請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24413完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 侯連團 | |
| dc.contributor.author | Tai-I Li | en |
| dc.contributor.author | 李泰億 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:25:05Z | - |
| dc.date.copyright | 2005-08-12 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-22 | |
| dc.identifier.citation | 1. Arceo N, Sauk JJ, Moehring J, Foster RA, Somerman MJ (1991). Human periodontal cells initiate mineral-like nodules in vitro. J Periodontol 62(8):499-503.
2. Bae SC, Lee KS, Zhang YW, Ito Y (2001). Intimate relationship between TGF-beta/BMP signaling and runt domain transcription factor, PEBP2/CBF. J Bone Joint Surg Am 83-A Suppl 1(Pt 1):S48-S55. 3. Bartold PM, McCulloch CA, Narayanan AS, Pitaru S (2000). Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontol 2000 24:253-269. 4. Beertsen W (1975). Migration of fibroblasts in the periodontal ligament of the mouse incisor as revealed by autoradiography. Arch Oral Biol 20(10):659-666. 5. Beertsen W, McCulloch CA, Sodek J (1997). The periodontal ligament: a unique, multifunctional connective tissue. Periodontol 2000 13:20-40. 6. Beertsen W, van den BT (1992). Alkaline phosphatase induces the mineralization of sheets of collagen implanted subcutaneously in the rat. J Clin Invest 89(6):1974-1980. 7. Beertsen W, van den BT, Niehof J (1993). Mineralization of dentinal collagen sheets complexed with alkaline phosphatase and integration with newly formed bone following subperiosteal implantation over osseous defects in rat calvaria. Bone Miner 20(1):41-55. 8. Beertsen W, VandenBos T, Everts V (1999). Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res 78(6):1221-1229. 9. Bellows CG, Aubin JE, Heersche JN (1991). Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner 14(1):27-40. 10. Bereford JN, Owen ME (1998). Marrow stromal cell culture. Camridge University Press. 11. Bessho K, Konishi Y, Kaihara S, Fujimura K, Okubo Y, Iizuka T (2000). Bone induction by Escherichia coli -derived recombinant human bone morphogenetic protein-2 compared with Chinese hamster ovary cell-derived recombinant human bone morphogenetic protein-2. Br J Oral Maxillofac Surg 38(6):645-649. 12. Bianco P, Fisher LW, Young MF, Termine JD, Robey PG (1991). Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int 49(6):421-426. 13. Bilezikian JP, Raisz LG, Rodon GA (1996). Principles of Bone Biology. San Diego: Academic Press. 14. Bolcato-Bellemin AL, Elkaim R, Abehsera A, Fausser JL, Haikel Y, Tenenbaum H (2000). Expression of mRNAs encoding for alpha and beta integrin subunits, MMPs, and TIMPs in stretched human periodontal ligament and gingival fibroblasts. J Dent Res 79(9):1712-1716. 15. Bosshardt DD (2005). Are Cementoblasts a Subpopulation of Osteoblasts or a Unique Phenotype? J Dent Res 84(5):390-406. 16. Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254. 17. Brown LJ, Loe H (1993). Prevalence, extent, severity and progression of periodontal disease. Periodontol 2000 2:57-71. 18. Brubaker KD, Corey E, Brown LG, Vessella RL (2004). Bone morphogenetic protein signaling in prostate cancer cell lines. J Cell Biochem 91(1):151-160. 19. Byers BA, Pavlath GK, Murphy TJ, Karsenty G, Garcia AJ (2002). Cell-type-dependent up-regulation of in vitro mineralization after overexpression of the osteoblast-specific transcription factor Runx2/Cbfal. J Bone Miner Res 17(11):1931-1944. 20. Canalis E, Delany AM (2002). Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci 966:73-81. 21. Canalis E, Economides AN, Gazzerro E (2003). Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24(2):218-235. 22. Carnes DL, Maeder CL, Graves DT (1997). Cells with osteoblastic phenotypes can be explanted from human gingiva and periodontal ligament. J Periodontol 68(7):701-707. 23. Cattaneo V, Rota C, Silvestri M, Piacentini C, Forlino A, Gallanti A et al. (2003). Effect of enamel matrix derivative on human periodontal fibroblasts: proliferation, morphology and root surface colonization. An in vitro study. J Periodontal Res 38(6):568-574. 24. Celil AB, Hollinger JO, Campbell PG (2005). Osx transcriptional regulation is mediated by additional pathways to BMP2/Smad signaling. J Cell Biochem. 25. Chaudhari A, Ron E, Rethman MP (1997). Recombinant human bone morphogenetic protein-2 stimulates differentiation in primary cultures of fetal rat calvarial osteoblasts. Mol Cell Biochem 167(1-2):31-39. 26. Chen D, Zhao M, Mundy GR (2004). Bone morphogenetic proteins. Growth Factors 22(4):233-241. 27. Chen J, McCulloch CA, Sodek J (1993). Bone sialoprotein in developing porcine dental tissues: cellular expression and comparison of tissue localization with osteopontin and osteonectin. Arch Oral Biol 38(3):241-249. 28. Chen J, McKee MD, Nanci A, Sodek J (1994). Bone sialoprotein mRNA expression and ultrastructural localization in fetal porcine calvarial bone: comparisons with osteopontin. Histochem J 26(1):67-78. 29. Chen P, Carrington JL, Hammonds RG, Reddi AH (1991). Stimulation of chondrogenesis in limb bud mesoderm cells by recombinant human bone morphogenetic protein 2B (BMP-2B) and modulation by transforming growth factor beta 1 and beta 2. Exp Cell Res 195(2):509-515. 30. Cheng SL, Shao JS, Charlton-Kachigian N, Loewy AP, Towler DA (2003). MSX2 promotes osteogenesis and suppresses adipogenic differentiation of multipotent mesenchymal progenitors. J Biol Chem 278(46):45969-45977. 31. Cheng SL, Yang JW, Rifas L, Zhang SF, Avioli LV (1994). Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134(1):277-286. 32. Cho MI, Garant PR (2000). Development and general structure of the periodontium. Periodontol 2000 24:9-27. 33. Cho MI, Garant PR (1989). Radioautographic study of [3H]mannose utilization during cementoblast differentiation, formation of acellular cementum, and development of periodontal ligament principal fibers. Anat Rec 223(2):209-222. 34. Choi SH, Kim CK, Cho KS, Huh JS, Sorensen RG, Wozney JM et al. (2002). Effect of recombinant human bone morphogenetic protein-2/absorbable collagen sponge (rhBMP-2/ACS) on healing in 3-wall intrabony defects in dogs. J Periodontol 73(1):63-72. 35. Chung CH, Golub EE, Forbes E, Tokuoka T, Shapiro IM (1992). Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif Tissue Int 51(4):305-311. 36. Clark BR, Keating A (1995). Biology of bone marrow stroma. Ann N Y Acad Sci 770:70-78. 37. Cochran DL, Jones AA, Lilly LC, Fiorellini JP, Howell H (2000). Evaluation of recombinant human bone morphogenetic protein-2 in oral applications including the use of endosseous implants: 3-year results of a pilot study in humans. J Periodontol 71(8):1241-1257. 38. Cunningham NS, Paralkar V, Reddi AH (1992). Osteogenin and recombinant bone morphogenetic protein 2B are chemotactic for human monocytes and stimulate transforming growth factor beta 1 mRNA expression. Proc Natl Acad Sci U S A 89(24):11740-11744. 39. D'Souza RN, Aberg T, Gaikwad J, Cavender A, Owen M, Karsenty G et al. (1999). Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 126(13):2911-2920. 40. Darling DC, Morgan SJ (1994). Animal cells: culture and media. John Wiley & Sons. 41. Darnay BG, Haridas V, Ni J, Moore PA, Aggarwal BB (1998). Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem 273(32):20551-20555. 42. de BB, Bianco P, Bonucci E, Costantini M, Lunazzi GC, Martinuzzi P et al. (1986). Biochemical and immunohistochemical evidence that in cartilage an alkaline phosphatase is a Ca2+-binding glycoprotein. J Cell Biol 103(4):1615-1623. 43. De LF, Barnes KM, Uyeda JA, De-Levi S, Abad V, Palese T et al. (2001). Regulation of growth plate chondrogenesis by bone morphogenetic protein-2. Endocrinology 142(1):430-436. 44. Diefenderfer DL, Osyczka AM, Garino JP, Leboy PS (2003). Regulation of BMP-induced transcription in cultured human bone marrow stromal cells. J Bone Joint Surg Am 85-A Suppl 3:19-28. 45. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C et al. (1996). Increased bone formation in osteocalcin-deficient mice. Nature 382(6590):448-452. 46. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747-754. 47. Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Brickell PM et al. (1996). Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 57(2):145-157. 48. Fiorellini JP, Howell TH, Cochran D, Malmquist J, Lilly LC, Spagnoli D et al. (2005). Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation. J Periodontol 76(4):605-613. 49. Fohr B, Dunstan CR, Seibel MJ (2003). Clinical review 165: Markers of bone remodeling in metastatic bone disease. J Clin Endocrinol Metab 88(11):5059-5075. 50. Franceschi RT, Xiao G (2003). Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem 88(3):446-454. 51. Freshney RI (2000). Culture of animal cells: a manual of basic technique. 4 ed. Wiley-Liss, Inc. 52. Fromigue O, Marie PJ, Lomri A (1998). Bone morphogenetic protein-2 and transforming growth factor-beta2 interact to modulate human bone marrow stromal cell proliferation and differentiation. J Cell Biochem 68(4):411-426. 53. Ganss B, Kim RH, Sodek J (1999). Bone sialoprotein. Crit Rev Oral Biol Med 10(1):79-98. 54. Gao Y, Jheon A, Nourkeyhani H, Kobayashi H, Ganss B (2004). Molecular cloning, structure, expression, and chromosomal localization of the human Osterix (SP7) gene. Gene 341:101-110. 55. Geiger M, Li RH, Friess W (2003). Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev 55(12):1613-1629. 56. Giannopoulou C, Cimasoni G (1996). Functional characteristics of gingival and periodontal ligament fibroblasts. J Dent Res 75(3):895-902. 57. Gilmore SK, Whitson SW, Bowers DE, Jr. (1986). A simple method using alizarin red S for the detection of calcium in epoxy resin embedded tissue. Stain Technol 61(2):89-92. 58. Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji R et al. (1999). Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet 21(3):302-304. 59. Gori F, Thomas T, Hicok KC, Spelsberg TC, Riggs BL (1999). Differentiation of human marrow stromal precursor cells: bone morphogenetic protein-2 increases OSF2/CBFA1, enhances osteoblast commitment, and inhibits late adipocyte maturation. J Bone Miner Res 14(9):1522-1535. 60. Goseki M, Oida S, Takeda K, Ogata Y, Iimura T, Maruoka Y et al. (1995). Identification of bone-type alkaline phosphatase mRNA from human periodontal ligament cells. J Dent Res 74(1):319-322. 61. Gregory CA, Gunn WG, Peister A, Prockop DJ (2004). An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329(1):77-84. 62. Griffith DL, Keck PC, Sampath TK, Rueger DC, Carlson WD (1996). Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor beta superfamily. Proc Natl Acad Sci U S A 93(2):878-883. 63. Griffith LG, Naughton G (2002). Tissue engineering--current challenges and expanding opportunities. Science 295(5557):1009-1014. 64. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA et al. (1994). c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266(5184):443-448. 65. Grimsrud CD, Romano PR, D'Souza M, Puzas JE, Schwarz EM, Reynolds PR et al. (2001). BMP signaling stimulates chondrocyte maturation and the expression of Indian hedgehog. J Orthop Res 19(1):18-25. 66. Groeneveld MC, Everts V, Beertsen W (1994). Formation of afibrillar acellular cementum-like layers induced by alkaline phosphatase activity from periodontal ligament explants maintained in vitro. J Dent Res 73(10):1588-1592. 67. Groeneveld MC, Everts V, Beertsen W (1995). Alkaline phosphatase activity in the periodontal ligament and gingiva of the rat molar: its relation to cementum formation. J Dent Res 74(7):1374-1381. 68. Groeneveld MC, Everts V, Beertsen W (1993). A quantitative enzyme histochemical analysis of the distribution of alkaline phosphatase activity in the periodontal ligament of the rat incisor. J Dent Res 72(9):1344-1350. 69. Groeneveld MC, Van den BT, Everts V, Beertsen W (1996). Cell-bound and extracellular matrix-associated alkaline phosphatase activity in rat periodontal ligament. Experimental Oral Biology Group. J Periodontal Res 31(1):73-79. 70. Grzesik WJ, Narayanan AS (2002). Cementum and periodontal wound healing and regeneration. Crit Rev Oral Biol Med 13(6):474-484. 71. Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, Caverzasio J (2003). Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation. J Bone Miner Res 18(11):2060-2068. 72. Haffajee AD, Socransky SS (1994). Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 5:78-111. 73. Han X, Amar S (2002). Identification of genes differentially expressed in cultured human periodontal ligament fibroblasts vs. human gingival fibroblasts by DNA microarray analysis. J Dent Res 81(6):399-405. 74. Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A et al. (1999). Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem 274(11):6972-6978. 75. Hasegawa T, Kikuiri T, Takeyama S, Yoshimura Y, Mitome M, Oguchi H et al. (2002a). Human periodontal ligament cells derived from deciduous teeth induce osteoclastogenesis in vitro. Tissue Cell 34(1):44-51. 76. Hasegawa T, Yoshimura Y, Kikuiri T, Yawaka Y, Takeyama S, Matsumoto A et al. (2002b). Expression of receptor activator of NF-kappa B ligand and osteoprotegerin in culture of human periodontal ligament cells. J Periodontal Res 37(6):405-411. 77. Hauschka PV, Wians FH, Jr. (1989). Osteocalcin-hydroxyapatite interaction in the extracellular organic matrix of bone. Anat Rec 224(2):180-188. 78. Haverich A, Graf H (2002). Stem cell transplantation and tissue engineering. Berlin, New York , Springer. 79. Hay E, Hott M, Graulet AM, Lomri A, Marie PJ (1999). Effects of bone morphogenetic protein-2 on human neonatal calvaria cell differentiation. J Cell Biochem 72(1):81-93. 80. Helder MN, Karg H, Bervoets TJ, Vukicevic S, Burger EH, D'Souza RN et al. (1998). Bone morphogenetic protein-7 (osteogenic protein-1, OP-1) and tooth development. J Dent Res 77(4):545-554. 81. Helfich MH, Ralston SH (2003). Bone research protocols. Human Press Inc. 82. Hofbauer LC, Dunstan CR, Spelsberg TC, Riggs BL, Khosla S (1998). Osteoprotegerin production by human osteoblast lineage cells is stimulated by vitamin D, bone morphogenetic protein-2, and cytokines. Biochem Biophys Res Commun 250(3):776-781. 83. Hogan BL (1996). Bone morphogenetic proteins in development. Curr Opin Genet Dev 6(4):432-438. 84. Hou LT, Liu CM, Lei JY, Wong MY, Chen JK (2000). Biological effects of cementum and bone extracts on human periodontal fibroblasts. J Periodontol 71(7):1100-1109. 85. Hou LT, Tsai AY, Liu CM, Feng F (2003). Autologous transplantation of gingival fibroblast-like cells and a hydroxylapatite complex graft in the treatment of periodontal osseous defects: cell cultivation and long-term report of cases. Cell Transplant 12(7):787-797. 86. Hou LT, Yaeger JA (1993). Cloning and characterization of human gingival and periodontal ligament fibroblasts. J Periodontol 64(12):1209-1218. 87. Hou LT, Yaeger JA (1995). DNA content and alkaline phosphatase expression in cells of different gingival overgrowths. J Oral Pathol Med 24(3):97-102. 88. Huang KK, Shen C, Chiang CY, Hsieh YD, Fu E (2005). Effects of bone morphogenetic protein-6 on periodontal wound healing in a fenestration defect of rats. J Periodontal Res 40(1):1-10. 89. Hunter GK, Goldberg HA (1993). Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A 90(18):8562-8565. 90. Hunter GK, Goldberg HA (1994). Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem J 302 ( Pt 1):175-179. 91. Ichida F, Nishimura R, Hata K, Matsubara T, Ikeda F, Hisada K et al. (2004). Reciprocal roles of MSX2 in regulation of osteoblast and adipocyte differentiation. J Biol Chem 279(32):34015-34022. 92. Igarashi M, Kamiya N, Hasegawa M, Kasuya T, Takahashi T, Takagi M (2004). Inductive effects of dexamethasone on the gene expression of Cbfa1, Osterix and bone matrix proteins during differentiation of cultured primary rat osteoblasts. J Mol Histol 35(1):3-10. 93. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997). Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3(11):1285-1289. 94. Irie A, Habuchi H, Kimata K, Sanai Y (2003). Heparan sulfate is required for bone morphogenetic protein-7 signaling. Biochem Biophys Res Commun 308(4):858-865. 95. Ishikawa S, Iwasaki K, Komaki M, Ishikawa I (2004). Role of ascorbic acid in periodontal ligament cell differentiation. J Periodontol 75(5):709-716. 96. Itoh K, Udagawa N, Katagiri T, Iemura S, Ueno N, Yasuda H et al. (2001). Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kappaB ligand. Endocrinology 142(8):3656-3662. 97. Ivanovski S, Haase HR, Bartold PM (2001a). Expression of bone matrix protein mRNAs by primary and cloned cultures of the regenerative phenotype of human periodontal fibroblasts. J Dent Res 80(7):1665-1671. 98. Ivanovski S, Li H, Haase HR, Bartold PM (2001b). Expression of bone associated macromolecules by gingival and periodontal ligament fibroblasts. J Periodontal Res 36(3):131-141. 99. Iwata T, Morotome Y, Tanabe T, Fukae M, Ishikawa I, Oida S (2002). Noggin blocks osteoinductive activity of porcine enamel extracts. J Dent Res 81(6):387-391. 100. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997). Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64(2):295-312. 101. Jikko A, Harris SE, Chen D, Mendrick DL, Damsky CH (1999). Collagen integrin receptors regulate early osteoblast differentiation induced by BMP-2. J Bone Miner Res 14(7):1075-1083. 102. Jorgensen NR, Henriksen Z, Sorensen OH, Civitelli R (2004). Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype: validation of an in vitro model for human bone marrow-derived primary osteoblasts. Steroids 69(4):219-226. 103. Jovanovic SA, Hunt DR, Bernard GW, Spiekermann H, Nishimura R, Wozney JM et al. (2003). Long-term functional loading of dental implants in rhBMP-2 induced bone. A histologic study in the canine ridge augmentation model. Clin Oral Implants Res 14(6):793-803. 104. Jung RE, Glauser R, Scharer P, Hammerle CH, Sailer HF, Weber FE (2003). Effect of rhBMP-2 on guided bone regeneration in humans. Clin Oral Implants Res 14(5):556-568. 105. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002). Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17(2):210-220. 106. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2001). Dual regulation of osteoclast differentiation by periodontal ligament cells through RANKL stimulation and OPG inhibition. J Dent Res 80(3):887-891. 107. Kanzaki H, Chiba M, Takahashi I, Haruyama N, Nishimura M, Mitani H (2004). Local OPG gene transfer to periodontal tissue inhibits orthodontic tooth movement. J Dent Res 83(12):920-925. 108. Kasasa SC, Soory M (1996). The effect of interleukin-1 (IL-1) on androgen metabolism in human gingival tissue (HGT) and periodontal ligament (PDL). J Clin Periodontol 23(5):419-424. 109. Kato C, Kojima T, Komaki M, Mimori K, Duarte WR, Takenaga K et al. (2004). S100A4 inhibition by RNAi up-regulates osteoblast related genes in periodontal ligament cells. Biochem Biophys Res Commun 326(1):147-153. 110. Kawabata M, Imamura T, Miyazono K (1998). Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 9(1):49-61. 111. Kawaguchi H, Hirachi A, Hasegawa N, Iwata T, Hamaguchi H, Shiba H et al. (2004). Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol 75(9):1281-1287. 112. Kawaguchi H, Ogawa T, Kurihara H, Nanci A (2001). Immunodetection of noncollagenous matrix proteins during periodontal tissue regeneration. J Periodontal Res 36(4):205-213. 113. Khosla S (2001). Minireview: the OPG/RANKL/RANK system. Endocrinology 142(12):5050-5055. 114. Kim YJ, Lee MH, Wozney JM, Cho JY, Ryoo HM (2004). Bone morphogenetic protein-2-induced alkaline phosphatase expression is stimulated by Dlx5 and repressed by Msx2. J Biol Chem 279(49):50773-50780. 115. Kinane DF (2000). Regulators of tissue destruction and homeostasis as diagnostic aids in periodontology. Periodontol 2000 24:215-225. 116. King GN, Cochran DL (2002). Factors that modulate the effects of bone morphogenetic protein-induced periodontal regeneration: a critical review. J Periodontol 73(8):925-936. 117. King GN, Hughes FJ (2001). Bone morphogenetic protein-2 stimulates cell recruitment and cementogenesis during early wound healing. J Clin Periodontol 28(5):465-475. 118. Kjellen L, Lindahl U (1991). Proteoglycans: structures and interactions. Annu Rev Biochem 60:443-475. 119. Kobayashi M, Takiguchi T, Suzuki R, Yamaguchi A, Deguchi K, Shionome M et al. (1999). Recombinant human bone morphogenetic protein-2 stimulates osteoblastic differentiation in cells isolated from human periodontal ligament. J Dent Res 78(10):1624-1633. 120. Koide M, Murase Y, Yamato K, Noguchi T, Okahashi N, Nishihara T (1999). Bone morphogenetic protein-2 enhances osteoclast formation mediated by interleukin-1alpha through upregulation of osteoclast differentiation factor and cyclooxygenase-2. Biochem Biophys Res Commun 259(1):97-102. 121. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755-764. 122. Kong YY, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S et al. (1999). Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402(6759):304-309. 123. Kramer PR, Nares S, Kramer SF, Grogan D, Kaiser M (2004). Mesenchymal stem cells acquire characteristics of cells in the periodontal ligament in vitro. J Dent Res 83(1):27-34. 124. Kuru L, Griffiths GS, Petrie A, Olsen I (1999). Alkaline phosphatase activity is upregulated in regenerating human periodontal cells. J Periodontal Res 34(2):123-127. 125. Kuru L, Parkar MH, Griffiths GS, Newman HN, Olsen I (1998). Flow cytometry analysis of gingival and periodontal ligament cells. J Dent Res 77(4):555-564. 126. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165-176. 127. Lai CF, Cheng SL (2002). Signal transductions induced by bone morphogenetic protein-2 and transforming growth factor-beta in normal human osteoblastic cells. J Biol Chem 277(18):15514-15522. 128. Lai CF, Cheng SL (2005). Alphavbeta integrins play an essential role in BMP-2 induction of osteoblast differentiation. J Bone Miner Res 20(2):330-340. 129. Langer R, Vacanti JP (1993). Tissue engineering. Science 260(5110):920-926. 130. Larjava H, Heino J, Kahari VM, Krusius T, Vuorio E (1989). Characterization of one phenotype of human periodontal granulation-tissue fibroblasts. J Dent Res 68(1):20-25. 131. Lecanda F, Avioli LV, Cheng SL (1997). Regulation of bone matrix protein expression and induction of differentiation of human osteoblasts and human bone marrow stromal cells by bone morphogenetic protein-2. J Cell Biochem 67(3):386-396. 132. Lee KS, Hong SH, Bae SC (2002). Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-beta and bone morphogenetic protein. Oncogene 21(47):7156-7163. 133. Lee MH, Kim YJ, Kim HJ, Park HD, Kang AR, Kyung HM et al. (2003a). BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 278(36):34387-34394. 134. Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM (2003b). BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 309(3):689-694. 135. Lee YS, Chuong CM (1997). Activation of protein kinase A is a pivotal step involved in both BMP-2- and cyclic AMP-induced chondrogenesis. J Cell Physiol 170(2):153-165. 136. Lekic P, Rojas J, Birek C, Tenenbaum H, McCulloch CA (2001a). Phenotypic comparison of periodontal ligament cells in vivo and in vitro. J Periodontal Res 36(2):71-79. 137. Lekic PC, Pender N, McCulloch CA (1997). Is fibroblast heterogeneity relevant to the health, diseases, and treatments of periodontal tissues? Crit Rev Oral Biol Med 8(3):253-268. 138. Lekic PC, Rajshankar D, Chen H, Tenenbaum H, McCulloch CA (2001b). Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec 262(2):193-202. 139. Lievremont M, Potus J, Guillou B (1982). Use of alizarin red S for histochemical staining of Ca2+ in the mouse; some parameters of the chemical reaction in vitro. Acta Anat (Basel) 114(3):268-280. 140. Lindholm TS (1996). Bone morphogenic proteins: biology, biochenmistry and reconstructive surgery. R.G. Landes Company and Academic Press, Inc. 141. Liu HW, Yacobi R, Savion N, Narayanan AS, Pitaru S (1997). A collagenous cementum-derived attachment protein is a marker for progenitors of the mineralized tissue-forming cell lineage of the periodontal ligament. J Bone Miner Res 12(10):1691-1699. 142. Liu YH, Tang Z, Kundu RK, Wu L, Luo W, Zhu D et al. (1999). Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans. Dev Biol 205(2):260-274. 143. Luppen CA, Leclerc N, Noh T, Barski A, Khokhar A, Boskey AL et al. (2003a). Brief bone morphogenetic protein 2 treatment of glucocorticoid-inhibited MC3T3-E1 osteoblasts rescues commitment-associated cell cycle and mineralization without alteration of Runx2. J Biol Chem 278(45):44995-45003. 144. Luppen CA, Smith E, Spevak L, Boskey AL, Frenkel B (2003b). Bone morphogenetic protein-2 restores mineralization in glucocorticoid-inhibited MC3T3-E1 osteoblast cultures. J Bone Miner Res 18(7):1186-1197. 145. MacNeil RL, Berry J, D'Errico J, Strayhorn C, Piotrowski B, Somerman MJ (1995). Role of two mineral-associated adhesion molecules, osteopontin and bone sialoprotein, during cementogenesis. Connect Tissue Res 33(1-3):1-7. 146. MacNeil RL, Berry J, Strayhorn C, Somerman MJ (1996). Expression of bone sialoprotein mRNA by cells lining the mouse tooth root during cementogenesis. Arch Oral Biol 41(8-9):827-835. 147. MacNeil RL, Sheng N, Strayhorn C, Fisher LW, Somerman MJ (1994). Bone sialoprotein is localized to the root surface during cementogenesis. J Bone Miner Res 9(10):1597-1606. 148. Macneil RL, Sheng N, Strayhorn C, Fisher LW, Somerman MJ (1994). Bone sialoprotein is localized to the root surface during cementogenesis. J Bone Miner Res 9(10):1597-1606. 149. Marie PJ, Lomri A, Sabbagh A, Basle M (1989). Culture and behavior of osteoblastic cells isolated from normal trabecular bone surfaces. In Vitro Cell Dev Biol 25(4):373-380. 150. McCulloch CA, Barghava U, Melcher AH (1989). Cell death and the regulation of populations of cells in the periodontal ligament. Cell Tissue Res 255(1):129-138. 151. McCulloch CA, Bordin S (1991). Role of fibroblast subpopulations in periodontal physiology and pathology. J Periodontal Res 26(3 Pt 1):144-154. 152. McCulloch CA, Lekic P, McKee MD (2000). Role of physical forces in regulating the form and function of the periodontal ligament. Periodontol 2000 24:56-72. 153. McCulloch CA, Melcher AH (1983). Cell density and cell generation in the periodontal ligament of mice. Am J Anat 167(1):43-58. 154. McKee MD, Farach-Carson MC, Butler WT, Hauschka PV, Nanci A (1993). Ultrastructural immunolocalization of noncollagenous (osteopontin and osteocalcin) and plasma (albumin and alpha 2HS-glycoprotein) proteins in rat bone. J Bone Miner Res 8(4):485-496. 155. Mogi M, Otogoto J, Ota N, Togari A (2004). Differential expression of RANKL and osteoprotegerin in gingival crevicular fluid of patients with periodontitis. J Dent Res 83(2):166-169. 156. Montague DC (2001). Interdisciplinary Techniques for the Study of Bone Pathophysiology: Quantitative Analysis, Tinctorial and Immunohistochemical Stains and Molecular Biology. National Society for Histotechnology 27th Annual Symposium and Convention, Charlotte, NC. 157. Montjovent MO, Burri N, Mark S, Federici E, Scaletta C, Zambelli PY et al. (2004). Fetal bone cells for tissue engineering. Bone 35(6):1323-1333. 158. Moxham BJ, Grant DA (1995). Development of the periodontal ligament. In: The periodontal ligament in health and disease. Berkovitz B, Moxham BJ, Newman HN, editors. Mosby-Wolfe, pp. 161-181. 159. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S et al. (1997). Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 89(5):773-779. 160. Murakami Y, Kojima T, Nagasawa T, Kobayashi H, Ishikawa I (2003). Novel isolation of alkaline phosphatase-positive subpopulation from periodontal ligament fibroblasts. J Periodontol 74(6):780-786. 161. Muschler GF, Nakamoto C, Griffith LG (2004). Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 86-A(7):1541-1558. 162. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR et al. (2002a). The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17-29. 163. Nakashima M (2005). Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Rev. 164. Nakashima M, Mizunuma K, Murakami T, Akamine A (2002b). Induction of dental pulp stem cell differentiation into odontoblasts by electroporation-mediated gene delivery of growth/differentiation factor 11 (Gdf11). Gene Ther 9(12):814-818. 165. Nakashima M, Nagasawa H, Yamada Y, Reddi AH (1994). Regulatory role of transforming growth factor-beta, bone morphogenetic protein-2, and protein-4 on gene e | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24413 | - |
| dc.description.abstract | Background: Bone morphogenic proteins (BMPs) are known to promote osteogenesis, and clinical trials are currently under way to evaluate the potential of BMPs to promote fracture-healing and bone regeneration. The aim of this study was to investigate the biological effects of rhBMP2 on primary cultured cells isolated from periodontal ligament, gingival tissue, cancellous bone of human specimens and bone marrow aspirate before clinical trial of rhBMP2 in periodontal tissue engineering.
Methods: We analyzed effect of different concentration of rhBMP2 on osteogenic activity in periodontal ligament fibroblasts (PDLF), gingival fibroblasts (GF), bone-derived cells (HBDC) and bone marrow-derived cells (HBMDC). Cytochemical staining and assay of alkaline phosphatase activity were performed in different cell types. Effect of rhBMP2 stimulation on in vitro mineralization was studied by Alizarin red S stain. Differential modulation of core biding factor 1 (Cbfa1), osteoprotegerin (OPG), and receptor of NF-κB (RANKL) mRNA expression by rhBMP2 were examined by semiquantitative RT-PCR. Results: rhBMP2 was found to stimulate an increase of alkaline phosphatase activity and cytochemical staining which was dose dependent (0-300ng/ml) in PDLF and HBDC. The study mentioned above was not in GF cells. HBMDC showed dramatically increased cytochemical staining at relative low dose of rhBMP2 (50ng/ml). rhBMP2 (300ng/ml) significantly enhanced in vitro mineralization in HBDC and HBMDC, but only had mild effect on PDLF cells in confluent 20-days culture. PDLF cells and HBDC showed the expression of Cbfa1, OPG, but not RANKL at mRNA level, and Cbfa1 mRNA level was up-regulated upon rhBMP2 stimulation. Conclusions: The data of this study support the concept that PDLF cells have phenotypes of osteoblast linage. The fact that rhBMP2 can both increase ALPase activity and promote in vitro mineralization in PDLF cells and HBDC raises the possibility that rhBMP2 may be useful in directing the regeneration of periodontal mineralized tissue during wound healing. Further study using signal such as rhBMP2 in tissue scaffold to modulate PDLF cells differentiation may be needed in tissue engineering of periodontal tissue. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:25:05Z (GMT). No. of bitstreams: 1 ntu-94-R91422014-1.pdf: 2987785 bytes, checksum: eb3020c2484492eef45ff19c590c863b (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Abstract 7
Introduction 9 I. Review of Literature 11 1.1 Cell populations in the periodontal ligament 15 1.2 Phenotypes difference between PDL Fibroblasts and Gingival fibroblasts 18 1.3 Evidence of PDL contain cells belong to osteoblast linage 21 1.3.1 Alkaline phosphatase expression in the PDLF 22 1.3.2 Non-collagen osteogenic proteins expression (BSP, OCN, OPN, ON) in PDLF 26 1.3.3 Role of some new osteogenic transcriptional factors (Runx2/Cbfa1, Osterix) expression in PDLF 32 1.3.4 Expression of RANKL/OPG in the periodontium 36 2. Bone Morphogenic Proteins 39 2.1 Introduction to Bone morphogenic proteins 40 2.2 BMPs, osteogenesis, chondrogenesis, dentinogenesis, and cementogenesis. 42 2.3 Roles of BMPs in the development of organs and tooth 45 2.4 Signal transduction of bone morphogenic proteins 47 2.5 Clinical application of rhBMP2 and the limitations 56 II. Specific aims of this study 59 III. Chapter 1: Modulation effect of rhBMP2 on osteogenic activity in periodontal ligamen fibroblasts 60 Introduction 60 Materials and Methods 62 Cell culture 62 Determination of optimal conditions for assaying modulating effect of rhBMP2 on alkaline phosphatase expression 62 a. Effect of serum concentration, medium types, osteoinductive medium (OIM), and dose-response on rhBMP2-induced ALPase in cultured PDLF in α-MEM or DMEM 62 b. Effect of OIM pre-incubation for rhBMP2 stimulation on ALPase expression of PDLF in DMEM. 64 c. Dose dependent effect of rhBMP2 on ALPase expression in optimal culture conditions - Assay by spectrophotometer 64 Statistical analysis 65 Results 67 a. Effect of serum concentration, medium type, and OIM on rhBMP2-induced ALPase in cultured PDLF. 67 b. Effect of OIM pre-incubation for hBMP2 stimulation on ALPase expression 68 c. Dose dependent response of rhBMP2 on ALPase expression (Measured by ALPase activity) 69 Discussion 70 Effect of serum on rhBMP2 induced ALPase expression 70 Effect of different medium on rhBMP2-induced ALPase expression 71 Effect of OIM on rhBMP2-induced ALPase expression 72 Dose-dependent response of rhBMP2 on the stimulation of ALPase activity 74 Biological activity Escherichia coli-derived recombinant human bone morphogenetic protein-2 75 Conclusions 77 IV. Chapter 2: Modulation effect of rhBMP2 on osteogenic activity in cultured human PDLF and osteoblast cell lines 84 Introduction 84 Materials and Methods 86 Cell culture 86 PDLF and GF (Periodontal ligament fibroblast and gingival fibroblast) 86 HBDC (human bone-derived cells) 87 HBMDC (human bone marrow-derived cells) 87 Alkaline phosphatase stain and activity analysis 87 Dose-response stimulation of ALPase by rhBMP2 88 Cellular total protein analysis 89 In vitro mineralization assay (Alizarin red-S staining) 89 Semi-quantitative RT-PCR analysis for genes expression of osteogenic proteins 90 Statistical analysis 92 Results 93 ALPase staining of PDLF, HBDC, HBMDC and GF in the basal culture condition 93 Enhancement of ALPase stains by rhBMP2 stimulation 93 Dose dependent response of rhBMP2-induced ALPase activity 94 In Vitro mineralization (Alizarin red-S stain) 94 RT-PCR analysis for gene expression of osteogenesis-related proteins 95 rhBMP2 regulated new osteogenic gene expression after pre-incubated in OIM 95 Discussion 97 rhBMP2 enhanced ALPase expression in cultured cells 97 rhBMP2 enhanced in vitro mineralization in cultured cells 100 Osteogenic genes expression in the HBMDC, HBDC, PDLF and GF and the modulation effect of rhBMP2 on osteogenic genes expression 103 Conclusions: 108 Appendix 119 1. Alkaline phosphatase stain protocols 119 2. The Coomassie Dye–Binding (Bradford) Assay for Determining Total Protein 119 3. RNA extraction procedures 121 4. Reverse transcription procedures 122 5. PCR reagents and procedures 123 6. Electrophoresis reagents and procedures 123 7. Extraction procedures for Alizarin red-S 124 8. Discussion for quantification of alizarin red-S staining 124 Reference List 126 List of Figures Review of Literature Fig 1. Diagrammatic view of a developing tooth at the cap stage…………………………………12 Fig 2. Differentiation factors in chondrocytic and osteoblastic differentiation……………………35 Fig 3. Current understanding of preosteoblastic/stromal cell regulation of osteoclastogenesis…...38 Fig 4. Schematic structure of a TGF-β superfamily member……………………………………...40 Fig 5. Schematic structure of TGF β superfamily type I and type II serine/threonine kinase receptors……………………………………………………………………………………47 Fig 6.BMP and TGFβ signaling ligands, receptors and transcription……………………………..48 Fig 7. Summary of linking extracellular signaling, intracellular signaling, adhesion molecules, and cartilage phenotypes together……………………………………………………………...49 Fig 8. Signal transduction via BMP receptors in addition to Smad. BMPs have also been reported to activate MAP kinases…………………………………………………………………...51 Fig 9. Crosstalk of the BMP–Smad pathway with other signal transduction pathways…………...52 Fig 10. Conceptual figure model for a Wnt autocrine loop………………………………………..52 Fig 11. BMP signaling is regulated at different molecular levels…………………………………54 Chapter I Fig 1. Effect of serum concentration on rhBMP2 stimulated ALPase expression of PDLF in the α-MEM. 78 Fig 2. ALPase staining in confluent PDLF cultured in either α-MEM or DMEM containing 10% FBS. 79 Fig 3. Effect of OIM pre-incubation and serum concentration on ALPase expression in PDLF cultured in DMEM. 80 Fig 4. Effect of OIM pre-incubation for rhBMP2 stimulation on ALPase expression of PDLF 81 Fig 5. Effect of rhBMP2 on ALPase activity in cultured PDLF. 82 Chapter II Fig 1. Cytochemical staining of ALPase in various cell types at confluent status. 110 Fig 2. (A) ALPase staining in cultured cells pre-incubated in the presence of OIM and then treated with rhBMP2 in the same culture medium 111 Fig 2. (B)ALPase staining in cultured cells pre-incubated in the presence of OIM and then treated with rhBMP2 in the same culture medium 112 Fig 3. Dose-dependent effect of rhBMP2 on ALPase activity in PDLF, HBDC, and GF 113 Fig 4. Effect of rhBMP2 on in vitro mineralization 114 Fig 5. Quantitation of calcium-binding of Alizarin red-S 115 Fig 6. RT-PCR analysis of gene expression 116 Fig 7. Gene expression after stimulation with rhBMP2 116 List of Tables Literature Review Table 1. Evidence for phenotypic variations among PDLF and GF………………………………19 Table 2. ALPase expression in human PDLF and its regulatory molecules……………………….24 Table 3. Evidences of ALPase expression in the PDLF that may involve in the acellular cementum formation…………………………………………………………………………………25 Table 4. Summary of non-collagenous osteogenic proteins expression in the PDLF……………..31 Table 5. Bone morphogenic protein family in humans and chromosome location….…………….41 Table 6. Inhibitors of BMP activity……………………………………………………………….53 Chapter I Table 1. Effect of rhBMP2 on ALPase activity in cultured PDLF. 83 Chapter II Table 1. Primer and PCR conditions used in this study 117 Table 2. Effect of rhBMP2 on ALPase activity in cultured cells 118 | |
| dc.language.iso | en | |
| dc.subject | 第二類骨成型蛋白 | zh_TW |
| dc.subject | 牙周韌帶細胞 | zh_TW |
| dc.subject | BMP2 | en |
| dc.subject | periodontal ligament fibroblast | en |
| dc.title | Modulation effect of rhBMP2 on osteogenic activity in human periodontal ligament fibroblasts and osteoblast cell lines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 傅鍔,王敏瑩,劉謙美 | |
| dc.subject.keyword | 牙周韌帶細胞,第二類骨成型蛋白, | zh_TW |
| dc.subject.keyword | periodontal ligament fibroblast,BMP2, | en |
| dc.relation.page | 144 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-22 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
