Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2440
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 闕志鴻(Tzi-Hong Chiueh) | |
dc.contributor.author | Yen-Kai Huang | en |
dc.contributor.author | 黃彥凱 | zh_TW |
dc.date.accessioned | 2021-05-13T06:40:15Z | - |
dc.date.available | 2017-07-28 | |
dc.date.available | 2021-05-13T06:40:15Z | - |
dc.date.copyright | 2017-07-28 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-26 | |
dc.identifier.citation | Allen, A., Shu, F. H., and Li, Z. Y. (2003). Collapse of Magnetized Singular Isothermal Toroids. I. The Nonrotating Case. The Astrophysical Journal, 599:351–362.
Alves, F. O. and Franco, G. A. P. (2007). An Accurate Determination of the Distance to the Pipe Nebula. Astronomy & Astrophysics, 603:597–603. Alves, F. O., Franco, G. A. P., and Girart, J. M. (2008). Optical Polarimetry Toward the Pipe Nebula: Revealing the Importance of the Magnetic Field. Astronomy & Astrophysics, 16:13–16. Alves, J., Lombardi, M., and Lada, C. J. (2007). The Mass Function of Dense Molecular Cores and the Origin of the IMF. Astronomy & Astrophysics, 462(1):L17–L21. Brenner, M. P., Hilgenfeldt, S., and Lohse, D. (2002). Single-bubble Sonoluminescence. Reviews of Modern Physics, 74(April):425–484. Evans, C. R. and Hawley, J. F. (1988). Simulation of Magnetohydrodynamic Flows: A Constrained Transport Method. The Astrophysical Journal, 332:659–677. Gritschneder, M. and Lin, D. N. C. (2012). The Role of theta Oph in the Formation and Evolution of the Pipe Nebula—Is Star Formation Ever Isolated? The Astrophysical Journal, 754(1):L13–L17. Jin, S. and Xin, Z. (1995). The Relaxation Schemes for Systems of Conservation Laws in Arbitrary Space Dimensions. Communications on Pure and Applied Mathematics, 48(3):235–276. Kim, G., Lee, C. W., Gopinathan, M., Jeong, W.-S., and Kim, M.-R. (2016). Dense Molecular Cores Being Externally Heated. The Astrophysical Journal, 824(2):1–24. Lada, C. J., Muench, A. A., Rathborne, J., Alves, J. F., and Lombardi, M. (2008). The Nature of the Dense Core Population in the Pipe Nebula: Thermal Cores Under Pressure. The Astrophysical Journal, 672(1):410–422. Li, Z. Y. and Shu, F. H. (1996). Magnetized Singular Isothermal Toroids. The Astrophysical Journal, 472:211–224. Lippok, N., Launhardt, R., Semenov, D., Stutz, A. M., Balog, Z., Henning, T., Krause, O., Linz, H., Nielbock, M., Pavlyuchenkov, Y. N., Schmalzl, M., Schmiedeke, A., and Bieging, J. H. (2013). Gas-phase CO Depletion and N2H+ Abundances in Starless Cores. Astronomy & Astrophysics, 560:A41. Lombardi, M., Alves, J., and Lada, C. J. (2006). 2MASS Wide Field Extinction Maps. Astronomy & Astrophysics, 454(3):781–796. Nakano, T. and Nakamura, T. (1978). Gravitational Instability of Magnetized Gaseous Disks. Publications of the Astronomical Society of Japan, 30:671–680. Pen, U., Arras, P., and Wong, S. (2003). A Free, Fast, Simple, and Efficient Total Variation Diminishing Magnetohydrodynamic Code. The Astrophysical Journal Supplement Series, 149:447–455. Schive, H.-Y., Tsai, Y.-C., and Chiueh, T. (2010). GAMER : A Graphic Processing Unit Accelerated Adaptive-mesh-refinement Code for Astrophysics. The Astrophysical Journal Supplement Series, 186:457–484. Shu, F. H. (1977). Self-similar Collapse of Isothermal Spheres and Star Formation. The Astrophysical Journal, 214:488–497. Stone, J. M., Gardiner, T. A., Teuben, P., Hawley, J. F., and Simon, J. B. (2008). Athena: A New Code for Astrophysical MHD. The Astrophysical Journal Supplement Series, 178:137–177. Trac, H. and Pen, U.-L. (2003). A Primer on Eulerian Computational Fluid Dynamics for Astrophysics. Publications of the Astronomical Society of the Pacific, 115:303–321. Troland, T. H. and Crutcher, R. M. (2008). Magnetic Fields in Dark Cloud Cores: Arecibo OH Zeeman Observations. The Astrophysical Journal, 680(1):457–465. Zhang, U.-H., Schive, H.-Y., and Chiueh, T. Magnetohydrodynamics with GAMER (in prep.). Zhang, U.-H., Schive, H.-Y., and Chiueh, T. (2015). Sound-Triggered Collapse of Stably Oscillating Low-Mass Cores in a Two-Phase Interstellar Medium. Monthly Notices of the Royal Astronomical Society, 449:3183–3190. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2440 | - |
dc.description.abstract | 於此研究我們分析由環境中波狀擾動所觸發的前恆星核的塌縮。在前人的研究結果中,不考慮磁場及旋轉所造成的效應下,模擬結果顯示當波狀擾動以脈波的形式撞擊核心,脈波的振幅大於背景值的~2.5% 時,便足以在最適條件下造成核心塌縮。藉由將延伸至理想磁流體系統的鬆弛全差變遞減方法套用到 GAMER 程式碼中,我們得以考慮背景磁場對上述波致塌縮機制的影響。另外,考慮到系統中發生的加熱及冷卻效應,我們使用了兩種特別的狀態方程,它們最大的特點在於所牽涉的絕熱指數具有密度的相依性。
在背景磁場的影響下,進入完全鬆弛狀態的核心其形狀改變為一扁平橢球,而當我們不考慮磁場造成的效應,原本的球狀核心在鬆弛過程中不改變它的形狀。對於完全鬆弛的核心,我們用脈波撞擊之。當脈波到達核心時,它會在核心外表面產生向內傳播的橢圓震波,如果脈波夠強,這些震波的匯聚就足以造成核心的塌縮。對此機制來說,若使用第一種狀態方程,最適頻率落在 v/v0=4.5;而當我們使用第二種狀態方程,最適頻率則會減小至 v/v0=1.5。 當脈波以垂直背景磁場的方向撞擊核心,若要導致塌縮,脈波的振幅需有背景值的 16.5%,這比我們不考慮磁場效應的對應組還多了~30%。同時若脈波傳遞方向與背景磁場重合,波致塌縮機制的效率亦會顯著減小。最後,藉由將我們波致塌縮模擬的結果與前人相比較,兩者波致塌縮的過程差異讓我們對此機制有更深入的了解。 | zh_TW |
dc.description.abstract | We analyze the collapse of isolated starless cores triggered by the impingement of wave-like perturbations. Previous work has shown that in the absence of the magnetic field and the initial rotation, a Gaussian sound pulse with its amplitude at least ~2.5% relative to the ambient gas can set off the collapse in the optimal case. By implementing the ideal MHD extension of relaxing TVD (RTVD) scheme into the GAMER code, we study this collapse mechanism regarding the magnetic interplay and the core rotation. To model the heating and cooling effects, we apply two types of the equation of state (EOS) that the adiabatic index is density-dependent.
In the magnetic cases, the fully-relaxed core is a oblate spheroidal, while the spherical shape is retained in the non-magnetic case. Different Gaussian fast pulses are then launched toward the cores. On its arrival, the pulse generates inward spheroidal shocks on the core surface. The convergence of the shock fronts results in the core collapse provided the pulse is strong enough. The favorite frequency of the mechanism is v/v0=4.5 when the type 1 EOS is applied. In the cases of the type 2 EOS, the favorite frequency shifts to a smaller value, v/v0=1.5. For a pulse propagating perpendicular to the background magnetic field, the required pulse amplitude is 16.5% relative to the ambient, ~30% more than the corresponding value in the non-magnetic case. Meanwhile, the alignment between the pulse propagating direction and the magnetic field lines substantially decreases the efficiency of the material compression. Finally, we compare our results to the previous work to gain more insights into the nature of the wave-triggered collapse. | en |
dc.description.provenance | Made available in DSpace on 2021-05-13T06:40:15Z (GMT). No. of bitstreams: 1 ntu-106-R02244003-1.pdf: 8933015 bytes, checksum: a0c08a7b424185da94993bce1f0baf2e (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 誌謝 v
摘要 vii Abstract ix 1 Introduction 1 1.1 Collapse initialized by a pulse impingement event . . . . . . . . . . . . . 2 1.2 Isolated starless core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Magnetic field interplay in the collapse process . . . . . . . . . . . . . . 3 2 Methods 5 2.1 Ideal MHD equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 GAMER code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 GPU-accelerated computation . . . . . . . . . . . . . . . . . . . 8 2.2.2 Adaptive mesh refinement (AMR) technique . . . . . . . . . . . 10 2.3 Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1 RTVD scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.2 Solving the induction equation . . . . . . . . . . . . . . . . . . . 14 3 Simulation setup 17 3.1 Initial and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.3 Mesh refinement criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 The Gaussian fast pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Results 25 4.1 Core relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Core response to wave impingement . . . . . . . . . . . . . . . . . . . . 42 5 Discussion 51 5.1 Bipolar velocity channels and fingering instabilities during core relaxation 51 5.2 Core relaxation with different equations of state . . . . . . . . . . . . . . 54 5.3 Collapse triggered by inward spheroidal waves . . . . . . . . . . . . . . 55 6 Conclusions 57 A Core destabilization by the choice of the equation of state 59 B Difference of the simulation setup with the previous work 61 Bibliography 63 | |
dc.language.iso | en | |
dc.title | 對磁聲波觸發前恆星核塌縮之模擬 | zh_TW |
dc.title | Simulating the Collapse of Prestellar Cores Triggered by Magnetosonic Waves | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂聖元(Sheng-Yuan Liu),賴詩萍(Shih-Ping Lai) | |
dc.subject.keyword | 磁流體力學,恆星形成,前恆星系統,類太陽恆星,數值模擬, | zh_TW |
dc.subject.keyword | magnetohydrodynamics,star formation,prestellar systems,solar-luminous stars,numerical simulation, | en |
dc.relation.page | 65 | |
dc.identifier.doi | 10.6342/NTU201702050 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2017-07-26 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 天文物理研究所 | zh_TW |
Appears in Collections: | 天文物理研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-106-1.pdf | 8.72 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.