請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24332完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 董桂書(Kuei-Shu Tung) | |
| dc.contributor.author | Feng-Hsuan Teng | en |
| dc.contributor.author | 鄧鳳璇 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:22:14Z | - |
| dc.date.copyright | 2005-07-28 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-25 | |
| dc.identifier.citation | Bahman, M., Buck, V., White, A., and Rosamond, J. (1988). Characterisation of the CDC7 gene product of Saccharomyces cerevisiae as a protein kinase needed for the initiation of mitotic DNA synthesis. Biochim. Biophys. Acta 951, 335-343.
Beg, A.A., and Baldwin, A.S. Jr. (1993). The I kappa B proteins: multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev. 7, 2064-2070. Benjamin, K.R., Zhang, C., Shokat, K.M., and Herskowitz, I. (2003). Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev. 17, 1524-1539. Bell, S.P., and Dutta, A. (2002). DNA replication in eukaryotic cells. Annu Rev Biochem. 71, 333-374. Bell, S.P., and Stillman, B. (1992). ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128-134. Bishop, D.K., Park, D., Xu, L., and Kleckner, N. (1992). DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439-456. Cocker, J.H., Piatti, S., Santocanale, C., Nasmyth, K., and Diffley, J.F. (1996). An essential role for the Cdc6 protein in forming the pre-replicative complexes of budding yeast. Nature 379, 180-182. Chu, S., and Herskowitz, I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1, 685-696. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O., and Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science 282, 699-705. Clancy, M.J. (1998). Meiosis: step-by-step through sporulation. Curr. Biol. 8, R461-463. Celniker, S.E., Sweder, K., Srienc, F., Bailey, J.E. and Campbell, J.L. (1984). Deletion mutations affecting autonomously replicating sequence ARS1 of Saccharomyces cerevisiae. Mol. Cell Biol. 4, 2455-2466. Della Seta, F., Ciafre, S.A., Marck, C., Santoro, B., Presutti, C., Sentenac, A., and Bozzoni, I. (1990). The ABF1 factor is the transcriptional activator of the L2 ribosomal protein genes in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 2437-2441. Diffley, J.F., Cocker, J.H., Dowell, S.J., and Rowley, A. (1994). Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303-316. Diffley, J.F., and Stillman, B. (1989). Similarity between the transcriptional silencer binding proteins ABF1 and RAP1. Science 246, 1034-1038. Dirick, L., Goetsch, L., Ammerer, G., and Byers, B. (1998). Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae. Science 281, 1854-1857. Grushcow, J.M., Holzen, T.M., Park, K.J., Weinert, T., Lichten, M., and Bishop, D.K. (1999). Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 153, 607-620. Guttmann-Raviv, N., Boger-Nadjar, E., Edri, I., and Kassir, Y. (2001). Cdc28 and Ime2 possess redundant functions in promoting entry into premeiotic DNA replication in Saccharomyces cerevisiae. Genetics 159, 1547-1558. Haber, J.E. (1998). Meiosis: Avoiding inappropriate relationships. Curr. Biol. 8, R832-835. Hartwell, L.H., and Weinert, T.A. (1989). Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629-634. Hepworth, S.R., Friesen, H., and Segall, J. (1998). NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol. Cell Biol. 18, 5750-5761. Ito, H., Fukada, Y., Murata, K., and Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168. Jackson, A.L., Pahl, P.M., Harrison, K., Rosamond, J., and Sclafani, R.A. (1993). Cell cycle regulation of the yeast Cdc7 protein kinase by association with the Dbf4 protein. Mol. Cell. Biol. 13, 2899-2908. Hu, Y.F., Hao, Z.L., and Li, R. (1999). Chromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1. Genes Dev. 13, 637-642. Kelly, T.J., and Brown, G.W. (2000). Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829-880. Kleckner, N. (1996). Meiosis: how could it work? Proc. Natl. Acad. Sci. USA 93, 8167-8174. Lakin, N.D., and Jackson, S.P. (1999). Regulation of p53 in response to DNA damage. Oncogene 53, 7644-7655. Lamoureux, J.S., Stuart, D., Tsang, R., Wu, C., and Glover, J.N. (2002). Structure of the sporulation-specific transcription factor Ndt80 bound to DNA. EMBO J. 21, 5721-5732. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., Hannett, N.M., Harbison, C.T., Thompson, C.M., Simon, I., Zeitlinger, J., Jennings, E.G., Murray, H.L., Gordon, D.B., Ren, B., Wyrick, J.J., Tagne, J.B., Volkert, T.L., Fraenkel, E., Gifford, D.K., and Young, R.A. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 198, 799-804. Leu, J.Y., Chua, P.R., and Roeder, G.S. (1998). The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94, 375-386. Li, X., and Nicklas, R.B. (1995). Mitotic forces control a cell-cycle checkpoint. Nature 373, 630-632. Lindgren, A., Bungard, D., Pierce, M., Xie, J., Vershon, A., and Winter, E. (2000). The pachytene checkpoint in Saccharomyces cerevisiae requires the Sum1 transcriptional repressor. EMBO J. 19, 6489-6497. Lipford, J.R., and Bell, S.P. (2001). Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol. Cell 7, 21-30. Loidl, J., Nairz, K., and Klein, F. (1991). Meiotic chromosome synapsis in a haploid yeast. Chromosoma 100, 221–228. Lüscher, B., Christenson, E., Litchfield, D.W., Krebs, E.G., and Eisenman, R.N. (1990). Myb DNA binding inhibited by phosphorylation at a site deleted during oncogenic activation. Nature 344, 517-522. Lydall, D., Nikolsky, Y., Bishop, D.K., and Weinert, T. (1996). A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383, 840-843. Marahrens, Y., and Stillman, B. (1992). A yeast chromosomal origin of replication defined by multiple functional elements. Science 255, 817-823. Mitchell, A.P., Driscoll, S.E., and Smith, H.E. (1990). Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Mol. Cell Biol. 10, 2104-2110. Montano, S.P., Cote, M.L., Fingerman, I., Pierce, M., Vershon, A.K., and Georgiadis, M.M. (2002a). Crystal structure of the DNA-binding domain from Ndt80, a transcriptional activator required for meiosis in yeast. Proc. Natl. Acad. Sci. USA 99, 14041-14046. Montano, S.P., Pierce, M., Cote, M.L., Vershon, A.K., and Georgiadis, M.M. (2002b). Crystallographic studies of a novel DNA-binding domain from the yeast transcriptional activator Ndt80. Acta Crystallogr. D Biol. Crystallogr. 58, 2127-2130. Morrow, B.E., Johnson, S.P., and Warner, J.R. (1993). The rRNA enhancer regulates rRNA transcription in Saccharomyces cerevisiae. Mol. Cell Biol. 13, 1283-1289. Morse, R.H. (2000). RAP, RAP, open up! New wrinkles for RAP1 in yeast. Trends Genet. 16, 51-53. Murakami, H., and Nurse, P. (1999). Meiotic DNA replication checkpoint control in fission yeast. Genes Dev. 13, 2581-2593. Nag, D.K., Scherthan, H., Rockmill, B., Bhargava, J., and Roeder, G.S. (1995). Heteroduplex DNA formation and homolog pairing in yeast meiotic mutants. Genetics 141, 75-86. Nasmyth, K. (1993). Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol. 5, 166-179. Newlon, C.S., and Theis, J.F. (1993). The structure and function of yeast ARS elements. Curr. Opin. Genet. Dev. 3, 752-758. Nguyen, V.Q., Co, C., and Li, J.J. (2001). Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411, 1068-1073. Ozsarac, N., Straffon, M.J., Dalton, H.E., and Dawes, I.W. (1997). Regulation of gene expression during meiosis in Saccharomyces cerevisiae: SPR3 is controlled by both ABFI and a new sporulation control element. Mol. Cell Biol. 17, 1152-1159. Pak, J., and Segall, J. (2002a). Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol. Cell Biol. 22, 6417-6429. Pak, J., and Segall, J. (2002b). Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol. Cell Biol. 22, 6430-6440. Pasero, P., Duncker, B.P., Schwob, E., and Gasser, S.M. (1999) A role for the Cdc7 kinase regulatory subunit DBf4 in the formation of the initiation competent origins of replication. Genes Dev. 13, 2159-2176. Pijnappel, W.W., Schaft, D., Roguev, A., Shevchenko, A., Tekotte, H., Wilm, M., Rigaut, G., Seraphin, B., Aasland, R., and Stewart, A.F. (2001). The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev. 15, 2991-3004. Rao, H., and Stillman, B. (1995). The origin recognition complex interacts with a bipartite DNA binding site within yeast replicators. Proc. Natl. Acad. Sci. USA 92, 2224-2228. Rhode, P.R., Sweder, K.S., Oegema, K.F., and Campbell, J.L. (1989). The gene encoding ARS-binding factor I is essential for the viability of yeast. Genes Dev. 3, 1926-1939. Rockmill, B., and Roeder, G.S. (1990). Meiosis in asynaptic yeast. Genetics 126, 563-574. Rockmill, B., Sym, M., Scherthan, H., and Roeder, G.S. (1995). Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 9, 2684-2695. Roeder, G.S. (1995). Sex and the single cell: meiosis in yeast. Proc. Natl. Acad. Sci. USA 92, 10450-10456. Roeder, G.S. (1997). Meiotic chromosomes: it takes two to tango. Genes Dev. 11, 2600-2621. Roeder, G.S., and Bailis, J.M. (2000). The pachytene checkpoint. Trends Genet. 16, 359-403. Rothstein, R. (1991). Targeting, disruption, replacement and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194, 281-301. Rowley, A., Cocker, J.H., Harwood, J., and Diffley, J.F. (1995). Initiation complex assembly at budding yeast replication origins begins with the recognition of a bipartite sequence by limiting amounts of the initiator, ORC. EMBO J. 14, 2631-2641. Sambrook, J., and Russell, D.W. (2001). Molecular cloning. 3rd ed. Cold Spring Harbor Laboratory, New York. San-Segundo, P.A., and Roeder, G.S. (1999). Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97, 313-324. Schwob, E., and Nasmyth, K. (1993). CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7, 1160-1175. Schwob, E., Bohm, T., Mendenhall, M.D., and Nasmyth, K. (1994). The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233-244. Sherman, F. (1991). Getting started with yeast. Methods Enzymol. 194, 3-21. Sherman, F., and Wakem, P. (1991). Mapping yeast genes. Methods Enzymol. 194, 38-57. Sherman, F., Fink, G.R., and Hicks, J.B. (1986). Methods in Yeast genetics: a Laboratory Manual (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press). Shore, D. (1994). RAP1: a protean regulator in yeast. Trends Genet. 10, 408-412. Shuster, E.O., and Byers, B. (1989). Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae. Genetics 123, 29-43. Silve, S., Rhode, P.R., Coll, B., Campbell, J., and Poyton, R.O. (1992). ABF1 is a phosphoprotein and plays a role in carbon source control of COX6 transcription in Saccharomyces cerevisiae. Mol. Cell Biol. 12, 4197-4208. Sopko, R., Raithatha, S., and Stuart, D. (2002). Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol. Cell Biol. 22, 7024-7040. Stillman, B. (1996). Cell cycle control of DNA replication. Science 274, 1659-1664. Stinchcomb, D.T., Struhl, K., and Davis, R.W. (1979). Isolation and characterization of a yeast chromosomal replicator. Nature 282, 39-43. Stuart, D., and Wittenberg, C. (1998). CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev. 12, 2698-2710. Sym, M., and Roeder, G.S. (1994). Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79, 283-292. Sym, M., Engebrecht, J.A., and Roeder, G.S. (1993). ZIP1 is synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365-378. Tanaka, S., and Diffley, J.F. (2002). Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2-7 during G1 phase. Nature Cell Biol. 4, 198-207. Tung, K.S., Hong, E.J., and Roeder, G.S. (2000). The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. Proc. Natl. Acad. Sci. USA 97, 12187-12192. Venditti, P., Costanzo, G., Negri, R., and Camilloni, G. (1994). ABFI contributes to the chromatin organization of Saccharomyces cerevisiae ARS1 B-domain. Biochim. Biophys. Acta 1219, 677-689. Wang, Y. (2003). Analysis of yeast meiosis-specific transcription factor mutant, NDT80-bc. Master Thesis. National Taiwan University. Taiwan. Wu, JF. (2001). Relationship between Ndt80 phosphorylation and its function. Master Thesis. National Taiwan University. Taiwan. Xie, J., Pierce, M., Gailus-Durner, V., Wagner, M., Winter, E., and Vershon, A.K. (1999). Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J. 18, 6448-6454. Xu, L., Ajimura, M., Padmore, R., Klein, C., and Kleckner, N. (1995). NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell Biol. 15, 6572-6581. Xu, L., Weiner, B.M., and Kleckner, N. (1997). Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 11, 106-118. Yoon, H.J., and Campbell, J.L. (1991). The CDC7 protein of S. cerevisiae is a phosphoprotein that contains protein kinase activity. Proc. Natl. Acad. Sci. 88, 3574-3578. Zhu, J., Newlon, C.S., and Huberman, J.A. (1992). Localization of a DNA replication origin and termination zone on chromosome III of Saccharomyces cerevisiae. Mol. Cell Biol. 12, 4733-4741. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24332 | - |
| dc.description.abstract | 在出芽酵母菌(Saccharomyces cerevisiae)中,Ndt80是一個在減數分裂時特定表現的轉錄因子(transcriptional activator),它能夠誘導減數分裂中期基因的表現。有趣的是,在營養細胞中異位表現 (ectopic expression) Ndt80會造成細胞生長週期停滯在G1/S時期。由這樣的結果可推測,或許Ndt80能夠抑制第一次減數分裂(meiosis I)和第二次減數分裂(meiosis II)中間發生另一次DNA複製,使得細胞能夠成功地產生單倍體的孢子。Ndt80抑制DNA複製也許是透過誘導B-type cyclins基因或其他調控細胞週期進行的基因的表現,或者是經由Ndt80本身直接地結合在DNA的複製起始點上。
為了區別這兩種可能性,我們構築一系列的Ndt80片段缺失突變株(in-frame deletions),其缺失的區域分別在DNA結合區 (DNA-binding domain)或活化轉錄區 (transcription-activation domain)。將這些突變株於營養細胞中進行異位表現,測試這些突變是否會影響NDT80在營養細胞表現時造成的細胞生長停滯。結果發現Ndt80的DNA結合區對於造成G1/S時期的生長停滯是必要的;另一方面,Ndt80的活化轉錄區對於造成生長停滯並不是絕對地需要。此外,在B-type cyclins缺失的細胞中異位表現 NDT80仍然能夠造成細胞生長週期停滯在G1/S時期,顯示抑制DNA複製的機制似乎不是透過誘導Ndt80調控的基因。然而,利用染色質免疫沉澱分析(chromatin immunoprecipitation assay)無法提供證據證明Ndt80能夠直接地與DNA複製起始點結合。 另外,在這些片段缺失突變株中,我們發現一個有趣的突變,ndt80∆404-503。利用減數分裂時間曲線的分析以及更進一步的片段缺失分析,我們推測ndt80∆404-503是一個特別且功能可區別的NDT80突變株,它喪失了抑制DNA複製的功能,但仍保有部分活化轉錄的功能。 | zh_TW |
| dc.description.abstract | In Saccharomyces cerevisiae, Ndt80 is a meiosis-specific transcriptional activator that binds to the promoter element termed MSE (middle sporulation element) and induces expression of middle sporulation genes. Interestingly, ectopic expression of NDT80 in vegetative cells causes cell cycle arrest at the G1/S phase. It is possible that Ndt80 may repress another round of DNA replication between meiosis I and meiosis II, thus to successfully produce haploid spores. Repression of DNA replication by Ndt80 could be due to the induction of B-type cyclins or other unidentified genes that regulate cell cycle progression. Alternatively, it could be directly due to the binding of Ndt80 itself to the origins of DNA replication.
To distinguish between these two possibilities, we have constructed a series of in-frame deletions in the DNA-binding domain or the transcription-activation domain of Ndt80 and tested for their effects on cell cycle arrest. The results showed that the DNA-binding domain is essential for the repression at G1/S. On the other hand, the transcription-activation domain is not absolutely required for the cell cycle arrest. Furthermore, ectopic expression of NDT80 in null mutants of B-type cyclins still causes G1/S arrest, suggesting that the induction of Ndt80-regulated genes is unlikely to be the repression mechanism. However, the chromatin immunoprecipitation assays did not provide evidence for physical associations between Ndt80 and the origins of DNA replication for the direct mechanism. Additionally, among these deletion mutations, we have isolated an interesting one, ndt80∆404-503. Based on meiotic time course analyses and further deletion analyses, we suggest that ndt80∆404-503 is a special separation-of-function mutation of NDT80 that loses the ability in repression of DNA replication but retains partial function in transcription activation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:22:14Z (GMT). No. of bitstreams: 1 ntu-94-R92b43006-1.pdf: 422980 bytes, checksum: 79d335ae59c4f12b00465d0b7c03db94 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | ABSTRACT ................................................i
中文摘要 ...............................................ii TABLE OF CONTENTS .....................................iii LIST OF TABLES .........................................vi LIST OF FIGURES .......................................vii CHAPTER 1. INTRODUCTION .................................1 Meiosis Overview .......................................1 Cell Cycle Control of DNA Replication ..................2 1. Initiation of DNA replication in mitotic cells .....2 The origins of DNA replication .....................2 Pre-replicative complex (pre-RC) ...................3 Kinases controlling the transition to replication ..3 2. Pre-meiotic S phase ................................4 3. The control of once and only once DNA replication per cell cycle .....................................5 NDT80 .................................................6 Specific aims .........................................9 CHAPTER 2. MATERIALS AND METHODS .......................10 Strains, Media, and Genetic Methods ...................10 Molecular Biology Methods .............................10 General methods .......................................10 Construction of NDT80 in-frame deletions ..............11 Construction of pGAL-ndt80 ............................12 Disruption of B-type cyclins ..........................13 Time Course Analyses ..................................14 Meiotic time course analysis ..........................14 Growth analysis for galactose induction ...............14 Chromatin Immunoprecipitation (ChIP) ..................15 CHAPTER 3. RESULTS .....................................16 I. The Mechanism of Cell Cycle Arrest by Ectopic Expression of NDT80 ................................16 The transcription-activation domain is not required for the cell cycle arrest by Ndt80 ...................16 The functions of Ndt80 on repressing DNA replication and promoting sporulation could be separated .........18 Ndt80-induced cell cycle arrest does not depends on B-type cyclins ....................................19 ChIP assays did not detect the associations of Ndt80 with the origins of DNA replication ..................20 II. The Analysis of ndt80∆404-503 .....................21 ndt80∆404-503 is proficient in sporulation but loses the activity to cause cell cycle arrest ........21 Time course analyses of ndt80∆404-503 ................21 Construction of more subtle deletions of Ndt80 .......22 CHAPTER 4. DISCUSSION ..................................24 I. Mechanisms for Repressing DNA Replication by Ndt80 ...........................................24 The DNA-binding domain of Ndt80 is essential for Ndt80-induced cell cycle arrest, while the transcription-activation domain is not absolutely required .............................................24 Ndt80 may directly bind the replication origins or the other sequences in the yeast genome to repress DNA replication ..............................25 Ndt80 may repress DNA replication through an indirect mechanism by distinct domains that are different from promoting sporulation .................26 II. The Effects of ndt80∆404-503 ......................27 The deletion of residues 404-503 may lead to a conformational change in Ndt80 that affects its ability to repress DNA replication ...................27 The progression in the accumulations of the tetranucleated cells and asci seems to be slightly delayed in ndt80 BR2495 strain overexpressing ndt80∆404-503 ........................................28 The region between the DNA binding domain and the transcription-activation domain might be critical in the regulation of Ndt80 protein function ..........29 III. The Functions of Ndt80 on Meiotic Cell Cycle .....30 Ndt80 may have other functions in meiosis, in addition to transcription activation .................30 Similarities between Ndt80 and other multifunctional transcription factors ................................30 REFERENCES .............................................33 TABLES .................................................41 FIGURES ................................................48 APPENDIX ...............................................58 | |
| dc.language.iso | en | |
| dc.subject | Ndt80 | zh_TW |
| dc.subject | DNA複製 | zh_TW |
| dc.subject | 酵母菌 | zh_TW |
| dc.subject | 減數分裂 | zh_TW |
| dc.subject | 細胞週期 | zh_TW |
| dc.subject | meiosis | en |
| dc.subject | cell cycle | en |
| dc.subject | Ndt80 | en |
| dc.subject | DNA replication | en |
| dc.subject | budding yeast | en |
| dc.title | Ndt80蛋白抑制DNA複製之機制 | zh_TW |
| dc.title | Mechanisms for repressing DNA replication by Ndt80 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李秀敏(Hsou-Min Li),蔡宜芳(Yi-Fang Tsay) | |
| dc.subject.keyword | Ndt80,DNA複製,酵母菌,減數分裂,細胞週期, | zh_TW |
| dc.subject.keyword | Ndt80,DNA replication,budding yeast,meiosis,cell cycle, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 413.07 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
