請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2431完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾文毅(Wen-Yih Tseng) | |
| dc.contributor.author | Hsiang-Kuang Liang | en |
| dc.contributor.author | 梁祥光 | zh_TW |
| dc.date.accessioned | 2021-05-13T06:40:08Z | - |
| dc.date.available | 2018-01-04 | |
| dc.date.available | 2021-05-13T06:40:08Z | - |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-11-28 | |
| dc.identifier.citation | [1] Q.T. Ostrom, L. Bauchet, F.G. Davis, I. Deltour, J.L. Fisher, C.E. Langer, M. Pekmezci, J.A. Schwartzbaum, M.C. Turner, K.M. Walsh, M.R. Wrensch, J.S. Barnholtz-Sloan, The epidemiology of glioma in adults: a 'state of the science' review, Neuro Oncol 16(7) (2014) 896-913.
[2] Cancer Registry Annual Report 2014, Health Promotion Administration, Ministry of Health and Welfare, Taiwan, 2016, p. 93. [3] Cancer Registry Annual Report 2013, Health Promotion Administration, Ministry of Health and Welfare, Taiwan, 2015, p. 93. [4] Cancer Registry Annual Report 2012, Health Promotion Administration, Ministry of Health and Welfare, Taiwan, 2014, p. 93. [5] P.Y. Wen, S. Kesari, Malignant gliomas in adults, N Engl J Med 359(5) (2008) 492-507. [6] S. Cha, Update on brain tumor imaging: from anatomy to physiology, AJNR Am J Neuroradiol 27(3) (2006) 475-87. [7] J. Li, M. Wang, M. Won, E.G. Shaw, C. Coughlin, W.J. Curran, Jr., M.P. Mehta, Validation and simplification of the Radiation Therapy Oncology Group recursive partitioning analysis classification for glioblastoma, International journal of radiation oncology, biology, physics 81(3) (2011) 623-30. [8] R.O. Mirimanoff, T. Gorlia, W. Mason, M.J. Van den Bent, R.D. Kortmann, B. Fisher, M. Reni, A.A. Brandes, J. Curschmann, S. Villa, G. Cairncross, A. Allgeier, D. Lacombe, R. Stupp, Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial, Journal of clinical oncology : official journal of the American Society of Clinical Oncology 24(16) (2006) 2563-9. [9] H.K. Liang, C.W. Wang, H.M. Tseng, C.Y. Huang, K.H. Lan, Y.H. Chen, S.L. You, J.C. Cheng, A.L. Cheng, S.H. Kuo, Preoperative prognostic neurologic index for glioblastoma patients receiving tumor resection, Annals of surgical oncology 21(12) (2014) 3992-8. [10] M.E. Hegi, A.C. Diserens, T. Gorlia, M.F. Hamou, N. de Tribolet, M. Weller, J.M. Kros, J.A. Hainfellner, W. Mason, L. Mariani, J.E. Bromberg, P. Hau, R.O. Mirimanoff, J.G. Cairncross, R.C. Janzer, R. Stupp, MGMT gene silencing and benefit from temozolomide in glioblastoma, The New England journal of medicine 352(10) (2005) 997-1003. [11] S.E. Combs, S. Rieken, W. Wick, A. Abdollahi, A. von Deimling, J. Debus, C. Hartmann, Prognostic significance of IDH-1 and MGMT in patients with glioblastoma: one step forward, and one step back?, Radiat Oncol 6 (2011) 115. [12] M.D. Walker, S.B. Green, D.P. Byar, E. Alexander, Jr., U. Batzdorf, W.H. Brooks, W.E. Hunt, C.S. MacCarty, M.S. Mahaley, Jr., J. Mealey, Jr., G. Owens, J. Ransohoff, 2nd, J.T. Robertson, W.R. Shapiro, K.R. Smith, Jr., C.B. Wilson, T.A. Strike, Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery, N Engl J Med 303(23) (1980) 1323-9. [13] H. Athanassiou, M. Synodinou, E. Maragoudakis, M. Paraskevaidis, C. Verigos, D. Misailidou, D. Antonadou, G. Saris, K. Beroukas, P. Karageorgis, Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme, J Clin Oncol 23(10) (2005) 2372-7. [14] R. Stupp, P.Y. Dietrich, S. Ostermann Kraljevic, A. Pica, I. Maillard, P. Maeder, R. Meuli, R. Janzer, G. Pizzolato, R. Miralbell, F. Porchet, L. Regli, N. de Tribolet, R.O. Mirimanoff, S. Leyvraz, Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide, J Clin Oncol 20(5) (2002) 1375-82. [15] R. Stupp, W.P. Mason, M.J. van den Bent, M. Weller, B. Fisher, M.J. Taphoorn, K. Belanger, A.A. Brandes, C. Marosi, U. Bogdahn, J. Curschmann, R.C. Janzer, S.K. Ludwin, T. Gorlia, A. Allgeier, D. Lacombe, J.G. Cairncross, E. Eisenhauer, R.O. Mirimanoff, R. European Organisation for, T. Treatment of Cancer Brain, G. Radiotherapy, G. National Cancer Institute of Canada Clinical Trials, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, The New England journal of medicine 352(10) (2005) 987-96. [16] A.A. Brandes, A. Tosoni, E. Franceschi, G. Sotti, G. Frezza, P. Amista, L. Morandi, F. Spagnolli, M. Ermani, Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: correlation With MGMT promoter methylation status, J Clin Oncol 27(8) (2009) 1275-9. [17] M.W. McDonald, H.K. Shu, W.J. Curran, Jr., I.R. Crocker, Pattern of failure after limited margin radiotherapy and temozolomide for glioblastoma, Int J Radiat Oncol Biol Phys 79(1) (2011) 130-6. [18] B.J. Gebhardt, M.C. Dobelbower, W.H. Ennis, A.K. Bag, J.M. Markert, J.B. Fiveash, Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide, Radiat Oncol 9 (2014) 130. [19] A. Lattermann, M. Baumann, M. Krause, Clinical trials for personalized glioblastoma radiotherapy: Markers for efficacy and late toxicity but often delayed treatment - Does that matter?, Radiother Oncol 118(1) (2016) 211-3. [20] M. Niyazi, M. Brada, A.J. Chalmers, S.E. Combs, S.C. Erridge, A. Fiorentino, A.L. Grosu, F.J. Lagerwaard, G. Minniti, R.O. Mirimanoff, U. Ricardi, S.C. Short, D.C. Weber, C. Belka, ESTRO-ACROP guideline 'target delineation of glioblastomas', Radiother Oncol 118(1) (2016) 35-42. [21] E.P. Jansen, L.G. Dewit, M. van Herk, H. Bartelink, Target volumes in radiotherapy for high-grade malignant glioma of the brain, Radiother Oncol 56(2) (2000) 151-6. [22] L. Chen, K.L. Chaichana, L. Kleinberg, X. Ye, A. Quinones-Hinojosa, K. Redmond, Glioblastoma recurrence patterns near neural stem cell regions, Radiother Oncol 116(2) (2015) 294-300. [23] T.H. Liang, S.H. Kuo, C.W. Wang, W.Y. Chen, C.Y. Hsu, S.F. Lai, H.M. Tseng, S.L. You, C.M. Chen, W.Y. Tseng, Adverse prognosis and distinct progression patterns after concurrent chemoradiotherapy for glioblastoma with synchronous subventricular zone and corpus callosum invasion, Radiother Oncol 118(1) (2016) 16-23. [24] S. Adeberg, L. Konig, T. Bostel, S. Harrabi, T. Welzel, J. Debus, S.E. Combs, Glioblastoma recurrence patterns after radiation therapy with regard to the subventricular zone, Int J Radiat Oncol Biol Phys 90(4) (2014) 886-93. [25] N.F. Jafri, J.L. Clarke, V. Weinberg, I.J. Barani, S. Cha, Relationship of glioblastoma multiforme to the subventricular zone is associated with survival, Neuro Oncol 15(1) (2013) 91-6. [26] S. Adeberg, T. Bostel, L. Konig, T. Welzel, J. Debus, S.E. Combs, A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival?, Radiat Oncol 9 (2014) 95. [27] A.M. Mistry, A.T. Hale, L.B. Chambless, K.D. Weaver, R.C. Thompson, R.A. Ihrie, Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis, J Neurooncol (2016). [28] D.A. Lim, S. Cha, M.C. Mayo, M.H. Chen, E. Keles, S. VandenBerg, M.S. Berger, Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype, Neuro Oncol 9(4) (2007) 424-9. [29] K.J. Steltzer, K.I. Sauve, A.M. Spence, T.W. Griffin, M.S. Berger, Corpus callosum involvement as a prognostic factor for patients with high-grade astrocytoma, International journal of radiation oncology, biology, physics 38(1) (1997) 27-30. [30] K. Dziurzynski, D. Blas-Boria, D. Suki, D.P. Cahill, S.S. Prabhu, V. Puduvalli, N. Levine, Butterfly glioblastomas: a retrospective review and qualitative assessment of outcomes, Journal of neuro-oncology 109(3) (2012) 555-63. [31] K.L. Chaichana, I. Jusue-Torres, A.M. Lemos, A. Gokaslan, E.E. Cabrera-Aldana, A. Ashary, A. Olivi, A. Quinones-Hinojosa, The butterfly effect on glioblastoma: is volumetric extent of resection more effective than biopsy for these tumors?, Journal of neuro-oncology 120(3) (2014) 625-34. [32] C.X. Wu, G.S. Lin, Z.X. Lin, J.D. Zhang, S.Y. Liu, C.F. Zhou, Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma, World J Surg Oncol 13 (2015) 97. [33] A.I. Mehta, A. Linninger, M.S. Lesniak, H.H. Engelhard, Current status of intratumoral therapy for glioblastoma, J Neurooncol 125(1) (2015) 1-7. [34] W.K. Xing, C. Shao, Z.Y. Qi, C. Yang, Z. Wang, The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta-analysis, Drug Des Devel Ther 9 (2015) 3341-8. [35] L.S. Ashby, K.A. Smith, B. Stea, Gliadel wafer implantation combined with standard radiotherapy and concurrent followed by adjuvant temozolomide for treatment of newly diagnosed high-grade glioma: a systematic literature review, World J Surg Oncol 14(1) (2016) 225. [36] A. Quinones-Hinojosa, N. Sanai, M. Soriano-Navarro, O. Gonzalez-Perez, Z. Mirzadeh, S. Gil-Perotin, R. Romero-Rodriguez, M.S. Berger, J.M. Garcia-Verdugo, A. Alvarez-Buylla, Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells, J Comp Neurol 494(3) (2006) 415-34. [37] F. Doetsch, A. Alvarez-Buylla, Network of tangential pathways for neuronal migration in adult mammalian brain, Proceedings of the National Academy of Sciences of the United States of America 93(25) (1996) 14895-900. [38] G. Kempermann, Why new neurons? Possible functions for adult hippocampal neurogenesis, The Journal of neuroscience : the official journal of the Society for Neuroscience 22(3) (2002) 635-8. [39] J. Kiernan, R. Rajakumar, Barr's the human nervous system: an anatomical viewpoint, Lippincott Williams & Wilkins2013. [40] H. Wolburg, S. Noell, P. Fallier-Becker, A.F. Mack, K. Wolburg-Buchholz, The disturbed blood-brain barrier in human glioblastoma, Mol Aspects Med 33(5-6) (2012) 579-89. [41] A.B. Fleming, W.M. Saltzman, Pharmacokinetics of the carmustine implant, Clin Pharmacokinet 41(6) (2002) 403-19. [42] C. Bastiancich, P. Danhier, V. Preat, F. Danhier, Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma, J Control Release 243 (2016) 29-42. [43] D. Fortin, P.A. Morin, F. Belzile, D. Mathieu, F.M. Pare, Intra-arterial carboplatin as a salvage strategy in the treatment of recurrent glioblastoma multiforme, J Neurooncol 119(2) (2014) 397-403. [44] M. Ronghe, D. Hargrave, U. Bartels, U. Tabori, S. Vaidya, C. Chandler, A. Kulkarni, E. Bouffet, Vincristine and carboplatin chemotherapy for unresectable and/or recurrent low-grade astrocytoma of the brainstem, Pediatr Blood Cancer 55(3) (2010) 471-7. [45] M. Roskies, E. Kay-Rivest, M.A. Mascarella, K. Sultanem, A. Mlynarek, M. Hier, Survival outcomes in patients with oropharyngeal cancer treated with carboplatin/paclitaxel and concurrent radiotherapy, J Otolaryngol Head Neck Surg 45(1) (2016) 50. [46] D. Wang, S.J. Lippard, Cellular processing of platinum anticancer drugs, Nat Rev Drug Discov 4(4) (2005) 307-20. [47] M. Rezaee, D.J. Hunting, L. Sanche, New insights into the mechanism underlying the synergistic action of ionizing radiation with platinum chemotherapeutic drugs: the role of low-energy electrons, Int J Radiat Oncol Biol Phys 87(4) (2013) 847-53. [48] L. Bobyk, M. Edouard, P. Deman, J. Rousseau, J.F. Adam, J.L. Ravanat, F. Esteve, J. Balosso, R.F. Barth, H. Elleaume, Intracerebral delivery of carboplatin in combination with either 6 MV photons or monoenergetic synchrotron X-rays are equally efficacious for treatment of the F98 rat glioma, J Exp Clin Cancer Res 31 (2012) 78. [49] M. Shi, D. Fortin, L. Sanche, B. Paquette, Convection-enhancement delivery of platinum-based drugs and Lipoplatin(TM) to optimize the concomitant effect with radiotherapy in F98 glioma rat model, Invest New Drugs 33(3) (2015) 555-63. [50] W. Yang, T. Huo, R.F. Barth, N. Gupta, M. Weldon, J.C. Grecula, B.D. Ross, B.A. Hoff, T.C. Chou, J. Rousseau, H. Elleaume, Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors, J Neurooncol 101(3) (2011) 379-90. [51] W. Yang, R.F. Barth, T. Huo, R.J. Nakkula, M. Weldon, N. Gupta, L. Agius, J.C. Grecula, Radiation therapy combined with intracerebral administration of carboplatin for the treatment of brain tumors, Radiat Oncol 9 (2014) 25. [52] T. Shahar, Z. Ram, A.A. Kanner, Convection-enhanced delivery catheter placements for high-grade gliomas: complications and pitfalls, J Neurooncol 107(2) (2012) 373-8. [53] M.L. Brady, R. Raghavan, W. Block, B. Grabow, C. Ross, K. Kubota, A.L. Alexander, M.E. Emborg, The Relation between Catheter Occlusion and Backflow during Intraparenchymal Cerebral Infusions, Stereotact Funct Neurosurg 93(2) (2015) 102-109. [54] W.Y. Su, Y.C. Chen, F.H. Lin, Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration, Acta Biomater 6(8) (2010) 3044-55. [55] E.J. Cho, B. Sun, K.O. Doh, E.M. Wilson, S. Torregrosa-Allen, B.D. Elzey, Y. Yeo, Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer, Biomaterials 37 (2015) 312-9. [56] X. Wang, J. Wang, W. Wu, H. Li, Vaginal delivery of carboplatin-loaded thermosensitive hydrogel to prevent local cervical cancer recurrence in mice, Drug Deliv 23(9) (2016) 3544-3551. [57] J.Y. Fang, J.P. Chen, Y.L. Leu, J.W. Hu, The delivery of platinum drugs from thermosensitive hydrogels containing different ratios of chitosan, Drug Deliv 15(4) (2008) 235-43. [58] J.P. Chen, Y.L. Leu, C.L. Fang, C.H. Chen, J.Y. Fang, Thermosensitive hydrogels composed of hyaluronic acid and gelatin as carriers for the intravesical administration of cisplatin, J Pharm Sci 100(2) (2011) 655-66. [59] H.T. Liang, X.S. Lai, M.F. Wei, S.H. Lu, W.F. Wen, S.H. Kuo, C.M. Chen, W.I. Tseng, F.H. Lin, Intratumoral injection of thermogelling and sustained-release carboplatin-loaded hydrogel simplifies the administration and remains the synergistic effect with radiotherapy for mice gliomas, Biomaterials 151 (2018) 38-52. [60] M.D. Walker, E. Alexander Jr, W.E. Hunt, C.S. MacCarty, M.S. Mahaley Jr, J. Mealey Jr, H.A. Norrell, G. Owens, J. Ransohoff, C.B. Wilson, Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: a cooperative clinical trial, Journal of neurosurgery 49(3) (1978) 333-343. [61] K.L. Chaichana, J.C. Martinez-Gutierrez, R. De la Garza-Ramos, J.D. Weingart, A. Olivi, G.L. Gallia, M. Lim, H. Brem, A. Quinones-Hinojosa, Factors associated with survival for patients with glioblastoma with poor pre-operative functional status, J Clin Neurosci 20(6) (2013) 818-23. [62] P. Linhares, B. Carvalho, R. Figueiredo, R.M. Reis, R. Vaz, Early Pseudoprogression following Chemoradiotherapy in Glioblastoma Patients: The Value of RANO Evaluation, J Oncol 2013 (2013) 690585. [63] P.Y. Wen, D.R. Macdonald, D.A. Reardon, T.F. Cloughesy, A.G. Sorensen, E. Galanis, J. DeGroot, W. Wick, M.R. Gilbert, A.B. Lassman, Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group, Journal of Clinical Oncology 28(11) (2010) 1963-1972. [64] H.T. Liang, W.Y. Chen, S.F. Lai, M.Y. Su, S.L. You, L.H. Chen, H.M. Tseng, C.M. Chen, S.H. Kuo, W.I. Tseng, The extent of edema and tumor synchronous invasion into the subventricular zone and corpus callosum classify outcomes and radiotherapy strategies of glioblastomas, Radiother Oncol (2017). [65] S. Raysi Dehcordi, D. De Paulis, S. Marzi, A. Ricci, A. Cimini, M.G. Cifone, R.J. Galzio, Survival prognostic factors in patients with glioblastoma: our experience, J Neurosurg Sci 56(3) (2012) 239-45. [66] G. Bajaj, M.R. Kim, S.I. Mohammed, Y. Yeo, Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors, J Control Release 158(3) (2012) 386-92. [67] W.Y. Su, K.H. Chen, Y.C. Chen, Y.H. Lee, C.L. Tseng, F.H. Lin, An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute, J Biomater Sci Polym Ed 22(13) (2011) 1777-97. [68] W. Shen, J. Luan, L. Cao, J. Sun, L. Yu, J. Ding, Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin, Biomacromolecules 16(1) (2015) 105-15. [69] Biological evaluation of medical devices. Part 5. Test for cytotoxicity: in vitro methods., in: I.S. Organization (Ed.) ISO 10993-5, 2009. [70] T. Fourniols, L.D. Randolph, A. Staub, K. Vanvarenberg, J.G. Leprince, V. Preat, A. des Rieux, F. Danhier, Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma, J Control Release 210 (2015) 95-104. [71] C. Bastiancich, K. Vanvarenberg, B. Ucakar, M. Pitorre, G. Bastiat, F. Lagarce, V. Preat, F. Danhier, Lauroyl-gemcitabine-loaded lipid nanocapsule hydrogel for the treatment of glioblastoma, J Control Release 225 (2016) 283-93. [72] T. Arai, O. Benny, T. Joki, L.G. Menon, M. Machluf, T. Abe, R.S. Carroll, P.M. Black, Novel local drug delivery system using thermoreversible gel in combination with polymeric microspheres or liposomes, Anticancer research 30(4) (2010) 1057-1064. [73] S.C. Wang, J.H. Hong, C. Hsueh, C.S. Chiang, Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model, Lab Invest 92(1) (2012) 151-62. [74] P.S. Jiang, C.F. Yu, C.Y. Yen, C.W. Woo, S.H. Lo, Y.K. Huang, J.H. Hong, C.S. Chiang, Irradiation Enhances the Ability of Monocytes as Nanoparticle Carrier for Cancer Therapy, PLoS One 10(9) (2015) e0139043. [75] E.S. Lee, H.J. Im, H.S. Kim, H. Youn, H.J. Lee, S.U. Kim, D.W. Hwang, D.S. Lee, In vivo brain delivery of v-myc overproduced human neural stem cells via the intranasal pathway: tumor characteristics in the lung of a nude mouse, Mol Imaging 13 (2014). [76] W.L. Wang, S.Y. Sheu, Y.S. Chen, S.T. Kao, Y.T. Fu, T.F. Kuo, K.Y. Chen, C.H. Yao, Enhanced Bone Tissue Regeneration by Porous Gelatin Composites Loaded with the Chinese Herbal Decoction Danggui Buxue Tang, PLoS One 10(6) (2015) e0131999. [77] C.H. Chou, C.M. Teng, K.Y. Tzen, Y.C. Chang, J.H. Chen, J.C. Cheng, MMP-9 from sublethally irradiated tumor promotes Lewis lung carcinoma cell invasiveness and pulmonary metastasis, Oncogene 31(4) (2012) 458-68. [78] T.M. Krupka, B.D. Weinberg, H. Wu, N.P. Ziats, A.A. Exner, Effect of intratumoral injection of carboplatin combined with pluronic P85 or L61 on experimental colorectal carcinoma in rats, Exp Biol Med (Maywood) 232(7) (2007) 950-7. [79] M.M. Tomayko, C.P. Reynolds, Determination of subcutaneous tumor size in athymic (nude) mice, Cancer chemotherapy and pharmacology 24(3) (1989) 148-154. [80] Y. Inoue, S. Kiryu, M. Watanabe, A. Tojo, K. Ohtomo, Timing of imaging after d-luciferin injection affects the longitudinal assessment of tumor growth using in vivo bioluminescence imaging, Int J Biomed Imaging 2010 (2010) 471408. [81] K. Suchowski, T. Poschinger, A. Rehemtulla, M. Sturzl, W. Scheuer, Noninvasive Bioluminescence Imaging of AKT Kinase Activity in Subcutaneous and Orthotopic NSCLC Xenografts: Correlation of AKT Activity with Tumor Growth Kinetics, Neoplasia 19(4) (2017) 310-320. [82] Z.H. Siddik, M. Jones, F.E. Boxall, K.R. Harrap, Comparative distribution and excretion of carboplatin and cisplatin in mice, Cancer Chemother Pharmacol 21(1) (1988) 19-24. [83] R. Wysokiński, J. Kuduk-Jaworska, D. Michalska, Electronic structure, Raman and infrared spectra, and vibrational assignment of carboplatin. Density functional theory studies, Journal of Molecular Structure: THEOCHEM 758(2) (2006) 169-179. [84] S.H. Poulsen, T. Urup, K. Grunnet, I.J. Christensen, V.A. Larsen, M.L. Jensen, P.M. Af Rosenschold, H.S. Poulsen, I. Law, The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma, Eur J Nucl Med Mol Imaging (2016). [85] M. Harat, B. Malkowski, R. Makarewicz, Pre-irradiation tumour volumes defined by MRI and dual time-point FET-PET for the prediction of glioblastoma multiforme recurrence: A prospective study, Radiother Oncol 120(2) (2016) 241-7. [86] K. Reddy, L.E. Gaspar, B.D. Kavanagh, C. Chen, Hypofractionated intensity-modulated radiotherapy with temozolomide chemotherapy may alter the patterns of failure in patients with glioblastoma multiforme, J Med Imaging Radiat Oncol 58(6) (2014) 714-21. [87] T. Iuchi, K. Hatano, T. Kodama, T. Sakaida, S. Yokoi, K. Kawasaki, Y. Hasegawa, R. Hara, Phase 2 trial of hypofractionated high-dose intensity modulated radiation therapy with concurrent and adjuvant temozolomide for newly diagnosed glioblastoma, Int J Radiat Oncol Biol Phys 88(4) (2014) 793-800. [88] M. Farzin, M. Molls, S. Astner, I.C. Rondak, M. Oechsner, Simultaneous integrated vs. sequential boost in VMAT radiotherapy of high-grade gliomas, Strahlenther Onkol 191(12) (2015) 945-52. [89] G. Truc, V. Bernier, C. Mirjolet, C. Dalban, F. Mazoyer, F. Bonnetain, N. Blanchard, E. Lagneau, P. Maingon, G. Noel, A phase I dose escalation study using simultaneous integrated-boost IMRT with temozolomide in patients with unifocal glioblastoma, Cancer Radiother 20(3) (2016) 193-8. [90] L. Chen, H. Guerrero-Cazares, X. Ye, E. Ford, T. McNutt, L. Kleinberg, M. Lim, K. Chaichana, A. Quinones-Hinojosa, K. Redmond, Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection, International journal of radiation oncology, biology, physics 86(4) (2013) 616-22. [91] P. Evers, P.P. Lee, J. DeMarco, N. Agazaryan, J.W. Sayre, M. Selch, F. Pajonk, Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma, BMC cancer 10 (2010) 384. [92] J. Unkelbach, B.H. Menze, E. Konukoglu, F. Dittmann, M. Le, N. Ayache, H.A. Shih, Radiotherapy planning for glioblastoma based on a tumor growth model: improving target volume delineation, Physics in medicine and biology 59(3) (2014) 747-70. [93] M. Mizumoto, T. Yamamoto, E. Ishikawa, M. Matsuda, S. Takano, H. Ishikawa, T. Okumura, H. Sakurai, A. Matsumura, K. Tsuboi, Proton beam therapy with concurrent chemotherapy for glioblastoma multiforme: comparison of nimustine hydrochloride and temozolomide, J Neurooncol 130(1) (2016) 165-170. [94] M.M. Hsiang-Kuang Tony Liang, Tetsuya Yamamoto, Daich Takizawa, Keiich Tanaka, Teruhito Aihara, Toshiyuki Okumura, Hitoshi Ishikawa, Koji Tsuboi, Hideyuki Sakurai, Edema extent of glioblastoma determined the survival and progression pattern after high-dose proton beam boost, Particle Therapy Co-Operative Group, Yokohama, Japan, 2017. [95] X.F. Wang, G.S. Lin, Z.X. Lin, Y.P. Chen, Y. Chen, J.D. Zhang, W.L. Tan, Association of pSTAT3-VEGF signaling pathway with peritumoral edema in newly diagnosed glioblastoma: an immunohistochemical study, Int J Clin Exp Pathol 7(9) (2014) 6133-40. [96] S. Takano, H. Kimu, K. Tsuda, S. Osuka, K. Nakai, T. Yamamoto, E. Ishikawa, H. Akutsu, M. Matsuda, A. Matsumura, Decrease in the apparent diffusion coefficient in peritumoral edema for the assessment of recurrent glioblastoma treated by bevacizumab, Acta Neurochir Suppl 118 (2013) 185-9. [97] D.V. Brown, P.M. Daniel, G.M. D'Abaco, A. Gogos, W. Ng, A.P. Morokoff, T. Mantamadiotis, Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastoma multiforme, Oncotarget 6(8) (2015) 6267-80. [98] S.G. Piccirillo, I. Spiteri, A. Sottoriva, A. Touloumis, S. Ber, S.J. Price, R. Heywood, N.J. Francis, K.D. Howarth, V.P. Collins, A.R. Venkitaraman, C. Curtis, J.C. Marioni, S. Tavare, C. Watts, Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone, Cancer research 75(1) (2015) 194-202. [99] K. Wang, Y. Wang, X. Fan, J. Wang, G. Li, J. Ma, J. Ma, T. Jiang, J. Dai, Radiological features combined with IDH1 status for predicting the survival outcome of glioblastoma patients, Neuro Oncol 18(4) (2016) 589-97. [100] J. Carrillo, A. Lai, P. Nghiemphu, H. Kim, H. Phillips, S. Kharbanda, P. Moftakhar, S. Lalaezari, W. Yong, B. Ellingson, Relationship between tumor enhancement, edema, IDH1 mutational status, MGMT promoter methylation, and survival in glioblastoma, American Journal of Neuroradiology 33(7) (2012) 1349-1355. [101] A. Kakita, M. Zerlin, H. Takahashi, J.E. Goldman, Some glial progenitors in the neonatal subventricular zone migrate through the corpus callosum to the contralateral cerebral hemisphere, J Comp Neurol 458(4) (2003) 381-8. [102] A. Kakita, M. Zerlin, H. Takahashi, J.E. Goldman, Some glial progenitors in the neonatal subventricular zone migrate through the corpus callosum to the contralateral cerebral hemisphere, Journal of Comparative Neurology 458(4) (2003) 381-388. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2431 | - |
| dc.description.abstract | 膠質母細胞瘤為成人最常見原發型腦瘤。同步放化療後最常見的進展型態為局部或照野內復發,約佔72%–96.8%,而遠端轉移或照野外復發約佔2%–28%。病人開刀前若有腫瘤周邊水腫大範圍延伸以及腫瘤位於腦室和胼胝體交界處,存活較差並有多樣化進展型態。
我們以影像生物標記,分類膠質母細胞瘤病人的腫瘤進展型態,包括侷限型、中間型和擴散型,與相對應不同的存活狀況。再根據不同分類,提出相對應的膠質母細胞瘤放射治療目標劃定與劑量給予,決定個人化的治療策略。侷限型膠質母細胞瘤僅有小於10%的人腫瘤會延伸大於原腫瘤界線兩公分,然而擴散型病人,超過70%會有腫瘤移動超過原腫瘤界線兩公分的情況。和侷限型的病人相比,擴散型的病人存活狀況較差。我們的臨床研究顯示需要根據膠質母細胞瘤影像生物標記制定個人化的治療策略。 無論侷限型或擴散型,原腫瘤處是膠質母細胞瘤復發最常見的位置。提高腫瘤局部控制的最好策略之一,就是腫瘤內藥物注射再加上局部放射治療。我們比較各種腫瘤內藥物傳輸方式,包括藥片、熱塑型水膠和對流加壓注射,比較藥物釋放安全性與輻射增強效果,設計一個基礎研究探討腫瘤內藥物傳輸方式,以便臨床應用。 為達到未解決的臨床需求,我們合成一個新的藥物結合水狀凝膠與卡鉑進行腫瘤內藥物注射。經過全面性的生物材料、細胞與動物實驗,我們成功證實水狀凝膠與卡鉑是一個安全、有效、方便的藥物組合。腫瘤內卡鉑凝膠注射保有放射化學治療的協同效果,而且沒有嚴重的治療副作用。單次腫瘤內水狀凝膠與卡鉑注射的藥物持續釋放,簡化給藥過程與接續的放射治療,有助應用在臨床腦瘤治療。 | zh_TW |
| dc.description.abstract | Glioblastoma is the most prevalent primary brain tumor of adults. The most common progression patterns after concurrent chemoradiotherapy are local and in-field (72%–96.8%), and the rates of distant and out-field recurrence range from 2% to 28%. The extensive preoperative edema (EPE) (edema extent ≥ 2 cm from the tumor edge) and tumor located at synchronous subventricular zone and corpus callosum (sSVZCC) are associated with poor survival and diverse progression patterns of glioblastoma. We combined the imaging biomarkers, EPE and sSVZCC invasion, to classify glioblastomas progression patterns, including confined, intermediate, and extensive types, with different survivals. According to the classification, we proposed the corresponding RT target volume delineations and dose prescriptions to personalize treatment strategies for glioblastomas.
Less than 10% of patients with EPE- (confined type) have tumor progression extending beyond the 2-cm margin from the preoperative tumor edge, while more than 70% glioblastomas with EPE+/SVZCC+ (extensive type) have tumor migration beyond the 2-cm margin from the preoperative tumor edge along the preoperative edema areas. Compared with patients with confines type glioblastoma, those with extensive type have poorer survival. Our clinical study demonstrated the need for developing individualized irradiation strategies for glioblastomas according to the imaging biomarkers of EPE and sSVZCC invasion. The tumor bed is the most common recurrence area of glioblastomas either confined or extensive types. One of the strategies to increase the local tumor control is intratumoral drug delivery combining with local radiotherapy (RT). We compared the drug release and safety features of intratumoral delivery modalities (wafer, thermogelling hydrogel, and convection-enhanced delivery) and the radiosensitizing effects among anti-cancer drugs (carmustine, carboplatin, and cisplatin) to propose a basic investigation on the intratumoral drug delivery for further clinical application. To satisfy the unmet clinical need for glioma treatment, we compounded a novel drug combination of oxidated hyaluronic acid/adipic acid dihydrazide hydrogel and carboplatin for intratumoral injection. Through the comprehensive biomaterial, cell, and animal experiment design, we significantly demonstrated that hydrogel carboplatin is a safe, effective, and convenient drug combination. Intratumoral hydrogel carboplatin injection simplified the method and frequency of intratumoral hydrogel carboplatin delivery and remained the RT synergistic effect without causing severe toxicity, which makes intraoperative single drug injection with subsequent RT a feasible and potential clinical treatment for glioblastomas. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T06:40:08Z (GMT). No. of bitstreams: 1 ntu-106-D02548011-1.pdf: 7748936 bytes, checksum: 14f02e5c35b0c2dc89efb3567d501129 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員審定書 I
誌謝 II 中文摘要 IV ABSTRACT V CHAPTER 1 INTRODUCTION P1 1.1 Glioblastomas: Epidemiology, Pathology, and Treatment Outcomes P1 1.2 The Unmet Clinical Needs for Glioblastomas: Individualized Treatment Strategies According to the Progression Patterns P2 1.3 Clinical Investigation of Imaging Biomarkers: Hypothesis and Purpose P4 1.4 Basic Investigation of Intratumoral Drug Injection: Hypothesis and Purpose P5 CHAPTER 2 MATERIALS AND METHODS P8 2.1 Clinical Study of Imaging Biomarkers P8 2.1.1 Patient eligibility P8 2.1.2 Treatment modalities P8 2.1.3 Anatomical features of preoperative imaging P9 2.1.4 Tumor progression patterns after concurrent chemoradiotherapy (CCRT) P10 2.1.5 Statistical analysis P11 2.2 Basic Study of Intratumoral Hydrogel Carboplatin injection P12 2.2.1 Biomaterial investigation P12 2.2.1.1 Preparation of oxi-HA/ADH hydrogel and hydrogel carboplatin P13 2.2.1.2 Characterization of oxi-HA/ADH hydrogel and hydrogel carboplatin by Fourier transformation infrared analysis P13 2.2.1.3 Gelling time and temperature of oxi-HA/ADH hydrogel by rheometer P14 2.2.1.4 Degradation property of oxi-HA/ADH hydrogel P14 2.2.1.5 Drug release profile of hydrogel carboplatin by inductively coupled plasma mass spectrometry (ICP-MS) P15 2.2.2 In vitro investigation P15 2.2.2.1 Cell culture P16 2.2.2.2 Biocompatibility of oxi-HA/ADH hydrogel P16 2.2.2.3 Half maximal inhibitory concentration (IC50) of carboplatin to ALTS1C1 glioma cells P18 2.2.3 In vivo investigation P18 2.2.3.1 Subcutaneous tumor implant model of mice P18 2.2.3.2 Intratumoral dye injection P19 2.2.3.3 Irradiation setting P19 2.2.3.4 Different treatment combinations of carboplatin and irradiation P19 2.2.3.5 Tumor growth evaluation by gross volume measurement and bioluminescence imaging (BLI) P21 2.2.3.6 Treatment effect evaluation by tumor gross/slice P21 2.2.3.7 Toxicity evaluation by blood analysis and skin survey P22 2.2.4 Statistical analysis P22 CHAPTER 3 RESULTS P23 3.1 Imaging Biomarkers P23 3.1.1 Patient characteristics P23 3.1.2 Survival analyses P23 3.1.3 Progression pattern analysis P24 3.2 Intratumoral Hydrogel Carboplatin Injection P26 3.2.1 Biomaterial investigation P26 3.2.1.1 Characterization of oxi-HA/ADH hydrogel and hydrogel carboplatin by FTIR Analysis P26 3.2.1.2 Gelling time of oxi-HA/ADH hydrogel by rheometer P26 3.2.1.3 Degradation property of oxi-HA/ADH hydrogel P27 3.2.1.4 Drug release of hydrogel carboplatin by ICP-MS P27 3.2.2 In vitro investigation P27 3.2.2.1 Biocompatibility of hydrogel P27 3.2.2.2 IC50 of carboplatin to ALCS1C1 cells P28 3.2.3 In vivo investigation P28 3.2.3.1 First-stage in vivo experiment (low-dose carboplatin) P28 3.2.3.2 Second-stage in vivo experiment (high-dose carboplatin) P29 CHAPTER 4 DISCUSSION P31 4.1 Imaging biomarkers and clinical impacts P31 4.1.1 Disease classification and RT strategies P31 4.1.2 High-dose proton boost for confined type glioblastoma P34 4.1.3 Disease classification and drug selection strategy P34 4.1.4 Imaging biomarkers and future investigation P35 4.2 Treatment Impact and Clinical Application of Hydrogel Carboplatin P37 4.2.1 Effectiveness of hydrogel carboplatin combined with RT for tumor control P37 4.2.2 Convenience of hydrogel carboplatin administration to combine with RT P38 4.2.3 Safety of hydrogel carboplatin with RT P40 CHAPTER 5 CONCLUSIONS AND FUTURE PROSPECT P41 5.1 Clinical Investigation P41 5.2 Basic Investigation P41 LIST OF FIGURES P43 Figure 1. The clinical and basic research perspectives of our glioblastoma study P43 Figure 2. The correlation between tumor location with edema and tumor migration P44 Figure 3. The rationale and purpose in the current basic study P45 Figure 4. The method of evaluating the preoperative edema extent in our clinical study P46 Figure 5. The definitions of edema extent and progression patterns P47 Figure 6. The workflow of our basic study design P48 Figure 7. Drug preparation P49 Figure 8. The treatment regimens and evaluation protocol of our mice study P50 Figure 9. Kaplan-Meier’s estimates P51 Figure 10. MRI demonstration of patients with different tumor locations P52 Figure 11. MRI demonstration of patients with different edema extents and tumor locations P54 Figure 12. Illustrations of by FTIR analysis P55 Figure 13. The rheological properties of oxi-HA/ADH P56 Figure 14. Degradation properties of oxi-HA/ADH hydrogel P56 Figure 15. Drug release profile P57 Figure 16. Biocompatibility of oxi-HA/ADH P57 Figure 17. The LIVE/DEAD staining P58 Figure 18. The IC50 test of carboplatin P58 Figure 19. The BLIs evolution of the first-stage in vivo experiment P59 Figure 20. The tumor volume evolution of the first-stage in vivo experiment P60 Figure 21. The BLIs evolution of the second-stage in vivo experiment P61 Figure 22. The bioluminescence signal of the second-stage in vivo experiment P61 Figure 23. The tumor volume evolution of the second-stage in vivo experiment P62 Figure 24. The survival curves of the second-stage in vivo experiment P62 Figure 25. The gross and histopathological findings of the second-stage in vivo experiment P63 Figure 26. The weight change and skin reaction of mice in the second-stage in vivo experiment P64 Figure 27. The proposed personalized glioblastoma treatment strategies P65 Figure 28. Progression patterns and sSVZCC invasion P66 LIST OF TABLES P67 Table 1. Patient characteristics, imaging findings, and treatment modalities stratified by EPE status P67 Table 2. Univariate analysis results for OS and PFS P68 Table 3. Multivariate Cox proportional hazards results for shorter OS and PFS combined with different various anatomical factors P68 Table 4. Univariate analysis results for OS and PFS stratified by sSVZCC invasion status the in the EPE− and EPE+ groups P69 Table 5. Progression patterns and sites stratified by EPE and sSVZCC invasion P70 Table 6. Progression patterns and sites stratified by RT techniques P71 Table 7. Analysis of survival in the first-stage in vivo experiment P71 Table 8. Analysis of survival in the second-stage in vivo experiment P72 Table 9. Analysis of blood samples in the second-stage in vivo experiment P72 REFERENCE P73 APPENDIX P88 A. Abbreviations P88 B. Publications P91 | |
| dc.language.iso | en | |
| dc.subject | 卡鉑凝膠 | zh_TW |
| dc.subject | 腫瘤內藥物注射 | zh_TW |
| dc.subject | 同步放射化學治療 | zh_TW |
| dc.subject | 膠質母細胞瘤 | zh_TW |
| dc.subject | 影像生物標記 | zh_TW |
| dc.subject | 個人化治療 | zh_TW |
| dc.subject | 疾病分類 | zh_TW |
| dc.subject | concurrent chemotherapy | en |
| dc.subject | glioblastoma | en |
| dc.subject | imaging biomarkers | en |
| dc.subject | disease classification | en |
| dc.subject | personalized treatment strategy | en |
| dc.subject | hydrogel carboplatin | en |
| dc.subject | intratumoral drug injection | en |
| dc.title | 膠質母細胞瘤之個人化治療: 以影像生物標記預測腫瘤進展模式與發展對應之腫瘤內藥物傳輸系統 | zh_TW |
| dc.title | Personalized Glioblastoma Treatment: Seeking Imaging Biomarkers to Predict Tumor Progression Patterns and Developing Targeted Intratumoral Drug Delivery System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 陳中明(Chung-Ming Chen),林?輝(Feng-Huei Lin) | |
| dc.contributor.oralexamcommittee | 郭頌鑫(Sung-Hsin Kuo),林頌然(Sung-Jan Lin) | |
| dc.subject.keyword | 膠質母細胞瘤,影像生物標記,疾病分類,個人化治療,卡鉑凝膠,腫瘤內藥物注射,同步放射化學治療, | zh_TW |
| dc.subject.keyword | glioblastoma,imaging biomarkers,disease classification,personalized treatment strategy,hydrogel carboplatin,intratumoral drug injection,concurrent chemotherapy, | en |
| dc.relation.page | 93 | |
| dc.identifier.doi | 10.6342/NTU201704398 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-11-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf | 7.57 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
