部位聚集以吞噬外來病菌,以及降低嗜中性白血球細胞凋亡促進其存活。G-CSF在正常狀況下表現量極低,但當生物體接受外物如:LPS (lipopolysaccharide)、PMA (phorbol 12-myristate 13-acetate)或是其他發炎反應細胞激素TNF-alpha、IL-1beta和IFN-gamma等刺激後,會大幅提高其表現。近年研究顯示,G-CSF也具有其他生理功能,例如:保護神經、調節T淋巴球的耐受性、促進造血幹細胞由骨髓移動至周邊血液循環系統等。除此之外,近年一些研究顯示G-CSF在慢性發炎疾病中也扮演重要角色。ERK已知可調控許多發炎反應細胞激素的表現,如:TNF-alpha、IL-1beta、IL-6、IL-8、IFN-gamma誘導基因,並影響免疫細胞的分化,由此可知ERK對免疫系統的調節非常重要。本實驗室過去研究發現LPS可誘導小鼠巨噬細胞RAW264.7 G-CSF表現,事先處理MEK/ERK抑制劑U0126和PD98059會抑制LPS誘導的G-CSF表現,但ERK調節G-CSF表現的機制目前仍不清楚。因此,我們想更進一步探討ERK如何參與LPS誘導小鼠巨噬細胞表現G-CSF的機制。
我們的研究發現,不論是在LPS刺激細胞前,或在LPS刺激細胞三到四小時後給予U0126,皆可抑制RAW264.7細胞G-CSF的表現,相同的現象也可在小鼠骨髓分離出的初代巨噬細胞和人類單核球細胞株中觀察到。我們更利用luciferase reporter分析探討ERK是否活化G-CSF啟動子來調節G-CSF表現,結果顯示當細胞表現了constitutive active-ERK (CA-ERK)時,可活化G-CSF啟動子活性,而kinase dead-ERK (KD-ERK)則無此活性,由此可知ERK參與調控G-CSF的表現。文獻指出Oct-2、NF-kappaB和C/EBPbeta在調控G-CSF表現扮演重要角色,因此我們分析ERK是透過活化那一個轉錄因子增強G-CSF啟動子的。由G-CSF promoter luciferase活性分析顯示,同時轉染CA-ERK與C/EBPbeta時,G-CSF啟動子活性明顯提高,且兩者有協同作用;但同時轉染KD-ERK與C/EBPbeta時則無此現象。由於NF-kB具有p50和p65兩個subunits,我們也在細胞中同時表現p65,觀察其對CA-ERK與C/EBPbeta調控G-CSF啟動子活性的影響發現,p65存在時對G-CSF啟動子活性提升並無明顯影響。此外在細胞中表現CA-MEK也可活化G-CSF啟動子活性,而同時表現CA-MEK與C/EBPbeta時可更加提升G-CSF啟動子活性。這些結果顯示MEK/ERK signaling pathway在調控G-CSF表現扮演重要角色。 我們進一步將C/EBPbeta中高度保留的MAPK磷酸化位置(Thr188)進行突變後,由G-CSF promoter luciferase活性分析發現,ERK可藉由磷酸化C/EBPbeta Thr188來影響G-CSF啟動子活性。接著分析細胞受LPS刺激後增加ERK與C/EBPbeta磷酸化,U0126則會減少C/EBPbeta Thr188磷酸化。此外DNA親和力免疫沉澱分析(DAPA)的結果顯示ERK存在於G-CSF啟動子的transcription complex中。然而,若將C/EBPbeta的結合阻斷時,並不影響ERK存在於G-CSF啟動子transcription complex中,因此ERK並不是透過C/EBPbeta存在於transcription complex中。綜合以上結果,ERK確實參與LPS誘導的G-CSF基因表現調控,然而ERK活化G-CSF啟動子活性有部分是透過活化C/EBPbeta。因此,關於ERK在G-CSF啟動子的轉錄活化與G-CSF基因表現所扮演的角色仍需更進一步的研究。 | zh_TW |
| dc.description.abstract | Granulocyte colony-stimulating factor (G-CSF) is a 19.6 kDa hematopoietic glycoprotein growth factor. The main functions of G-CSF are to stimulate differentiation of neutrophilic precursors and promote neutrophil production, migration, and survival. The expression level of G-CSF is very low in healthy individuals, but it is elevated substantially after stimulation with LPS, PMA, or pro-inflammatory cytokines such as TNF-alpha, IL-1beta, and IFN-gamma. Expression of G-CSF after stimulation will promote immune response and is important for host defense during infection. Studies also showed that G-CSF has other physiological roles, such as neuroprotection, regulation of T cell tolerance, and promotion of hematopoietic stem cell migration to peripheral tissues. On the other hand, recent studies also showed that G-CSF plays an important role in chronic inflammatory diseases. ERK1/2 is one of the mitogen activated protein kinases (MAPK). It involves in the expression of many pro-inflammatory cytokines, such as TNF-alpha, IL-1beta, IL-6, IL-8, and IFN-gamma-stimulated gene. Studies also showed that ERK1/2 affect the differentiation of immune cell such as B and T lymphocytes. Above information indicates that ERK plays an important role in regulation of immune system. Our previous studies showed that the expression of G-CSF is upregulated by LPS in RAW264.7 cells; while pretreatment with MEK inhibitors (U0126 and PD98059) inhibited the LPS-induced G-CSF expression. However, it is still unclear how ERK may regulate G-CSF expression in LPS-induced cells. Therefore, the goal of this study is to explore the involvement of ERK1/2 in LPS induced G-CSF expression.
First, U0126 and PD98059 were used to inhibit MEK1/2 activity induced by LPS. The expression of G-CSF was down-regulated by ERK inhibitors at 3-4h after the cells were stimulated by LPS in Raw264.7 cells. Similar phenomena were observed in mouse bone-marrow derived macrophages and in human monocytic cell line THP-1. We then studied how ERK interacts with transcription factors that regulate G-CSF expression by co-transfecting a G-CSF promoter-Luciferase reporter with a constitutive active- or kinase dead-ERK expression plasmid in Raw264.7 cells. Results show that G-CSF promoter activity is activated when forced expression of CA-ERK, but is not activated when forced expression of KD-ERK. These results support that ERK is involved in the regulation of G-CSF expression. We then studied which transcription factor interacts with ERK by transfection of NF-kappaB p50, p65, Oct-2, C/EBPbeta and/or CA-ERK with the G-CSF promoter-Luciferase construct. Results show that G-CSF promoter activity is induced synergistically only when C/EBPbeta and CA-ERK were co-transfected. Transfection of CA-MEK also results in elevation of G-CSF promoter activity. Moreover, co-transfection of C/EBPbeta and CA-MEK further elevates G-CSF promoter activity. These results further support that activation of MEK/ERK signaling pathway is essential for the expression of G-CSF in macrophages. To further study whether ERK activates G-CSF promoter activity through promoting C/EBPbeta phosphorylation, we constructed two C/EBPbeta mutants (C/EBPbeta T188A and S64A) and transfected cells with these mutants with CA-ERK separately. Results show that transfection with C/EBPbeta T188A resulted in about 50 % decrease of G-CSF promoter activity, but transfection with C/EBPbeta S64A has no effect on promoter activity. Western blot analyses also show that C/EBPbeta Thr188 phosphorylation is partially inhibited by U0126 in LPS-treated cells. Moreover, ERK can be precipitated by a DNA affinity precipitation assay. These results suggest that ERK is in the transcriptional complex that binds to G-CSF promoter. However, ERK still bound to G-CSF promoter when the binding of C/EBPbeta was competed out by C/EBPbeta consensus sequence. These results suggest that ERK does not bind to the transcriptional complex through interaction with C/EBPbeta. Taken together, our results show that activation of ERK is essential for G-CSF expression induced by LPS; however, the functional role of ERK in the transcriptional activation of G-CSF is still unclear and requires further investigation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:28:50Z (GMT). No. of bitstreams: 1 ntu-100-R98442011-1.pdf: 3262469 bytes, checksum: 5e575578b0d42ea790cebb0a14244eb1 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘 要 xi
Abstract xiii 名詞縮寫對照表 xvi 第一章 緒論 1 第一節 文獻回顧 2 研究動機與實驗目的 14 第二章 材料與方法 15 第一節 實驗材料 16 第二節 細胞培養 17 第三節 細胞mRNA表現分析 18 第四節 分泌性蛋白質G-CSF表現量分析:Enzyme-Linked ImmunoSorbent Assay (ELISA) 21 第五節 以西方點墨法分析細胞內蛋白質之表現 22 第六節 3XFLAG mC/EBPbeta S64A表現質體之建構 26 第七節 以luciferase assay進行小鼠之G-CSF promoter活性分析 30 第八節 DNA親和力沉澱分析法(DNA affinity precipitation assay, DAPA)分析ERK與RAW264.7細胞中G-CSF promoter的結合情形 33 第九節 以MTT assay測定U0126和PD98059對RAW264.7細胞的毒殺性 34 第十節 資料統計分析 35 第三章 實驗結果 36 第一節 探討MEK/ERKpathway的持續活化與LPS誘導G-CSF基因表現之關係 37 第二節 MEK/ERK pathway的活化以及與轉錄因子C/EBPbeta的影響G-CSF啟動子活性具有協同作用 39 第三節 ERK對於C/EBPbeta threonine 188的磷酸化與否影響G-CSF啟動子活性 41 第四節 探討U0126抑制ERK的活化對C/EBPbeta threonine 188磷酸化的影響 42 第五節 探討在LPS刺激後,ERK進入細胞核調控G-CSF基因轉錄的機制 42 第四章 討論 45 第一節 MEK/ERK pathway的活化影響LPS誘導的巨噬細胞G-CSF的表現 46 第二節 MEK/ERK pathway與轉錄因子C/EBPbeta影響G-CSF啟動子活性具有協同作用 47 第三節 ERK活化促進G-CSF基因轉錄活性並非完全透過影響C/EBPbeta的轉錄因子活性 48 第四節 ERK對於G-CSF基因轉錄的調控機制探討 50 第五節 MEK/ERK抑制劑應用於臨床治療慢性發炎疾病之評估 51 第六節 總結 53 第五章 圖表 55 參考文獻 84 附錄 101 圖 目 錄 Figure 1. LPS-induced G-CSF mRNA expression is inhibited by MEK1/2 inhibitor U0126 before or after LPS stimulation in RAW264.7 macrophages. 56 Figure 2. U0126, MEK1/2 inhibitor, inhibits G-CSF mRNA expression after LPS stimulation in a time-dependent manner in RAW264.7 macrophages. 57 Figure 3. LPS-induced increase in G-CSF mRNA expression was inhibited by MEK1 inhibitor PD98059 in a dose-dependent manner in RAW264.7 macrophages. 58 Figure 4. MEK1 inhibitor PD98059 inhibits LPS-induced G-CSF protein secretion in a dose-dependent manner in RAW264.7 macrophages. 59 Figure 5. MEK1 inhibitor PD98059 inhibits G-CSF mRNA expression after LPS stimulation in a time-dependent manner in RAW264.7 macrophages. 60 Figure 6. Cytotoxicity of U0126 and PD98059 on LPS-induced RAW264.7 macrophages. 62 Figure 7. MEK1/2 inhibitor U0126 inhibits LPS-induced G-CSF mRNA expression in a dose-dependent manner in mouse bone marrow-derived macrophages (BMDMs). 63 Figure 8. MEK1 inhibitor PD98059 inhibits LPS-induced G-CSF mRNA expression in a dose-dependent manner in mouse bone marrow-derived macrophages (BMDMs). 64 Figure 9. LPS-induced G-CSF mRNA expression is inhibited by MEK1/2 inhibitor U0126 before or after LPS stimulation in human monocytic cell line THP-1. 65 Figure 10. MEK1/2 inhibitor U0126 but not p38 inhibitor SB203580 inhibits LPS-induced G-CSF mRNA expression after LPS stimulation in THP-1. 66 Figure 11. Constitutive active ERK activates G-CSF promoter activity in a dose-dependent manner. 67 Figure 12. Co-transfection with CA-ERK and C/EBPbeta increase G-CSF promoter activity. 68 Figure 13. CA-ERK but not KD-ERK cotransfection with p50, Oct-2, and C/EBPbeta activates G-CSF promoter activity in a dose-dependent manner. 69 Figure 14. p65 cotransfection with CA-ERK, C/EBPbeta, p50, and Oct-2 doesn’t further activate G-CSF promoter activity. 70 Figure 15. MEK activates G-CSF promoter activity in a dose-dependent manner. 71 Figure 16. CA-MEK cotransfection with C/EBPbeta activates G-CSF promoter activity in a dose-dependent manner. 72 Figure 17. The wild type and different mutant forms of C/EBPbeta coding sequence were cloned into the p3XFLAG-Myc-CMV expression vector. 73 Figure 18. C/EBPbeta threonine 188 is important in the interaction with ERK to activate G-CSF promoter activity. 74 Figure 19. MEK1/2 inhibitor U0126 inhibits LPS-induced phosphorylation of ERK in RAW264.7 macrophages. 76 Figure 20. MEK1/2 inhibitor U0126 decreases LPS-induced phosphorylation of C/EBPbeta in RAW264.7 macrophages. 77 Figure 21. LPS treatment increases the level of phosphor-ERK and U0126 decreases level of phosphor-ERK in nucleus in RAW264.7 macrophages. 78 Figure 22. Binding of ERK and C/EBPbeta to the biotin-labeled G-CSF promoter probe containing NF-kB and C/EBPb element. 79 Figure 23. The binding of ERK on G-CSF promoter is influenced by the existence of G-CSF promoter (-202 to -163) competitor. 81 表 目 錄 Table 1. RT-PCR之primers. 82 Table 2. 建構mouse C/EBPbeta serine 64單點突變表現質體之primers. 82 Table 3. Biotinylated probe and G-CSF promoter competitor oligonucleotides. 83 Table 4. C/EBPbeta, NF-kappaB, Sp1 consensus sequences. 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 顆粒性白血球群落刺激因子 | zh_TW |
| dc.subject | 基因轉錄調控 | zh_TW |
| dc.subject | ERK | zh_TW |
| dc.subject | C/EBPbeta | zh_TW |
| dc.subject | MEK/ERK抑制劑U0126和PD98059 | zh_TW |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | G-CSF | en |
| dc.subject | U0126 | en |
| dc.subject | PD98059 | en |
| dc.subject | Macrophage | en |
| dc.subject | C/EBPbeta | en |
| dc.subject | ERK | en |
| dc.subject | gene transcription regulation | en |
| dc.title | MEK-ERK-C/EBPbeta在巨噬細胞中對脂多醣誘導G-CSF表現的必要角色 | zh_TW |
| dc.title | Essential Role of MEK-ERK-C/EBPbeta in LPS-induced G-CSF Expression in Macrophages | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余明俊,繆希椿,張淑芬 | |
| dc.subject.keyword | 顆粒性白血球群落刺激因子,巨噬細胞,ERK,C/EBPbeta,基因轉錄調控,MEK/ERK抑制劑U0126和PD98059, | zh_TW |
| dc.subject.keyword | C/EBPbeta,ERK,G-CSF,gene transcription regulation,Macrophage,PD98059,U0126, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
