請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24265完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孟子青 | |
| dc.contributor.author | Ying-Chih Liu | en |
| dc.contributor.author | 劉英志 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:20:09Z | - |
| dc.date.copyright | 2005-07-30 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-27 | |
| dc.identifier.citation | 1. Acehan, D., Jiang, X., Morgan, D.G., Heuser, J.E., Wang, X. and Akey, C.W. (2002). Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9, 423–432
2. Alonso A., Sasin J., Bottini N., Friedberg I., Friedberg I., Osterman A., Godzik A., Hunter T. (2004) Protein Tyrosine Phosphatases in the Human Genome. Cell 117, 699-711 3. Angers-Loustau A., Côté J.F., Charest A., Dowbenko D., Spenceer S., Lasky L.A., Tremblay M.L. (1999a) Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. J. cell biol. 144, 1019-1031 4. Angers-Loustau A., Côté J.F., and Tremblay M.L. (1999b) Roles of protein tyrosine phosphatases in cell migration and adhesion. Biochem. Cell Biol. 77, 493-505 5. Boise, L.H., Gonzalez-Garcia, M., Postema, C.E., Ding, L., Lindsten, T., Turka, L.A., Mao, X., Nunez, G. and Thompson, C.B. (1993) Bcl-x, a Bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 74, 597–608 6. Casciola-Rosen L.A., Miller D.K., Anhalt G.J. and Rosen A. (1994) Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J. Biol. Chem. 269, 30757-30760 7. Charest A., Wagner J., Kwan M., Tremblay M.L. (1997) Coupling of the murine protein tyrosine phosphatase PEST to the epidermal growth factor (EGF) receptor through a Src homology 3 (SH3) domain-mediated association with Grb2. Oncogene 14, 1643-1651 8. Charest A., Wagner J., Shen S.H., and Tremblay M.L. (1995a) Murine protein tyrosine phosphatase-PEST, a stable cytosolic protein tyrosine phosphatase. Biochem J. 308, 425-432 9. Charest A., Wagner J., Muise E.S., Heng H.H. and Tremblay M.L. (1995b) Structure of the murine MPTP-PEST gene: genomic organization and chromosomal mapping. Genomics 28, 501-507 10. Charest A., Wangner J., Jacob S., McGlade C.J. and Tremblay M.L.(1996) Phosphotyrosine-independent binding of SHC to the NPLH sequence of murine protein-tyrosine phosphatase-PEST. J. Biol. Chem. 271, 8424-8429 11. Chen J., Yu W.M., Bunting K.D., Qu C.K. (2004) A negative role of SHP-2 tyrosine phosphatase in growth factor-dependent hematopoietic cell survival. Oncogene 23, 3659-3669 12. Cheng E.H., Kirsch D.G., Clem R.J., Ravi R., Kastan M.B., Bedi A., Ueno K. and Hardwick J.M. (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278, 1966-1968 13. Clem R.J., Cheng E.H., Karp C.L., Kirsch D.G., Ueno K., Takahashi A., Kastan M.B., Griffin D.E., Earnshaw W.C., Veliuona M.A. and Hardwick J.M. (1998) Modulation of cell death by Bcl-XL through caspase interaction. Proc. Natl. Acad. Sci. USA 95, 554-559 14. Clem R.J., Sheu T.T., Richter B.W., He W.W., Thomberry N.A., Duckett C.S. and Hardwick J.M. (2001) c-IAP1 is cleaved by caspases to produce a proapoptotic C-terminal fragment. J. Biol. Chem. 276, 7602-7608 15. Coleman M.L., Sahai E.A., Yeo M., Bosch M., Dewar A. and Olson M.F. (2001) Membrane blebbing during apoptosis results from caspase-mediated activation of ROCK I. nature cell biol. 3, 339-346 16. Coleman M.L. and Olson M.F. (2002) Rho GTPase signaling pathways in the morphological changes associated with apoptosis. Cell Death and Differentiation 9, 493-504 17. Cong F., Spencer S., Côté J.F., Wu Y., Tremblay M.L., Lasky L.A., Goff S.P. (2000) Cytoskeletal protein PSTPIP1directs the PEST-type protein tyrosine phosphatase to the c-Al kinase to mediate Abl dephosphorylation. Mol. Cell 6, 1413-1423 18. Côté J.F., Charest A., Wagner J., Tremblay M.L. (1998) Combination of gene targeting and substrate trapping to identify substrates of protein tyrosine phosphatases using PTP-PEST as a model. Biochemistry 37, 13127-13138 19. Côté J.F., Turner C.F., and Tremblay M.L. (1999) Intact LIM 3 and LIM 4 Domains of Paxillin Are Required for the Association to a Novel Polyproline Region (Pro 2) of Protein-Tyrosine Phosphatase-PEST. J. Biol. Chem. 274, 20550-20560 20. Côté J.F., Chung P.L., Théberge J.F., Hallé M., Spencer S., Lasky L.A., Tremblay M.L. (2002) PSTPIP is a substrate of PTP-PEST and serves as as scaffold guiding PTP-PEST toward a specific dephosphorylation of WASP. J. Biol. Chem. 277, 2973-2986 21. Danial N.N. and Korsmeyer S.J. (2004) Cell death: critical control points. Cell 116, 205-219 22. Davdison D., Cloutier J.F., Gregorieff A., and Veillette A. (1997) Inhibitory tyrosine protine kinase p50csk is associated with protein-tyrosine phosphatase PTP-PEST in hemopoietic and non-hemopoietic cells. J. Biol. Chem. 272, 23455-23462 23. Dechert U., Adam M., Harder K.W., Clark-Lewis I. and Jirik F. (1994) Characterization of protein tyrosine phosphatase SH-PTP2. Study of phosphopeptide substrates and possible regulatory role of SH2 domains. J. Biol. Chem. 269, 5602-5611 24. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B. and Martinou, J.C. (1999). Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J. Cell Biol. 144, 891–901 25. Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu, A. and Nagata, S. (1998) A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 391, 43–50 26. Ferri K.F. and Kroemer G. (2001) Organelle-specific initiation of cell death pathways. Nature Cell Biol. 3, 255-263 27. Fischer U., Janicke R.U. and Schulze-Osthoff K. (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death and Differentiation 10, 76-100 28. Foyouzi-Youssefi R., Arnaudeau S., Borner C., Kelley W.L., Tschopp J., Lew D.P., Demaurex N., Krause K.H. (2000) Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 97, 5723-5728 29. Garton A.J., Flint A.J., and Tonks N.K. (1996) Identification of p130Cas as a substrate for the cytosolic protein tyrosine phosphatase PTP-PEST. Mol. Cell. Biol. 16, 6408-6418 30. Garton A.J. and Tonks N.K. (1999) Regulation of fibroblast motility by the protein tyrosine phosphatase PTP-PEST. J. Biol. Chem. 274, 3811-3818 31. Gross A., McDonnell J.M., and Korsmeyer S.J. (1999) Bcl-2 family members and the mitochondira in apoptosis. Genes and Development 13, 1899-1911 32. Kabir J., Lobo M., Zachary I. (2002) Staurosporine induces endothelial cell apoptosis via focal adhesion kinase dephosphorylation and focal adhesion disassembly independent of focal adhesion kinase proteolysis. Biochem J. 367, 145-55. 33. Klemke R.L., Leng J., Molander R., Brooks P.C., Vuori K., and Cheresh D.A. (1998) Cas-Crk coupling serves as a molecular switch for induction of cell migration. J. Cell Biol. 140, 961-972 34. Kothakota S., Azuma T., Reinhard C., Klippel A., Tang J., Chu K., McGarry T.J., Kirschner M.W., Koths K., Kwiatkowski D.J. and Williams L.T. (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278, 294-298 35. Kroemer G.. (1997) The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nature Med. 3, 614-620 36. Kroemer G.. and Reed J.C. (2000) Mitochondrial control of cell death. Nature Med. 6, 513-519 37. Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S.M., Ahmad, M., Alnemri, E.S. and Wang, X. (1997). Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489 38. Lindsten, T., Ross, A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K.(2000). The combined functions of pro-apoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 39. Lockshin, R.A., and Williams, C.M. (1965) Programmed cell death - Cytology of degeneration in the intersegmental muscles of the permyi silkmoth. J. Insect Physiol. 11, 123-133 40. Lu Z., Zhang C., and Zhai Z. (2005) Nucleoplasmin regulates chromatin condensation during apoptosis. PNAS 102, 2779-2783 41. Martin A., Tsui H.W., Shulman M.J., Isenman D., Tsui F.W. (1999) Murine SHP-1 splice variants with altered Src homology 2 (SH2) domains. Implications for the SH2-mediated intramolecular regulation of SHP-1. J. Biol. Chem. 31, 21725-21734 42. Nakano, K. and Vousden, K.H.(2001). PUMA, a novel pro-apoptotic gene, is induced by p53. Mol. Cell 7, 683–694 43. Nishiya N., Iwabuchi Y., Shibanuma M., Côté J.F., Tremblay M.L. and Nose K. (1999) Hic-5, a Paxillin Homologue, Binds to the Protein-tyrosine Phosphatase PEST (PTP-PEST) through Its LIM 3 Domain. J. Biol. Chem. 274, 9847-9853 44. Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000). Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 45. Puthalakath, H., Huang, D.C., O'Reilly, L.A., King, S.M. and Strasser, A.(1999). The pro-apoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 46. Raff, M.C. (1992). Social controls of cell survival and cell death. Nature 356, 397-400 47. Rao L., Perez D. White E. (1996) Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135, 1441-1455 48. Rheaume E., Cohen L.Y., Uhlmann F., Lazure C., Alam A., Hurwitz J., Sekaly R.P. and Denis F. (1997) The large subunit of replication factor C is a substrate for caspase-3 in vitro and is cleaved by a caspase-3-like protease during Fas-mediated apoptosis. EMBO J. 16, 6346-6354 49. Rodriguez J. and Lazebnik Y. (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes and Development 13, 3179-3184 50. Shen Y., Schneider G., Cloutier J.F., Veillette A., Schaller M.D. (1998) Direct association of protein-tyrosine phosphatase PTP-PEST with paxillin. J. Biol. Chem. 273, 6474-81 51. Scorrano, L., Oakes, S.A., Opferman, J.T., Cheng, E.H., Sorcinelli, M.D., Pozzan, T. and Korsmeyer, S.J. (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300, 135–139 52. Song Q., Lees-Miller S.P., Kumar S., Zhang Z., Chan D.W., Smith G.C., Jackson S.P., Alnemri E.S., Litwack G., Khanna K.K. and Lavin M.F. (1996) DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 15, 3238-3246 53. Sabourin L.A., Tamai K., Seale P., Wagner J. and Rudnicki M.A. (2000) Caspase 3 cleavage of the Ste20-related kinase SLK releases and activates an apoptosis-inducing kinase domain and an actin-disassembling region. Mol. Cell. Biol. 20, 684-696 54. Song Q., Lees-Miller S.P., Kumar S., Zhang Z., Chan D.W., Smith G.C., Jackson S.P., Alnemri E.S., Litwack G., Khanna K.K., Lvin M.F. (1996) DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 3238-3256 55. Szalai G., Krischnamurthy R. Hajnoczky G. Apoptosis driven by IP3-linked mitochondrial calcium signals. EMBO J. 18, 6349-6361 56. Thornberry N.A. and Lazebnik Y. (1998) Caspases: enemies within. Science 281, 1312-1316 57. Thornberry, N.A., Rano, T.A., Peterson, E.P., Rasper, D.M., Timkey, T., Garcia-Calvo, M., Houtzager, V.M., Nordstrom, P.A., Roy, S., Vaillancourt, J.P. (1997). A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 58. Tonks N.K., Neel B.G. (2001) Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol. 13, 182-95 59. Ueda H., Morishita R., Narumiya S., Kato K., Asano T. Galphaq/11 signaling induces apoptosis through two pathways involving reduction of Akt phosphorylation and activation of RhoA in HeLa cells. (2004) Exp Cell Res. 298, 207-217 60. van de Water B., Nagelkerke J.F., Stevens J.L. (1999) Dephosphorylation of focal adhesion kinase (FAK) and loss of focal contacts precede caspase-mediated cleavage of FAK during apoptosis in renal epithelial cells. J Biol Chem. 274, 13328-13337. 61. Walker N.P., Talanian R.V., Brady K.D., Dang L.C., Bump N.J., Ferenz C.R., Franklin S., Ghayur T., Hackett M.C., Hammill L.D. Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. (1994) Cell 78, 343-352 62. Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., MacGregor, G.R., Thompson, C.B. and Korsmeyer, S.J. (2001). Pro-apoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 63. Wen L.P., Fahmi J.A., Troie S., Guan J.L., Orth K. and Rosen G.D. (1997) Cleavage of focal adhesion kinase by caspases during apoptosis. J. Biol. Chem. 272, 26056-26061 64. Yang Q., Co D., Sommercorn J. and Tonks N.K. (1993) Cloning and expression of PTP-PEST. A novel, human, nontransmembrane protein tyrosine phosphatase. J. Biol. Chem. 268, 6622-6628 65. Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W. and Vogelstein, B. (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 66. Zha, J., Harada, H., Yang, E., Jockel, J. and Korsmeyer, S.J. (1996). Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14–3-3 not BCL-X(L). Cell 87, 619–628 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24265 | - |
| dc.description.abstract | 細胞凋零死亡是生物體中的重要機制,有助於生物體正常生長以組織發育的平衡。過去研究指出,細胞凋亡是由許多複雜的訊息傳遞因子所調控,其中,酪氨酸磷酸化這項已知普遍參與在許多訊息傳遞路徑的蛋白質修飾作用,也被觀察到可能與細胞凋亡的調控有關,此作用本身是透過酪氨酸激酶 (PTK) 與酪氨酸去磷酸酶 (PTP) 所調控,本篇論文的研究主題,便是探討凋零死亡調控過程,究竟是否有PTP參與在其中。以dATP處理293T cell lysates,使lysates中模擬caspases活化的環境,我們利用膠內酪氨酸去磷酸酶活性分析法觀察,發現一個分子量大約115 kDa PTP的活性隨著dATP處理而下降,伴隨著幾個較小PTPs的出現,可能是115 kDa PTP發生降解所產生。我們隨後利用免疫移除法實驗,證實115 kDa PTP是PTP-PEST,而新出現兩個短片段PTP (78 kDa與58 kDa) 則是PTP-PEST的降解產物。根據觀察,我們認為PTP-PEST很可能是在caspases活化的狀態當中,最主要會發生降解的PTP之一。在細胞培養的系統當中,以Staurosporine刺激細胞凋零死亡,同樣可以觀察到類似的現象;而此降解作用會因caspases抑制物,Z-VAD的處理而被抑制,顯示PTP-PEST之降解是由caspases所引發。為了找出究竟是否有caspase會專一性地執行這項降解作用,我們在293T lysates中各別對幾個重要的caspase做免疫移除處理,結果顯示,移除caspase-3、caspase-9會抑制PTP-PEST降解的發生,而移除caspase-7則不會造成影響;透過in vitro環境下caspase-3與GST fusion PTP-PEST直接反應的結果,顯示PTP-PEST屬於caspase-3的受質。在比較全長PTP-PEST及降解PTP-PEST之間差異的探討上,我們觀察到降解產物反而具有較高的酵素活性。根據目前的文獻,這篇論文的研究結果,不但是第一個發現PTP做為caspase的受質,同時也揭露PTPs的降解產物可能透過其較高的酵素活性,在細胞凋亡的調控中扮演重要的角色。 | zh_TW |
| dc.description.abstract | Apoptosis is a fundamental biological process which is crucial for development and tissue homeostasis. Previous studies have shown that, the protein tyrosine phosphorylation, which is controlled by PTKs and PTPs, participates in the regulation of apoptosis. In the current study, we investigated the possible role of PTPs. Our initial experiments demonstrated that the addition of dATP into 293T lysates imitated the apoptosis circumstance. We then applied the technique of “in gel” phosphatase activity assay for analyzing those samples. Our data clearly showed that a PTP with molecule weight about 115 kDa had an obvious decrease of activity in response to the caspase activation, while a few smaller PTPs emerged, presumedly being the cleaved products of the ~115kDa PTP. The immunodepletion experiments identified the 115 kDa PTP as the PTP-PEST, a widely expressed cytosolic tyrosine phophatase. Our data further demonstrated that the smaller forms of PTPs (78 kDa and 58 kDa), which appeared in response to caspase activation, were the cleaved PTP-PEST. According to these observations, we proposed that the PTP-PEST might be the predominant PTP being cleaved by caspases during apoptosis. To further test this hypothesis, we applied a similar approach of in-gel phosphatase assay in the cell culture models. Our results showed the cleavage of PTP-PEST occurred in the Staurosporine treated HeLa and Rat-1 cells. Furthermore, such an event was indeed caspases-dependent manifested by the fact that Z-VAD, a caspases inhibitor, attenuated the cleavage of PTP-PEST. We then decided to identify the caspase that is responsible for the hypothesis of PTP-PEST. For this purpose, immunodepletion of individual caspases was carried out prior to the addition of dATP into 293T lysates. Our results showed that the removal of caspase-3 and -9 prevented this cleavage, but the depletion of caspase-7 did not, suggesting that caspase-3 is the primary protease in this signaling event. To further provide direct evidence, GST fusion PTP-PEST was incubated with the purified caspase-3. Our data demonstrated that three cleaved products with various lengths of deletions in the C-terminus of PTP-PEST were generated. In search of the biological significance of caspase-3-mediated hypothesis of PTP-PEST, we also found that the cleaved forms exhibited about 2-fold higher phosphatase activity than the full-length form. To the best of our knowledge, this is not only the first report to demonstrate that a tyrosine-specific phosphatase is indeed the substrate of activated caspases, but also for the first time shows that the cleaved forms of PTP may play an important role in the regulation of apoptotic signaling pathways. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:20:09Z (GMT). No. of bitstreams: 1 ntu-94-R92b46022-1.pdf: 2526834 bytes, checksum: a50b01ad463dafdf57fb0e281c8e241f (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | 目錄
中文摘要……………………………………………………………………….1 英文摘要……………………………………………………………………….2 緒論…………………………………………………………………………….4 實驗材料……………………………………………………………………...14 實驗方法……………………………………………………………………...20 實驗結果……………………………………………………………………...29 討論……………………………………………………………………….…..40附圖…………………………………………………………………………...46 圖表……………………………………………………………………….…..50 參考文獻……………………………………………………………………...69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 酪氨酸去磷酸酶 | zh_TW |
| dc.subject | 細胞凋零 | zh_TW |
| dc.subject | 降解 | zh_TW |
| dc.subject | caspase-3 | en |
| dc.subject | PTP-PEST | en |
| dc.subject | apoptosis | en |
| dc.title | 細胞凋零死亡過程中,Caspase-3對酪氨酸去磷酸酶PTP-PEST的降解機制及活性調控之探討 | zh_TW |
| dc.title | Protein Tyrosine Phosphatase PTP-PEST is cleaved and activated through Caspase-3-mediated pathway
Implication of a Novel Regulatory Mechanism during Apoptosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳鴻震,陳瑞華 | |
| dc.subject.keyword | 細胞凋零,酪氨酸去磷酸酶,降解, | zh_TW |
| dc.subject.keyword | apoptosis,caspase-3,PTP-PEST, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
