請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24488完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳美玲 | |
| dc.contributor.author | Meng-Jung Lee | en |
| dc.contributor.author | 李孟容 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:27:58Z | - |
| dc.date.copyright | 2005-07-20 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-12 | |
| dc.identifier.citation | al-Mohanna FA, Caddy KW, Bolsover SR. (1994) The nucleus is insulated from large cytosolic calcium ion changes. Nature. 367(6465):745-50.
Arends MJ, Morris RG, Wyllie AH. (1990) Apoptosis. The role of the endonuclease. Am J Pathol. 136(3):593-608. Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B. (1997) Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol. 136(4):833-44. Basu DK, Karmazyn M. (1987) Injury to rat hearts produced by an exogenous free radical generating system. Study into the role of arachidonic acid and eicosanoids. J Pharmacol Exp Ther. 242(2):673-85. Beal MF. (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol. 38(3):357-66. Bendahhou S, Cummins TR, Agnew WS. (1997) Mechanism of modulation of the voltage-gated and cardiac muscle sodium channels by fatty acids. Am Physiol. 272(4 pt1):C592-600. Boitier E, Rea R, Duchen MR. (1999) Mitochondria exert a negative feedback on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. J Cell Biol. 145(4):795-808 Bragadin M, Pozzan T, Azzone GF. (1979) Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry. 18(26):5972-8. Brini M, Marsault R, Bastianutto C, Pozzan T, Rizzuto R. (1994) Nuclear targeting of aequorin. A new approach for measuring nuclear Ca2+ concentration in intact cells. Cell Calcium. 16(4):259-68 Buckman JF, Reynolds IJ. (2001) Spontaneous changes in mitochondrial membrane potential in cultured neurons. J Neurosci. 21(14):5054-65. Buja LM, Entman ML. (1998) Modes of myocardial cell injury and cell death in ischemic heart disease. Circulation. 98(14):1355-7. Cain K, Bratton SB, Cohen GM. (2002) The Apaf-1 apoptosome: a large caspase-activating complex. Biochimie. 84(2-3):203-14. Cavalli LR, Liang BC. (1998) Mutagenesis, tumorigenicity, and apoptosis: are the mitochondria involved? Mutat Res. 398(1-2): 19-26. Chai J. (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 406(6798): 855-62. Chien KR, Abrams J, Pfau RG, Farber JL. (1978) Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem. 253:4809-17. Chien KR, Han A, Sen A, Buja LM, Willerson JT. (1984) Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res. 54(3):313-22. Collins TJ, Lipp P, Berridge MJ, Bootman MD. (2001) Mitochondrial Ca2+ uptake depends on the spatial and temporal profile of cytosolic Ca2+ signals. J Biol Chem. 276(28):26411-20. Colombini M, Blachly-Dyson E, Forte M. (1996) VDAC, a channel in the outer mitochondrial membrane. Ion Channels. 4:169-202. Crompton M. (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J. 341( Pt 2):233-49. Damron DS, Bond M. (1993) Modulation of Ca2+ cycling in cardiac myocytes by arachidonic acid. Circ Res. 72(2):376-86. Desagher S, Martinou JC. (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol. 10(9): 369-77. Dettbarn C, Palade P. (1993) Arachidonic acid-induced Ca2+ release from isolated sarcoplasmic reticulum. Biochem Pharmacol. 45(6):1301-9. Devor DC, Frizzell RA. (1998) Modulation of K+ channels by arachidonic acid an T84 cells. Inhibition of the Ca2+-dependent K+ channel. Am J Physiol. 274(1Pt1):C138-48. Ding WX, Shen HM, Ong CN. (2001) Pivotal role of mitochondrial Ca2+ in microcystin-induced mitochondrial permeability transition in rat hepatocytes. Biochem Biophys Res Commun. 285:1155-61. Duchen MR, Leyssens A, Crompton M. (1998) Transient mitochondrial depolarizations reflect focal sarcoplasmic reticular calcium release in single rat cardiomyocytes. J Cell Biol. 142(4):975-88. Dumont EA, Hofstra L, van Heerde WL, van den Eijnde S, Doevendans PA, DeMuinck E, Daemen MA, Smits JF, Frederik P, Wellens HJ, Daemen MJ, Reutelingsperger CP. (2000) Cardiomyocyte death induced by myocardial ischemia and reperfusion: measurement with recombinant human annexin-V in a mouse model. Circulation. 102(13):1564-8. Evan G, Littlewood T. (1998) A matter of life and cell death. Science. 281(5381):1317-22. Exton JH. (1994) Messenger molecules derived from membrane lipids. Curr Opin Cell Biol. 6(2):226-9. Ferri KF, Kroemer G. (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol. 3(11):E255-63. Ferrari R. (1994) Oxygen-free radicals at myocardial level: effects of ischaemia and reperfusion. Adv Exp Med Biol. 366:99-111. Fleckenstein A, Janke J, Doring HJ, Leder O. (1974) Myocardial fiber necrosis due to intracellular Ca overload-a new principle in cardiac pathophysiology. Recent Adv Stud Cardiac Struct Metab. 4:563-80. Formigli L, Papucci L, Tani A, Schiavone N, Tempestini A, Orlandini GE, Capaccioli S, Orlandini SZ. (2000) Aponecrosis: morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J Cell Physiol. 182(1):41-9. Fraser DD, Hoehh K, Weiss S, MacVicar BA. (1993) Arachidonic acid inhibits sodium currents and synaptic transmission in cultured striatal neurons. Neuron. 11:633-44. Gincel D, Zaid H, Shoshan-Barmatz V. (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J. 358(Pt1):147-55. Glatzs JF, van der Vusse GJ. (1996) Cellular fatty acid-binding proteins: their function and physiological significance. Prog Lipid Res. 35:243-82. Glatzs JF, Vork MM, van der Vusse GJ. (1993) Significance of cytoplamic fatty acid-binding protein for ischemic heart. Mol Cell Biochem. 123:167-73. Gogvadze V, Robertson JD, Zhivotovsky B, Orrenius S. (2001). Cytochrome c release occurs via Ca-dependent and Ca-independent mechanisms that are regulated by Bax. J Biol Chem. 276:19066-71. Goldberg EM, Zidovetzki R. (1997) Effects of dipalmitoylglycerol and fatty acids on membrane structure and protein kinase C activity. Biophys J. 73(5):2603-14. Graier WF, Simecek S, Sturek M. (1995) Cytochrome P450 mono–oxygenase– regulated signalling of Ca2+ entry in human and bovine endothelial cells. J Physiol. 482(Pt2):259-74. Green DR, Reed JC. (1998) Mitochondria and apoptosis. Science. 281(5381):1309-12. Griffiths EJ. (2000) Use of ruthenium red as an inhibitor of mitochondrial Ca2+ uptake in single rat cardiomyocytes. FEBS Lett. 486(3):257-60. Gunter TE. (1994) Cation transport by mitochondria. J Bioenerg Biomembr. 26(5):465-9. Gunter TE, Pfeiffer DR. (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol. 258(5Pt1):C755-86. Guroff G. (1964) A neutral calcium-activated proteinase from the soluble fraction of rat brain. J Biol Chem. 239:149-55. Halliwell B, Gutteridge JM. (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 219(1):1-14. Hansford RG. (1994) Physiological role of mitochondrial Ca2+ transport. J Bioenerg Biomembr. 26(5):495-508. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, Yamada H, Shimizu S, Mori E, Kudoh J, Shimizu N, Kurose H, Okada Y, Imoto K, Mori Y. (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell. 9(1):163-73. Herrington J, Park YB, Babcock DF, Hille B. (1996) Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron. 16(1):219-28. Hetts SW. (1998) To die or not to die: an overview of apoptosis and its role in disease. JAMA. 279(4):300-7. Hill K, McNulty S, Randall AD (2004) Inhibition of TRPM2 channels by the antifungal agents clotrimazole and econazole. Naunyn Schmiedebergs Arch Pharmacol. 370(4):227-37. Hillered L, Chan PH. (1988) Effects of arachidonic acid on respiratory activities in isolated brain mitochondria. J Neurosci Res. 19(1):94-100. Hirsh PD, Hillis LD, Campbell WB, Firth BG, Willerson JT. (1981) Release of prostaglandins and thromboxane into the coronary circulation in patients with ischemic heart disease. N Engl J Med. 304(12):685-91. Hool LC, Arthur PG. Decreasing cellular hydrogen peroxide with catalase mimics the effects of hypoxia on the sensitivity of the L-type Ca2+ channel to beta-adrenergic receptor stimulation in cardiac myocytes. Circ Res. 91(7):601-9. Hong JR, Lin TL, Hsu YL, Wu JL. (1998) Apoptosis precedes necrosis of fish cell line with infectious pancreatic necrosis virus infection. Virology. 250(1): 76-84. Hostetler KY, Hall LB. (1980) Phospholipase C activity of rat tissues. Biochem Biophys Res Commun. 96(1):388-93. Huang C, Li J, Ke Q, Leonard SS, Jiang BH, Zhong XS, Costa M, Castranova V, Shi X. (2002) Ultraviolet-induced phosphorylation of p70S6K at Thr389 and Thr421/Ser424 involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C. Cancer Res. 62(20):5689-97. Huang Y, Wang KK. (2001) The calpain family and human disease. Trends Mol Med. 7:355-62 Hunton DL, Zou LY, Pang Y, Marchase RB. (2004) Adult rat cardiomyocytes exhibit capacitative calcium entry. Am J Physiol Heart Circ Physiol. 286: H1124-32. John JL, Anna LN. (2001) Mitochondria in Pathogenesis. pp. 153-175. Karmazyn M. (1989) Synthesis and relevance of cardiac eicosanoids with particular emphasis on ischemia and reperfusion. Can J Physiol Pharmacol. 67:912-21. Katsuki H, Okuda S. (1995) Arachidonmic acid as a neurotoxic and neurotrophic substance. Prog Neurobiol. 46:607-36. Katz AM, Messineo FC. (1981) Lipid-membrane interactions and the pathogenesis of ischemic damage in myocardium. Circ Res. 48:1-16. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, and Poirier GG. (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 53:3976-85. Kirichok Y, Krapivinsky G, Clapham DE. (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 427(6972):360-4. Kuwashima J, Fujitani B, Nakamura K, Kadokawa T, Yoshida K. (1976) Biochemical changes in unilateral brain injury in the rat: A possible role of free fatty acid accumulation. Brain Res. 110(3):547-57. Lawrie AM, Rizzuto R, Pozzan T, Simpson AW. (1996) A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. Journal of Biological Chemistry. 271(18):10753-9. Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med. 185(8):1481-6. Lemasters JJ. (1999) V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol. 276:G1-6. Levin S, Bucci TJ, Cohen SM, Fix AS, Hardisty JF, LeGrand EK, Maronpot RR, Trump BF. (1999) The nomenclature of cell death: recommendations of an ad hoc Committee of the Society of Toxicologic Pathologists. Toxicol Pathol. 27(4):484-90. L’hirondel M, Cheramy A, Godeheu G, Glowinski J. (1995) Effects of arachidonic acid on dopamine synthesis, spontaneous release, and uptake in striatal synaotosomes from the rat. J Neurochem. 64:1406-9. Liu X, Harriman JF, Schnellmann RG. (2002) Cytoprotective properties of novel nonpeptide calpain inhibitors in renal cells. J Pharmacol Exp Ther. 302(1):88-94. Liu X, Rainey JJ, Harriman JF, Schnellmann RG. (2001) Calpains mediate acute renal cell death: role of autolysis and translocation. Am J Physiol Renal Physiol. 281(4):F728-38. Loew LM, Tuft RA, Carrington W, Fay FS. (1993) Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J. 65(6):2396-407. Lorenzo HK, Susin SA, Penninger J, Kroemer G. (1999) Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 6(6):516-24. Lynch MA, Errington ML, Bliss TV. (1989) Nordihydroguaiaretic acid blocks the synaptic component of long-term potentiation and the associated increases in release of glutamate and arachidonate: an in vivo study in the dentate gyrus of the rat. Neuroscience. 30(3):693-701. Majno G. and Joris I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 146(1): 3-15. Martinou I, Fernandez PA, Missotten M, White E, Allet B, Sadoul R, Martinou JC. (1995) Viral proteins E1B19K and p35 protect sympathetic neurons from cell death induced by NGF deprivation. J Cell Biol. 128(1-2):201-8. Matlib MA, Zhou Z, Knight S, Ahmed S, Choi KM, Krause-Bauer J, Phillips R, Altschuld R, Katsube Y, Sperelakis N, Bers DM. (1998) Oxygen-bridged dinuclear ruthenium amine complex specifically inhibits Ca2+ uptake into mitochondria in vitro and in situ in single cardiac myocytes. J Biol Chem. 273(17):10223-31. Matsumura Y, Saeki E, Otsu K, Morita T, Takeda H. (2001) Intracellular calcium level required for calpain activation in a single myocardial cell. J Mol Cell Cardiol. 33:1133-42. McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ. (2003) Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem. 278(13):11002-6. Meldrum DR, Dinarello CA, Cleveland JC, Cain BS, Shames BD, Meng X, Harken AH. (1998) Hydrogen peroxide induces tumor necrosis factor α-meiated cardiac injury by a p38 mitogen-activated protein kinase-dependent mechanism. Surgery. 124: 291-7 Mehta JL. (1985) Influence of calcium-channel blockers on platet function and arachidonic acid metabolism. Am J Cardiol. 55(3):158B-164B. Meves H. (1994) Modulation of ion channels by arachidonic acid. Prog Neurobiol. 43(2):175-86. Moreno-Manzano V, Ishikawa Y, Lucio-Cazana J, Kitamura M. (2000) Selective involvement of superoxide anion, but not downstream compounds hydrogen peroxide and peroxynitrite, in tumor necrosis factor-alpha-induced apoptosis of rat mesangial cells. J Biol Chem. 275:12684-91. Needleman P, Kulkarni PS, Raz A. (1977) Coronary tone modulation: formation and actions of prostaglandins, endoperoxides, and thromboxanes. Science. 195(4276): 409-12. Nicholls DG. (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J. 176(2):463-74. Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. (1996) J Biol Chem. 271(4):2185-92. Nicotera P, Leist M, Ferrando-May E. (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett. 102-103:139-42. Nilius B, Vriens J, Prenen J, Droogmans G, Voets T. (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol. 286(2):C195-205. Ohno M, Takemura G, Ohno A, Misao J, Hayakawa Y, Minatoguchi S, Fujiwara T, Fujiwara H. (1998) 'Apoptotic' myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: analysis by immunogold electron microscopy combined with In situ nick end-labeling. Circulation. 98(14):1422-30. Okuda S, Saito H, Katsuki H. (1994) Arachidonic acid: toxic and trophic effecta on cultures hippocampal neurons. Neuroscience. 63:691-9. Pacher P, Liaudet L, Soriano FG, Mabley J, Szabo E, and Szabo C. (2002) The Role of poly(ADP-ribose) polymerase in the development of myocardial and endothelial dysfunction in diabetes mellitus. Diabetes. 51:514-21. Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G. (1996) Mitochondria and programmed cell death: back to the future. FEBS Lett. 396(1):7-13. Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F. (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J. 76(2):725-34. Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F. (2001) The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem. 276(15):12030-4. Piomelli D, Wang JK, Nairn AC, Czernik,AJ, Greengard P. (1989) Inhibition of Ca2+/calmodulin-dependent protein kinase Ⅱ by arachidonic acid and its metabolites. Proc Natn Acad Sci. 86:8550-4. Popescu BO, Cedazo-Minguez A, Benedikz E, Nishimura T, Winblad B, Ankarcrona M, Cowburn RF. (2004) Gamma-secretase activity of presenilin 1 regulates acetylcholine muscarinic receptor-mediated signal transduction. J Biol Chem. 279(8):6455-64. Puig-Parellada P, Sanchez J, Carbonell L. (1991) Role of oxygen free radicals in respiratory distress induced by arachidonic acid in the rat. Free Radical Res Commun. 12-13 (Pt2):633-8. Rapoport SI, Purdon D, Shetty HU, Grange E, Smith Q, Jones C, Chang MC. (1997) In vivo imaging of fatty acid incorporation into brain to examine signal transduction and neuroplasticity involving phospholipids. Ann N Y Acad Sci. 820:56-73. Rauen U, Petrat F, Sustmann R, de Groot H. (2004) Iron-induced mitochondrial permeability transition in cultured hepatocytes. J Hepatol. 40:607-15. Rizzuto R, Bernardi P, Pozzan T. (2000) Mitochondria as all-round players of the calcium game. J Physiol. 529 (Pt1):37-47. Rizzuto R, Brini M, Murgia M, Pozzan T. (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science. 262(5134):744-7. Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft RA, Pozzan T. (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science. 280(5370):1763-6. Rotman EI, Brostrom MA, Brostrom CO. (1992) Inhibition of protein synthesis in intact mammalian cells by arachidonic acid. Biochem J. 282:487-94. Saido TC, Sorimachi H, Suzuki K. (1994) Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 8:814-22. Simpson PB, Russell JT. (1998) Mitochondrial Ca2+ uptake and release influence metabotropic and ionotropic cytosolic Ca2+ responses in rat oligodendrocyte progenitors. J Physiol. 508(Pt2):413-26. Siwik DA, Tzortzis JD, Pimental DR, Chang DL, Pagano PJ, Singh K, Sawyer DB, Colucci WS. (1999) Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res 85:147-53. Sorimachi H, Ishiura S, Suzuki K. (1997) Structure and physiological function of calpains. Biochem J. 328:721-32. Sparagna GC, Gunter KK, Sheu SS, Gunter TE. (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem. 270(46):27510-5. Surette ME, Fonteh AN, Bernatchez C, Chilton FH. (1999) Perturbations in the control of cellular arachidonic acid levels block cell growth and induce apoptosis in HL-60 cells. Carcinogenesis. 20(5):757-63. Tewari M, Quan LT, O’Rourke K, Desnoyers S, Zeng Z, Beidler DR, Poirier GG, Salvesen GS, and Dixit VM (1995) Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADPribose) polymerase. Cell. 81:801-9. Thompson CB. (1995) Apoptosis in the pathogenesis and treatment of disease. Science. 267(5203):1456-62. Van Bilsen M, Van der Vusse GJ. (1995) Phospholipase-A2-dependent signalling in the heart. Cardiovasc Res. 30(4):518-29. Van der Vusse GJ, Glatz JF, Stam HC, Reneman RS. (1992) Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev. 72(4):881-940. Van der Zee L, Nelemans A, den Hertog A. (1995) Arachidonic acid is functioning as a second messenger in activating the Ca2+ entry process on H1-histaminoceptor stimulation in DDT1 MF-2 cells. Biochem J. 305 ( Pt 3):859-64. Van Lookeren Campagne M, Gill R. (1996) Ultrastructural morphological changes are not characteristic of apoptotic cell death following focal cerebral ischaemia in the rat. Neurosci Lett. 213(2):111-4. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B. (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci. 101(1):396-401. Wang HJ, Guay G, Pogan L, Sauve R, Nabi IR. (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol. 150(6):1489-98. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 424(6947):434-8. Weglicki WB, Owens K, Urschel CW, Serur JR, Sonnenblick EH. (1973) Hydrolysis of myocardial lipids during acidosis and ischemia. Recent Adv Stud Cardiac Struct Metab. 3:781-93. Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, Luckhoff A (2002) Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem. 277(26):23150-6. Wertheimer SJ, Myers CL, Wallace RW, Parks TP. (1992) Intercellular adhesion molecule-1 gene expression in human endothelial cells. Differential regulation by tumor necrosis factor-alpha and phorbol myristate acetate. J Biol Chem. 267(17):12030-5. Williams EJ, Walsh FS, Doherty P. (1994) The production of arachidonic acid can account for calcium channel activation in the second messenger pathway underlying neurite outgrowth stimulated by NCAM, N-cadherin, and L1. J Neurochem. 62(3):1231-4. Williams JH, Errington ML, Lynch MA, Bliss TV. (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature. 341(6244):739-42. Wolfe LS. (1982) Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J Neurochem. 38(1):1-14. Wyllie AH, Kerr JF, Currie AR. (1980) Cell death: the significance of apoptosis. Int Rev Cytol. 68:251-306. Xie YW, Wolin MS. (1996) Role of nitric oxide and its interaction with superoxide in the suppression of cardiac muscle mitochondrial respiration. Involvement in response to hypoxia/reoxygenation. Circulation. 94: 2580-6. Yang KT, Pan SF, Chien CL, Hsu SM, Tseng YZ, Wang SM, Wu ML. (2004) Mitochondrial Na+ overload is caused by oxidative stress and leads to activation of the caspase 3-dependent apoptotic machinery. FASEB. 18(12):1442-4. Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G. (1997) Mitochondrial implication in accidental and programmed cell death: apoptosis and necrosis. J Bioenerg Biomembr. 29(2):185-93. Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med. 192(7):1001-14. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24488 | - |
| dc.description.abstract | 花生四烯酸(Arachidonic acid;AA)對於細胞的生理功能有相當廣泛的影響。除可做為類二十碳酸(eicosanoids)之前趨物質外,AA亦可直接或者間接地藉由其下游代謝產物來影響細胞膜上的離子通道、活化PKC(protein kinase C)、抑制細胞內蛋白質的合成。細胞內平時有良好的調控機制可將AA維持在適當的濃度。然而,在細胞遭受缺血性傷害(ischemia)時,會活化PLC (phospholipase C)及PLA2(phospholipase A2),且此時ATP的生成減少,使酯化作用受阻,於是AA聚集而促使大量自由基產生,進而對細胞造成傷害。細胞質鈣離子的過度負荷 (calcium overload)是當心肌細胞受到缺血性傷害時會產生的重要現象。在缺血性傷害時,細胞質及粒線體的鈣離子會大量上升,並與細胞發生不可逆的病理病程有密切的關連。心肌細胞死亡可以分為兩類,凋亡(apoptosis)與壞死(necrosis)。在本篇研究中,我們給予AA(10 μM)來模擬細胞受到缺血性傷害時的部分狀況。在我們初代培養的幼鼠心肌細胞上,利用膜片箝制技術(Patch clamp technique)發現AA在心肌細胞上可活化一種非選擇性陽離子通道。而利用顯微螢光測定術(Microspectrofluorometry)和雷射共軛焦顯微鏡(Laser confocal scanning microscopy)可觀察到AA使細胞質與粒線體內鈣離子濃度及鈉離子增加的現象。細胞質內鈣離子及鈉離子增加的程度會隨著AA濃度而提升,亦即有濃度依性(dose dependent)的現象。此外,我們用螢光染劑TMRM來測量粒線體的膜電位變化,發現AA會造成粒線體膜電位去極化及粒線體形狀變形。目前已知粒線體膜電位去極化會造成粒線體雙層膜上之滲透性轉換孔洞(permeation transition pore)的開啟,進而釋放出細胞凋亡機制的上游訊息cytochrome c。cytochrome c釋出後會活化一連串的caspase cascade而造成細胞凋亡(apoptosis)。我們檢測心肌細胞經AA處理後造成細胞凋亡的機制(包括caspase-3活化、DNA斷裂、cytochrome c釋放及細胞核濃縮的比例增加)。另外,我們利用ethidium homodimer-1(EthD-1)發現AA也會造成細胞壞死。AA處理後會造成細胞膜的不完整,因此心肌細胞可以被EthD-1染到細胞核。AA會造成細胞內ATP含量顯著的下降。而3-aminobenzamide (3-AB), 1,5-dihydroxyisoquinoline (DHQ) 和pepstatin A可以防止經由AA造成的細胞壞死,暗示PARP的活化可能是負責凋亡到壞死的重要轉折點。此外,我們發現AA可造成細胞內活性氧化物的增加。從我們的結果發現AA可以活化一種非選擇性陽離子通道,且同時造成細胞凋亡與壞死的產生。 | zh_TW |
| dc.description.abstract | It has been known that arachidonic acid (AA) and other nonesterified fatty acids (FAs) could have harmful effects during cardiac ischemia. Cellular calcium overload is an important determinant of ischemic myocardial injury. Over recent years, mitochondrial calcium overload has also been thought to be critical in the pathogenesis of irreversible ischemic cell death. The death of cells can be classified into two categories: apoptosis and necrosis. In the present study, we applied AA (10 μM) to mimic the conditions of ischemic reperfusion injury. Using patch clamp technique, we showed that AA-induced Ca2+ entry is mediated via a non-selective cation channel. Using microfluorometry and time-lapse confocal recording of live cardiomyocytes, we showed that AA caused a marked increase in Na+ and Ca2+ levels in both the cytosol ([Na+]i , [Ca2+]i)and mitochondria ([Na+]m , [Ca2+]m). The magnitude of the rise in [Ca2+]i and [Na+]i induced by AA is dose-dependent. The mitochondrial membrane potential (△Ψm) was monitored with tetra-methyl rhodamine-methyl ester (TMRM). AA treatment collapsed △Ψm and induced the structural change of mitochondria. It has been known that △Ψm depolarization result in the opening of permeation transition pore (PTP), followed by cytochrome c release, and finally leading to programmed cell death pathway. Using immunofluorescence techniques, we have examined the AA-induced apoptotic machinery (including caspase activation, DNA fragmentation, cytochrome c release and nucleus condensation) in primary culture of rat cardiomyocytes. Additionally, we also found AA treatment cause a loss of membrane integrity, as indicated by ethidium homodimer-1 (EthD-1) uptake into cardiomyocytes. This result suggests that AA also induces necrotic cell death. AA also caused a marked decrease in cellular ATP levels. Necrosis could be prevented by 3-aminobenzamide (3-AB), 1,5-dihydroxyisoquinoline (DHQ) and pepstatin A, indicating that PARP activation was responsible for the apoptosis-to-necrosis switch. Furthermore, ROS augmentation can also be detected after AA treatment. Our findings suggest that AA activates a non-selective cation channel, and induces a mixture of both apoptotic and necrotic cell death in cardiomyocytes. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:27:58Z (GMT). No. of bitstreams: 1 ntu-94-R92441002-1.pdf: 901357 bytes, checksum: 6e2758f9afe0e35ab39072108278d660 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 圖次 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. II
表次 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅲ 中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅳ 英文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Ⅵ 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 材料與方法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 圖 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 表 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 細胞死亡 | zh_TW |
| dc.subject | 花生四烯酸 | zh_TW |
| dc.subject | arachidonic acid | en |
| dc.subject | cell death | en |
| dc.title | 花生四烯酸造成心肌細胞死亡之機制探討 | zh_TW |
| dc.title | Mechanism of arachidonic acid-induced myocyte death | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王淑美,蘇銘嘉 | |
| dc.subject.keyword | 花生四烯酸,細胞死亡, | zh_TW |
| dc.subject.keyword | arachidonic acid,cell death, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 880.23 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
