Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24330
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor符文美
dc.contributor.authorMing-Yueh Wuen
dc.contributor.author吳明岳zh_TW
dc.date.accessioned2021-06-08T05:22:10Z-
dc.date.copyright2005-08-02
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citationAdvani, S., LaFrancis, D., Bogdanovic, E., Taxel, P., Raisz, L. G., & Kream, B. E. (1997). Dexamethasone suppresses in vivo levels of bone collagen synthesis in neonatal mice. Bone, 20(1), 41-46.
Asaumi, K., Nakanishi, T., Asahara, H., Inoue, H., & Takigawa, M. (2000). Expression of neurotrophins and their receptors (Trk) during fracture healing. Bone, 26(6), 625-633.
Bai, X. C., Lu, D., Bai, J., Zheng, H., Ke, Z. Y., Li, X. M., et al. (2004). Oxidative stress inhibits osteoblastic differentiation of bone cells by erk and NF-kB. Biochem Biophys Res Commun, 314(1), 197-207.
Beck, G. R., Jr. (2003). Inorganic phosphate as a signaling molecule in osteoblast differentiation. J Cell Biochem, 90(2), 234-243.
Blair, H. C., Robinson, L. J., & Zaidi, M. (2005). Osteoclast signalling pathways. Biochem Biophys Res Commun, 328(3), 728-738.
Boguslawski, G., Hale, L. V., Yu, X. P., Miles, R. R., Onyia, J. E., Santerre, R. F., et al. (2000). Activation of osteocalcin transcription involves interaction of protein kinase A- and protein kinase C-dependent pathways. J Biol Chem, 275(2), 999-1006.
D'Ippolito, G., Schiller, P. C., Perez-stable, C., Balkan, W., Roos, B. A., & Howard, G. A. (2002). Cooperative actions of hepatocyte growth factor and 1,25-dihydroxyvitamin D3 in osteoblastic differentiation of human vertebral bone marrow stromal cells. Bone, 31(2), 269-275.
Doggrell, S. A. (2004). Does the combination of alendronate and parathyroid hormone give a greater benefit than either agent alone in osteoporosis? Expert Opin Pharmacother, 5(4), 955-958.
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L., & Karsenty, G. (1997). Osf2/cbfa1: A transcriptional activator of osteoblast differentiation. Cell, 89(5), 747-754.
Falany, M. L., Thames, A. M., 3rd, McDonald, J. M., Blair, H. C., McKenna, M. A., Moore, R. E., et al. (2001). Osteoclasts secrete the chemotactic cytokine Mim-1. Biochem Biophys Res Commun, 281(1), 180-185.
Gittens, S. A., Wohl, G. R., Zernicke, R. F., Matyas, J. R., Morley, P., & Uludag, H. (2004). Systemic bone formation with weekly PTH administration in ovariectomized rats. J Pharm Pharm Sci, 7(1), 27-37.
Goltzman, D. (2002). Discoveries, drugs and skeletal disorders. Nat Rev Drug Discov, 1(10), 784-796.
Harada, S., & Rodan, G. A. (2003). Control of osteoblast function and regulation of bone mass. Nature, 423(6937), 349-355.
Hsu, H., Lacey, D. L., Dunstan, C. R., Solovyev, I., Colombero, A., Timms, E., et al. (1999). Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci U S A, 96(7), 3540-3545.
Hughes, D. E., Dai, A., Tiffee, J. C., Li, H. H., Mundy, G. R., & Boyce, B. F. (1996). Estrogen promotes apoptosis of murine osteoclasts mediated by TGF-b. Nat Med, 2(10), 1132-1136.
Inui, K., Maeda, M., Sano, A., Fujioka, K., Yutani, Y., Sakawa, A., et al. (1998). Local application of basic fibroblast growth factor minipellet induces the healing of segmental bony defects in rabbits. Calcif Tissue Int, 63(6), 490-495.
Itoh, K., Udagawa, N., Katagiri, T., Iemura, S., Ueno, N., Yasuda, H., et al. (2001). Bone morphogenetic protein 2 stimulates osteoclast differentiation and survival supported by receptor activator of nuclear factor-kB ligand. Endocrinology, 142(8), 3656-3662.
Kanis, J. A. (2002). Diagnosis of osteoporosis and assessment of fracture risk. Lancet, 359(9321), 1929-1936.
Karsenty, G., & Wagner, E. F. (2002). Reaching a genetic and molecular understanding of skeletal development. Dev Cell, 2(4), 389-406.
Kiviranta, R., Morko, J., Uusitalo, H., Aro, H. T., Vuorio, E., & Rantakokko, J. (2001). Accelerated turnover of metaphyseal trabecular bone in mice overexpressing cathepsin k. J Bone Miner Res, 16(8), 1444-1452.
Knothe Tate, M. L., Adamson, J. R., Tami, A. E., & Bauer, T. W. (2004). The osteocyte. Int J Biochem Cell Biol, 36(1), 1-8.
Kronenberg, H. M. (2003). Developmental regulation of the growth plate. Nature, 423(6937), 332-336.
Kuznetsov, S. A., Friedenstein, A. J., & Robey, P. G. (1997). Factors required for bone marrow stromal fibroblast colony formation in vitro. Br J Haematol, 97(3), 561-570.
Lacey, D. L., Timms, E., Tan, H. L., Kelley, M. J., Dunstan, C. R., Burgess, T., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2), 165-176.
Lee, K. W., Chun, K. S., Lee, J. S., Kang, K. S., Surh, Y. J., & Lee, H. J. (2004). Inhibition of cyclooxygenase-2 expression and restoration of gap junction intercellular communication in h-ras-transformed rat liver epithelial cells by caffeic acid phenethyl ester. Ann N Y Acad Sci, 1030, 501-507.
Liao, H. F., Chen, Y. Y., Liu, J. J., Hsu, M. L., Shieh, H. J., Liao, H. J., et al. (2003). Inhibitory effect of caffeic acid phenethyl ester on angiogenesis, tumor invasion, and metastasis. J Agric Food Chem, 51(27), 7907-7912.
Lorenzo, J. A. (1991). The role of cytokines in the regulation of local bone resorption. Crit Rev Immunol, 11(3-4), 195-213.
Mallonga, R. L., & Ontell, M. (1991). Reinnervation of murine muscle following fetal sciatic nerve transection. J Neurobiol, 22(9), 887-896.
Martin, T. J. (2004). Does bone resorption inhibition affect the anabolic response to parathyroid hormone? Trends Endocrinol Metab, 15(2), 49-50.
Michalopoulos, G., Houck, K. A., Dolan, M. L., & Leutteke, N. C. (1984). Control of hepatocyte replication by two serum factors. Cancer Res, 44(10), 4414-4419.
Mogi, M., Kondo, A., Kinpara, K., & Togari, A. (2000). Anti-apoptotic action of nerve growth factor in mouse osteoblastic cell line. Life Sci, 67(10), 1197-1206.
Nakanishi, T., Takahashi, K., Aoki, C., Nishikawa, K., Hattori, T., & Taniguchi, S. (1994). Expression of nerve growth factor family neurotrophins in a mouse osteoblastic cell line. Biochem Biophys Res Commun, 198(3), 891-897.
Neer, R. M., Arnaud, C. D., Zanchetta, J. R., Prince, R., Gaich, G. A., Reginster, J. Y., et al. (2001). Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med, 344(19), 1434-1441.
Noelker, C., Bacher, M., Gocke, P., Wei, X., Klockgether, T., Du, Y., et al. (2005). The flavanoide caffeic acid phenethyl ester blocks 6-hydroxydopamine-induced neurotoxicity. Neurosci Lett, 383(1-2), 39-43.
Oursler, M. J. (1994). Osteoclast synthesis and secretion and activation of latent transforming growth factor b. J Bone Miner Res, 9(4), 443-452.
Parlakpinar, H., Sahna, E., Acet, A., Mizrak, B., & Polat, A. (2005). Protective effect of caffeic acid phenethyl ester (cape) on myocardial ischemia-reperfusion-induced apoptotic cell death. Toxicology, 209(1), 1-14.
Pettway, G. J., Schneider, A., Koh, A. J., Widjaja, E., Morris, M. D., Meganck, J. A., et al. (2005). Anabolic actions of PTH (1-34): Use of a novel tissue engineering model to investigate temporal effects on bone. Bone, 36(6), 959-970.
Phan, T. C., Xu, J., & Zheng, M. H. (2004). Interaction between osteoblast and osteoclast: Impact in bone disease. Histol Histopathol, 19(4), 1325-1344.
Raisz, L. G. (1999). Physiology and pathophysiology of bone remodeling. Clin Chem, 45(8 Pt 2), 1353-1358.
Rosen, C. J., & Donahue, L. R. (1998). Insulin-like growth factors and bone: The osteoporosis connection revisited. Proc Soc Exp Biol Med, 219(1), 1-7.
Rubin, C. T., Gross, T. S., McLeod, K. J., & Bain, S. D. (1995). Morphologic stages in lamellar bone formation stimulated by a potent mechanical stimulus. J Bone Miner Res, 10(3), 488-495.
Sakou, T. (1998). Bone morphogenetic proteins: From basic studies to clinical approaches. Bone, 22(6), 591-603.
Simonet, W. S., Lacey, D. L., Dunstan, C. R., Kelley, M., Chang, M. S., Luthy, R., et al. (1997). Osteoprotegerin: A novel secreted protein involved in the regulation of bone density. Cell, 89(2), 309-319.
Skinner, H. C., Bartz, Z., Ladenbauer-Bellis, I., Pooley, A., & Albright, J. A. (1978). Scanning electron microscopy of osteogenesis imperfecta and normal deciduous human dentin. J Dent Res, 57(2), 418-419.
Sommerfeldt, D. W., & Rubin, C. T. (2001). Biology of bone and how it orchestrates the form and function of the skeleton. Eur Spine J, 10 Suppl 2, S86-95.
Sud'ina, G. F., Mirzoeva, O. K., Pushkareva, M. A., Korshunova, G. A., Sumbatyan, N. V., & Varfolomeev, S. D. (1993). Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett, 329(1-2), 21-24.
Suda, T., Nakamura, I., Jimi, E., & Takahashi, N. (1997). Regulation of osteoclast function. J Bone Miner Res, 12(6), 869-879.
Tam, C. S., Heersche, J. N., Murray, T. M., & Parsons, J. A. (1982). Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: Differential effects of intermittent and continuous administration. Endocrinology, 110(2), 506-512.
Teitelbaum, S. L. (2000). Bone resorption by osteoclasts. Science, 289(5484), 1504-1508.
Wiktor-Jedrzejczak, W., Bartocci, A., Ferrante, A. W., Jr., Ahmed-Ansari, A., Sell, K. W., Pollard, J. W., et al. (1990). Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A, 87(12), 4828-4832.
Yang, R. S., Liu, T. K., & Lin-Shiau, S. Y. (1993). Increased bone growth by local prostaglandin e2 in rats. Calcif Tissue Int, 52(1), 57-61.
Yasuda, H., Shima, N., Nakagawa, N., Mochizuki, S. I., Yano, K., Fujise, N., et al. (1998). Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): A mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 139(3), 1329-1337.
Zauli, G., Rimondi, E., Nicolin, V., Melloni, E., Celeghini, C., & Secchiero, P. (2004). TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF. Blood, 104(7), 2044-2050.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24330-
dc.description.abstract人類的骨骼終其一生都在不斷進行汰舊換新。骨骼的代謝主要是負責分解老舊骨骼的蝕骨細胞,和負責合成新骨質的造骨細胞之間的協同來維持。當二者之間失去平衡時就會引發各種疾病,例如蝕骨細胞功能低落的佝僂病 (osteopetrosis), 以及因蝕骨細胞相較之下過於旺盛所造成的骨質疏鬆症 (osteoporosis)。實驗中所用到的化合物370G,其結構是修飾自咖啡酸苯乙酯 (Caffeic acid phenethyl ester,CAPE)。CAPE是蜂膠中的主要成分,其具有很多種生理活性,包括抗氧化、抗發炎、抑制腫瘤、抑菌、抗病毒、抗黴菌、心血管保護與神經保護等等,而對於骨頭方面可以減少因氧化壓力所造成的造骨細胞的分化抑制。本論文則探討370G對於骨骼代謝的影響。in vivo方面,本篇實驗使用3週大的公鼠,利用兩種動物模式來評估370G對其骨骼代謝的影響。其一是在其膝部埋22號針,再經此每天施以vehicle (DMSO/saline)或370G (100 nM, 500 nM , 5 uM/10ul),連續給予一週,再過一週後犧牲之取出脛骨作切片染色分析。結果發現其海綿骨量以及TRAP-positive的組織區域皆有增加的傾向。另一個動物模式為將其坐骨神經切除後使其骨質流失,再每天以腹腔注射給予370G (1 mg/ kg),兩週後再犧牲之取出脛骨,用DXA檢測其骨密度。結果發現給予370G後,有拮抗因坐骨神經被切除所導致的骨質流失。而in vitro方面,分別作造骨細胞和蝕骨細胞的培養,發現370G均可促進其分化及功能。而在RT-PCR的分析中,發現370G可以增加造骨細胞Osteocalcin和BDNF的mRNA的表現量。總而言之,實驗中發現370G in vivo 方面可以促進骨質的新生, in vitro方面對於造骨細胞和蝕骨細胞均有促進的效果,因此370G可以增加骨骼之代謝,並且產生骨質新生的淨效果。zh_TW
dc.description.abstractThe skeleton is a metabolically active organ that undergoes continuous remodeling throughout life. Bone remodeling is controlled by two equal, but opposing forces: bone formation by osteoblasts and bone destruction or resorption by osteoclasts. When they lose the equilibrium, it will lead to bone diseases such as osteopetrosis, that the rate of bone formation is higher than the rate of bone resorption; and osteoporosis, that is the imbalance of bone remodeling favoring osteoclastic bone resorption. The structure of the compound 370G uesd in this experiment is derived from the modification of caffeic acid phenethyl ester (CAPE). CAPE is the major component in propolis. CAPE has exhibited a variety of properties, including antioxidant, antiinflammatory, antitumor, antibacterial, antimicrobial, cardioprotective, and neuroprotective effect. CAPE can also reduce the oxidative stress-induced inhibition of osteoblastic differentiation. Here we investigate the effect of 370G on the metabolism of bone in vivo and in vitro. 3 week-old S.D. male rats were used. Implantation of cannula (22G) was done from the posteriolaterial side into the proximal tibial metaphysis in limbs of the rats. Vehicle (DMSO/saline) or 370G (100 nM, 500 nM, 5 uM/10ul) were locally administered into tibia through the cannula for 7 consecutive days, the rats were then sacrificed on Day 14. The tibia bone slices were used for the analysis. In Comparison with the vehicle-treated side, treatment with the 370G markedly increased bone volume and the TRAP-positive cells. In addition, sciaticotomy was performed to cause the loss of bone formation. Intraperitoneal injection of 370G (1 mg/ kg) was performed on the following day of sciaticotomy, which persists for 2 week, and the rats were then sacrificed and the tibia bone was used for the analysis of BMD by DXA. Compared with the vehicle-treated-group, 370G can reverse the bone loss from the sciaticotomy. It was found that 370G can stimulate the differentiation of both osteoclasts and osteoblasts in cell cultures. 370G causes the up regulation of the expression of osteocalcin and BDNF mRNA in primary osteoblastic culture. In conclusion, we have found that 370G can stimulate the bone formation in vivo, and increase the differentiation and/or maturation of osteoclasts and osteoblasts leading to the net effect of bone formation.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:22:10Z (GMT). No. of bitstreams: 1
ntu-94-R92443012-1.pdf: 1338747 bytes, checksum: 10802d59e4ce1b59080dadf12fa2cf9c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents縮寫表………………………………...……………….1
英文摘要………………………………...…………….2
中文摘要………………………………………...…….4
緒論………………………………………...………….6
I. 骨骼生理………………………………………….…….8
1.組織型態……………………………………………8
2.骨骼細胞……………………………………………10
3.骨骼重塑……………………………………………15
4.相關疾病與用藥………………………………...….22
II. 化合物370G………………………….………….……23
實驗材料與方法………………………………..….……….24
結果……………………………………………...…….…..….34
討論…………………………………………...……..….....….38
結論與未來展望……………………………………...…….42
實驗結果圖………………………………………....……….43
參考文獻………………………………………….....……….54
dc.language.isozh-TW
dc.subject骨質疏鬆症zh_TW
dc.subject蝕骨細胞zh_TW
dc.subject造骨細胞zh_TW
dc.subjectosteoporosisen
dc.subjectosteoblasten
dc.subject370Gen
dc.subjectosteoclasten
dc.title370G 對於骨骼代謝之影響zh_TW
dc.titleEffects of 370G on the Bone Metabolismen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林琬琬,楊春茂,楊榮森,郭悅雄
dc.subject.keyword造骨細胞,蝕骨細胞,骨質疏鬆症,zh_TW
dc.subject.keywordosteoblast,osteoclast,370G,osteoporosis,en
dc.relation.page58
dc.rights.note未授權
dc.date.accepted2005-07-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
1.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved