Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24449
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭登貴
dc.contributor.authorLian Hsiehen
dc.contributor.author謝禮安zh_TW
dc.date.accessioned2021-06-08T05:26:25Z-
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-20
dc.identifier.citation吳信志 。1999。豬乳鐵蛋白及人類凝血第九因子基因轉殖小鼠及基因轉殖豬之產製及分析,國立台灣大學畜產學研究所博士論文。
Ali, N., G. J. Pruijn, D. J. Kenan, J. D. Keene and A. Siddiqui. 2000. Human La antigen is required for the hepatitis C virus internal ribosome entry site-mediated translation. J Biol Chem 275: 27531-27540.
Aranda, M. and A. Maule. 1998. Virus-induced host gene shutoff in animals and plants. Virology 243: 261-267.
Belsham, G. J. and N. Sonenberg. 1996. RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol Rev 60: 499-511.
Blight, K. J., A. A. Kolykhalov, K. E. Reed, E. V. Agapov and C. M. Rice. 1998. Molecular virology of hepatitis C virus: an update with respect to potential antiviral targets. Antivir Ther 3: 71-81.
Blondel, B., G. Duncan, T. Couderc, F. Delpeyroux, N. Pavio and F. Colbere-Garapin. 1998. Molecular aspects of poliovirus biology with a special focus on the interactions with nerve cells. J Neurovirol 4: 1-26.
Blyn, L. B., K. M. Swiderek, O. Richards, D. C. Stahl, B. L. Semler and E. Ehrenfeld. 1996. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5' noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc Natl Acad Sci U S A 93: 11115-11120.
Blyn, L. B., J. S. Towner, B. L. Semler and E. Ehrenfeld. 1997. Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J Virol 71: 6243-6246.
Borman, A. M., F. G. Deliat and K. M. Kean. 1994. Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. Embo J 13: 3149-3157.
Boussadia, O., M. Niepmann, L. Creancier, A. C. Prats, F. Dautry and H. Jacquemin-Sablon. 2003. Unr is required in vivo for efficient initiation of translation from the internal ribosome entry sites of both rhinovirus and poliovirus. J Virol 77: 3353-3359.
Bruno, S., E. Silini, A. Crosignani, F. Borzio, G. Leandro, F. Bono, M. Asti, S. Rossi, A. Larghi, A. Cerino, M. Podda and M. U. Mondelli. 1997. Hepatitis C virus genotypes and risk of hepatocellular carcinoma in cirrhosis: a prospective study. Hepatology 25: 754-758.
Buratti, E., M. Gerotto, P. Pontisso, A. Alberti, S. G. Tisminetzky and F. E. Baralle. 1997. In vivo translational efficiency of different hepatitis C virus 5'-UTRs. FEBS Lett 411: 275-280.
Centrella, M. and J. Lucas-Lenard. 1982. Regulation of protein synthesis in vesicular stomatitis virus-infected mouse L-929 cells by decreased protein synthesis initiation factor 2 activity. J Virol 41: 781-791.
Chen, C. Y. and P. Sarnow. 1995. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268: 415-417.
Clemens, M. J. 1994. Regulation of eukaryotic protein synthesis by protein kinases that phosphorylate initiation factor eIF-2. Mol Biol Rep 19: 201-210.
Clemens, M. J. and A. Elia. 1997. The double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res 17: 503-524.
Coward, P. and A. Dasgupta (1992). Yeast cells are incapable of translating RNAs containing the poliovirus 5' untranslated region: evidence for a translation control. Journal of Virology. 66: 286-295.
Das, S., M. Ott, A. Yamane, W. Tsai, M. Gromeier, F. Lahser, S. Gupta and A. Dasgupta. 1998. A small yeast RNA blocks hepatitis C virus internal ribosome entry site (HCV IRES)-mediated translation and inhibits replication of a chimeric poliovirus under translational control of the HCV IRES element. J Virol 72: 5638-5647.
Dorner, A. J., B. L. Semler, R. J. Jackson, R. Hanecak, E. Duprey and E. Wimmer. 1984. In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J Virol 50: 507-514.
Enomoto, N., I. Sakuma, Y. Asahina, M. Kurosaki, T. Murakami, C. Yamamoto, Y. Ogura, N. Izumi, F. Marumo and C. Sato. 1996. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N Engl J Med 334: 77-81.
Farabaugh, P. J. 1996. Programmed translational frameshifting. Annu Rev Genet 30: 507-528.
Fesq, H., M. Bacher, M. Nain and D. Gemsa. 1994. Programmed cell death (apoptosis) in human monocytes infected by influenza A virus. Immunobiology 190: 175-182.
Gale, M., Jr., S. L. Tan and M. G. Katze. 2000. Translational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev 64: 239-280.
Gallie, D. R. 1998. A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene 216: 1-11.
Geballe, A. P. and D. R. Morris. 1994. Initiation codons within 5'-leaders of mRNAs as regulators of translation. Trends Biochem Sci 19: 159-164.
Gesteland, R. F. and J. F. Atkins. 1996. Recoding: dynamic reprogramming of translation. Annu Rev Biochem 65: 741-768.
Gingras, A. C., Y. Svitkin, G. J. Belsham, A. Pause and N. Sonenberg. 1996. Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci U S A 93: 5578-5583.
Glass, M. J. and D. F. Summers. 1992. A cis-acting element within the hepatitis A virus 5'-non-coding region required for in vitro translation. Virus Res 26: 15-31.
Gromeier, M., B. Bossert, M. Arita, A. Nomoto and E. Wimmer. 1999. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 73: 958-964.
Haghighat, A. and N. Sonenberg. 1997. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5'-cap structure. J Biol Chem 272: 21677-21680.
He, B., M. Gross and B. Roizman. 1997. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A 94: 843-848.
Hellen, C. U. and E. Wimmer. 1995. Translation of encephalomyocarditis virus RNA by internal ribosomal entry. Curr Top Microbiol Immunol 203: 31-63.
Hellen, C. U., G. W. Witherell, M. Schmid, S. H. Shin, T. V. Pestova, A. Gil and E. Wimmer. 1993. A cytoplasmic 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine tract-binding protein. Proc Natl Acad Sci U S A 90: 7642-7646.
Honda, M., L. H. Ping, R. C. Rijnbrand, E. Amphlett, B. Clarke, D. Rowlands and S. M. Lemon. 1996. Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology 222: 31-42.
Honda, M., R. Rijnbrand, G. Abell, D. Kim and S. M. Lemon. 1999. Natural variation in translational activities of the 5' nontranslated RNAs of hepatitis C virus genotypes 1a and 1b: evidence for a long-range RNA-RNA interaction outside of the internal ribosomal entry site. J Virol 73: 4941-4951.
Hwang, L. H., C. L. Hsieh, A. Yen, Y. L. Chung and D. S. Chen. 1998. Involvement of the 5' proximal coding sequences of hepatitis C virus with internal initiation of viral translation. Biochem Biophys Res Commun 252: 455-460.
Ito, T., S. M. Tahara and M. M. Lai. 1998. The 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol 72: 8789-8796.
Jackson, R. J., M. T. Howell and A. Kaminski. 1990. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci 15: 477-483.
Jackson, R. J. and A. Kaminski. 1995. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. Rna 1: 985-1000.
Jang, S. K., H. G. Krausslich, M. J. Nicklin, G. M. Duke, A. C. Palmenberg and E. Wimmer. 1988. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62: 2636-2643.
Joachims, M., P. C. Van Breugel and R. E. Lloyd. 1999. Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 73: 718-727.
Kaminski, A., S. L. Hunt, J. G. Patton and R. J. Jackson. 1995. Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. Rna 1: 924-938.
Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283-292.
Le, H., R. L. Tanguay, M. L. Balasta, C. C. Wei, K. S. Browning, A. M. Metz, D. J. Goss and D. R. Gallie. 1997. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem 272: 16247-16255.
Le, S. Y., A. Siddiqui and J. V. Maizel, Jr. 1996. A common structural core in the internal ribosome entry sites of picornavirus, hepatitis C virus, and pestivirus. Virus Genes 12: 135-147.
Lee, J. H., S. K. Choi, A. Roll-Mecak, S. K. Burley and T. E. Dever. 1999. Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci U S A 96: 4342-4347.
Liang, C. C., M. J. Sun, H. Y. Lei, S. H. Chen, C. K. Yu, C. C. Liu, J. R. Wang and T. M. Yeh. 2004. Human endothelial cell activation and apoptosis induced by enterovirus 71 infection. J Med Virol 74: 597-603.
Lindquist, S. and R. Petersen. 1990. Selective translation and degradation of heat-shock messenger RNAs in Drosophila. Enzyme 44: 147-166.
Merrick, W. C., and J. W. B. Hershey (1996). The pathway and mechanism of eukaryotic protein synthesis.
Myslinski, E., J. C. Ame, A. Krol and P. Carbon. 2001. An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 29: 2502-2509.
Nicholson, R., J. Pelletier, S. Y. Le and N. Sonenberg. 1991. Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J Virol 65: 5886-5894.
Park, Y. W., J. Wilusz and M. G. Katze. 1999. Regulation of eukaryotic protein synthesis: selective influenza viral mRNA translation is mediated by the cellular RNA-binding protein GRSF-1. Proc Natl Acad Sci U S A 96: 6694-6699.
Pelletier, J. and N. Sonenberg. 1989. Internal binding of eucaryotic ribosomes on poliovirus RNA: translation in HeLa cell extracts. J Virol 63: 441-444.
Pestova, T. V., C. U. Hellen and I. N. Shatsky. 1996. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol 16: 6859-6869.
Reed, K. E. and C. M. Rice. 2000. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Curr Top Microbiol Immunol 242: 55-84.
Reynolds, J. E., A. Kaminski, A. R. Carroll, B. E. Clarke, D. J. Rowlands and R. J. Jackson. 1996. Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. Rna 2: 867-878.
Rueckert, R. R. (1996). Piconaviridae: the vius and their replication, Virology.
Schwartz, S., B. K. Felber and G. N. Pavlakis. 1992. Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs. Mol Cell Biol 12: 207-219.
Shimazaki, T., M. Honda, S. Kaneko and K. Kobayashi. 2002. Inhibition of internal ribosomal entry site-directed translation of HCV by recombinant IFN-alpha correlates with a reduced La protein. Hepatology 35: 199-208.
Shors, S. T., E. Beattie, E. Paoletti, J. Tartaglia and B. L. Jacobs. 1998. Role of the vaccinia virus E3L and K3L gene products in rescue of VSV and EMCV from the effects of IFN-alpha. J Interferon Cytokine Res 18: 721-729.
Sonenberg, N. and A. C. Gingras. 1998. The mRNA 5' cap-binding protein eIF4E and control of cell growth. Curr Opin Cell Biol 10: 268-275.
Swaminathan, S., P. Rajan, O. Savinova, R. Jagus and B. Thimmapaya. 1996. Simian virus 40 large-T bypasses the translational block imposed by the phosphorylation of elF-2 alpha. Virology 219: 321-323.
Tan, S. L. and M. G. Katze. 1999. The emerging role of the interferon-induced PKR protein kinase as an apoptotic effector: a new face of death? J Interferon Cytokine Res 19: 543-554.
Venkatesan, A., S. Das and A. Dasgupta. 1999. Structure and function of a small RNA that selectively inhibits internal ribosome entry site-mediated translation. Nucleic Acids Res 27: 562-572.
Wen, Y. Y., T. Y. Chang, S. T. Chen, C. Li and H. S. Liu. 2003. Comparative study of enterovirus 71 infection of human cell lines. J Med Virol 70: 109-118.
Yueh, A. and R. J. Schneider. 1996. Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. Genes Dev 10: 1557-1567.
Zhouravleva, G., L. Frolova, X. Le Goff, R. Le Guellec, S. Inge-Vechtomov, L. Kisselev and M. Philippe. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. Embo J 14: 4065-4072.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24449-
dc.description.abstract內部核糖體進入位(internal ribosome entry site)目前已知被認為是特定某一類病毒如脊髓灰質炎病毒在宿主細胞當中進行轉譯複製作用之重要利用機轉,然而,在酵母菌(Saccharomyces cerevisiae)當中發現的一段小RNA-抑制型RNA(inhibitor RNA,IRNA)其具有能夠抑制宿主細胞當中病毒IRES-mediated轉譯作用的進行,且不影響正常帽依賴型轉譯作用(cap-dependent translation)的進行。針對IRNA結構上的分析結果更指出IRNA為具有2個loop構造、7個鹼基長的骨架構造與一個大的bugle區域,長度為71bp的小RNA分子。基於上述之研究結果,科學家們更進一步嘗試應用IRNA策略作為治療某些特定病毒性感染疾病的可行性。
本研究之目的旨在進一步確認IRNA是否能夠進一步對於其他IRES-mediated轉譯作用之病毒具有抑制之效果,更希望應用基因顯微注射技術,產製帶有並能持續表現IRAN之轉基因小鼠,希望藉由此動物模式,進一步驗證IRNA能夠使動物個體產生抵禦病毒感染之能力。
試驗首先建構IRNA之表現載體,IRNA之表現主要透過H1啟動子來進行轉譯表現,而表現載體上的EGFP與Neomycin ORF同時可作為報導基因與進行穩定細胞株篩選之用,為初步證實架構之表現載體pSuper-Neo+GFP-IRNA能夠表現IRNA,利用微脂體轉染法將表現載體送入Vero cell當中,再進行腸病毒71型之接種,實驗結果證明在病毒感染後40小時,可發現IRNA表現組其螢光表現細胞型態較為健康而完整,相對於對照組而言細胞出現細胞病變(cytopathic effect)之現象。
進一步試驗應用原核顯微注射技術建立帶有能持續產生IRNA轉基因小鼠之動物模式,暨能使小鼠具有抵禦特定病毒性疾病之感染之能力,試驗結果顯示,業經顯微注射之866個ICR小鼠原核胚,共獲得83隻仔小鼠,至目前為止,產下之仔小鼠尚待進一步PCR分析與確定攜帶有目標基因與否當中,待其轉基因小鼠基因型確定與品系建立之後,準備進行抗病毒能力之試驗。
zh_TW
dc.description.abstractIt is well recoginized that the internal ribosome entry site (IRES) existed within the host cells is essentially required for translation in some species of viral RNA infected and this is particularly true in those of poliovirus. Moreover, there was a group of small RNA found within the yeast and these small RNA were characterized as an inhibitor RNA (IRNA) by showing capability in a selective-blocking the IRES-mediated translation of the infected viral RNA without resulting in interference of the cap-dependent translation in the host cells. Studies of using single-strand- and double-strand specific nucleases have predicted the secondary structure of IRNA consisting two loops, a 7-base long stem, and a large bugle region. Based on the fact that IRNA inhibits viral IRES-mediated translation can also be achieved by sequestering noncanonical transacting factors and canonical factors, both essential for IRES-mediated translation, attempts of the present studies were made to investigate the feasibility of using IRNA as a strategy for prevention the diseases suffer from specific viral infections.
To meet the purpose described above, a fragment length in 71 bp of the IRNA sequences driving by a H1 promoter was constructed into the pSuper-Neo+GFP vector to allow the transgene equipped with both the Neomycin ORF and the EGFP ORF. The transgene, named as pSuper-Neo+GFP-IRNA, after construction was first subjected to transfection into Vero cells and the efficiency of IRNA against to the IRES-mediated translation was evaluated after the transient transfected Vero cells had been challenged with enterovirus 71. Evidences from cell morphology examination appeared that majority of the control Vero cells showing remarkable cytopathic effect after they had been challenged enterovirus 71 when comparisons were made to those of transient transfected Vero cells, indiciating that IRNA did express their inhibitory effect on the IRES-mediated viral translation and subsequently resulting in inhibition of the enterovirus replication. Therefore, further studies were made to use the transgenic mice harboring the IRNA-transgene as an animal model for elucidation the function of IRNA in IRES-mediated viral translation in vivo and the generation of transgenic mice was conducted by microinjecting the IRNA transgene into pronucleus of newly fertilized eggs. Of these studies, a total 866 mouse embryos after gene injection were reimplanted into the recipients and 83 newborn mice have so far been obtained. Further verification of the transgene integrated within their genomic DNA and also the ability of the potential transgenic mice possess resistance of those disease suffered from specific viral infections are now in progression.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:26:25Z (GMT). No. of bitstreams: 1
ntu-94-R89626003-1.pdf: 2126652 bytes, checksum: 572a5d670d9a5e394d5978c243a41778 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄
頁次
目錄……………………………………………………………I
表次……………………………………………………………II
圖次……………………………………………………………III
中文摘要………………………………………………………1
前言……………………………………………………………3
文獻檢討
一、病毒的生活史…………………………………………4
(一) 病毒生活史簡介
(二) 真核細胞生物轉譯作用
(三) 病毒基因表現對真核細胞生物轉譯作用的調控
(四) 病毒mRNA轉譯作用機制與調控
(五) 內部核糖體進入位(internal ribosome entry site)
二、IRNA的歷史-the discovery of IRNA….………………22
(一) IRNA(inhibitor RNA)的發現
(二) IRNA抑制作用機轉
(三) 截至目前為止研究成果
三、研究緣由…………………………………………………26
(一) 其他類病毒之抗病毒能力試驗
(二) 動物模式的建立
(三) 應用之技術及方法的背景介紹

材料與方法
一、轉殖基因載體之架構…………………………………… 27
二、試驗動物之飼養管理與超級排卵處理………………… 30
三、基因轉殖小鼠之分析…………………………………… 32
四、IRNA抗病毒能力測試......................... 34
結果與討論
一、IRNA表現載體之構築…………………………………… 39
二、暫時性表現IRNA之細胞株其抗病毒能力測試………… 39
三、攜帶抑制型IRNA序列轉基因小鼠之產製與分析……… 40
結論…………………………………………………………… 52
參考文獻……………………………………………………… 53
英文摘要……………………………………………………… 61
作者小傳……………………………………………………… 63
dc.language.isozh-TW
dc.title應用IRNA策略抵禦特定病毒性疾病感染之可行性zh_TW
dc.titleThe feasibility of using inhibitor RNA (IRNA) strategy for protection of animals suffering from specific viral-infecious diseaseen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃木秋,陳全木,鄭金益,吳信志
dc.subject.keyword抑制型RNA,腸病毒,zh_TW
dc.subject.keywordIRNA,IRES-mediated translation,enterovirus,en
dc.relation.page63
dc.rights.note未授權
dc.date.accepted2005-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept畜產學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved