Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24257
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鵬林(Pung-Ling Huang),杜宜殷(Yi-Yin Do)
dc.contributor.authorJu-Chen Chiaen
dc.contributor.author賈儒珍zh_TW
dc.date.accessioned2021-06-08T05:19:54Z-
dc.date.copyright2005-08-01
dc.date.issued2005
dc.date.submitted2005-07-27
dc.identifier.citation汪俏梅、曾廣文. 1997. 苦瓜性別分化的形態與組織化學研究. 浙江農業大學學報 23(2): 149-153.
汪俏梅、曾廣文. 1998. 苦瓜性別分化的特異蛋白質研究. 植物學報 40(3):241-246.
汪俏梅、曾廣文. 2002. Studies on expression of sex differentiation program in Momordica charantica L. 浙江大學學報 28(3):243-248.
蔡淑華. 1988. 植物組織切片技術綱要. 茂昌圖書有限公司. 台北. p. 30-46.
Ando, S., and S. Sahai. 2002. Isolation of an ethylene-responsive gene (ERAF16) for a putative methyltransferase and correlation of ERAF16 gene expression with female flower formation in cucumber plants (Cucumis sativus). Physiol. Plant 116(2): 213-222.
Ando, S., Y. Sato, S. Kamachi, and S. Sakai. 2001. Isolation of a MADS-box gene (ERAF17) and correlation of its expression with the induction of formation of female flowers by ethylene in cucumber plants (Cucumis sativus L.). Planta 213(6):943-952.
Angenent, G. C., and L. Colombo. 1996. Molecular control of ovule development. Trends Plant Sci. 1:228-232.
Bai, Su-Lan., Y.-B. Peng, J.-X. Cui, H.-T. Gu, L.-Y. Xu, Y.-Q. Li, Z.-H. Xu, and S.-N. Bai. 2004. Developmental analyses reveal early arrests of the spore-bearing parts of reproductive organs in unisexual flowers of cucumber (Cucumis sativus L.) Planta 220:230-240.
Banerjee, S., and P. S. Basu. 1992. Hormonal regulation of flowering and fruit development: Effect of gibberellic acid and ethrel on fruit setting and development of Momordica charantia L. Biol. Plant. 34:63-70.
Becker, J. D., L. C. Boavida, J. Carneiro, M. Haury, and J. A. Feijo. 2003. Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol. 133: 713-725.
Bensen, R. J., G. S. Johal, V. C. Crane, J. T. Tossberg, P. S. Schnable, R. B. Meeley, and S. P. Briggs. 1995. Cloning and characterization of the maize An1 gene. Plant Cell 7:75-84.
Berkelman, T., T. Stenstedt. 1998. 2-D Electrophoresis Using Immobilized pH Gradients: Principles and methods. Amersham Pharmacia Biotech, Piscataway, NJ.
Bisaria, A. K. 1974. The effect of foliar spray of alpha naphthaleneacetic acid on the sex expression in Momordica charantia L. Sci. Cult. 40(2):78-80.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Bouche, N., and D. Bouchez. 2001. Arabidopsis gene knockout: phenotypes wanted. Curr. Opin. Plant Biol. 4: 111-117.
Calderon-Urrea, A., and S. L. Dellaporta. 1999. Cell death and cell protection genes determine the fate of pistils in maize. Development 126:435-441.
Caporali, E., A. Spada, and A. Losa. 2000. The MADS box gene AMO1 is expressed in reproductive meristems and flowers of the dioecious secies Asparagus officinalis. Sex Plant Reprod. 13:151-156.
Caporali, E., A. Spada, G. Marziani, O. Failla, and A. Scienza. 2003. The arrest of development of abortive reproductive organs in the unisexual flower of Vitis vinifera ssp. silvestris. Sex Plant Reprod. 15:291-300.
Coen, E. S., and E. M. Meyerowitz. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature 353:31-37.
Coimbra, S., L. Torrao, and I. Abreu. 2004. Programmed cell death induces male sterility in Actinidia deliciosa female flowers. Plant Physiol. Biochem. 42:537-541.
Colombo, L., J. Franken, E. Koetje, J. van Went, H. J. M. Dons, G. C. Angenent, and A. J. van Tunen. 1995. The Petunia MADS box gene FBP11 dtermines ovule identity. Plant Cell 7:1859-1868.
Dellaporta, S. L., and A. Calderon-Urrea. 1993. Sex determination in flowering plants. Plant Cell 5:1241-1251.
Dellaporta, S. L., and A. Calderon-Urrea. 1994. Sex determination process in maize. Science 266:1501-1506.
DeLong, A., A. Calderon-Urrea, and S. L. Dellaporta. 1993. Sex determination gene TASSELSEED2 of maize encodes a short-chain alcohol dehydrogenase required for stage-specific floral organ abortion. Cell 74:757-768.
Farbos, I., M. Oliveira, I. Negrutiu, and A. Mouras. 1997. Sex organ determination and differentiation in the dioecious plant Melandrium album (Sliene latifolia): a cytological and histological analysis. Sex Plant Reprod. 10:155-167.
Ghosh, S., and P. S. Basu. 1982. Effects of some growth regulators on sex expression of Momordica charantia L. Sci. Horti. 17:107-112.
Ghosh, S., and P. S. Basu. 1983. Hormonal regulation of sex expression in Momordia charantia. Physiol. Plant. 57:301-305.
Golden, T. A., S. E. Schauer, J. D. Lang, S. Pien, A. R. Mushegian, U. Grossniklaus, D. W. Meinke, and A. Ray. 2002. SHORT INTEGUMENTS1/ SUSPENSOR1/CARPEL FACTORY, a dicer homolog, is a maternal effect gene reguired for embryo development in Arabidopsis. Plant Physiol. 130:808-822.
Grant, S., A. Houben, B. Zvyskot, J. Siroky, W.-H. Pan, J. Macas, and H. Saedler. 1994. Genetics of sex determination in flowering plants. Dev. Genet. 15:214-230.
Grossniklaus, U., and K. Schneitz. 1998. The molecular and genetic basis of ovule and megagametophyte development. Seminar Cell Dev. Biol. 9: 227-238.
Hao, Y.-J., D.-H. Wang, Y.-B. Peng, S.-L. Bai, L-.Y. Xu, Y.-Q. Li, Z.-H. Xu, and S.-H. Bai. 2003. DNA damage in the early primordial anther is closely correlated with stamen arrest in the female flower of cucumber (Cucumis sativus L.). Planta 217:888-895.
Honys, D., and D. Twell. 2003. Coparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 132:640-652.
Irish, V. F. 2003. The evolution of floral homeotic gene function. BioEssays 25:637-646.
Ito, T., H. Sakai, and E. M. Meyerowitz. 2003. Worl-specific expression of the SUPERMAN gene of Arabidopsis is mediated by cis elements in the transcribed region. Curr. Biol. 13:1524-1530.
Jack, T. 2004. Molecular and genetic mechanisms of flora control. Plant Cell [Suppl] 16:1-17.
Johri, M. M., and D. Mitra. 2001. Action of plant hormones. Curr. Sci. 80:199-205.
Kahana, A., L. Silberstein, N. Kessler, R. S. Goldstein, and R. Perl-Treves. 1999. Expression of ACC oxidase genes differs among sex genotypes and sex phases in cucumber. Plant Mol. Biol. 41(4):517-528.
Kamachi, S., H. Sekimoto, N. Kondo, and S. Sakai. 1997. Cloning of a cDNA for a 1-aminocyclopropane-1-carboxylate synthase that is expressed during development of female flowers at the apices of Cucumis sativus L. Plant Cell Physiol. 38(11):1197-1206.
Kater, M. M., L. Colombo, J. Franken, M. Busscher, S. Masiero, M. M. V. L. Campagne, and G. C. Angenent. 1998. Multiple AGAMOUS lomologs from cucumber and petunia differ in their aility to induce reproductive organs fate. Plant Cell 10:171-182.
Kater, M. M., J. Franken, K. J. Carney, L. Colombo, and G. C. Angenent. 2001. Sex determination in the monoecious species cucumber is confined to specific floral whorls. Plant Cell 13:481-493.
Kaushik, M. P., and J. K. Sharma. 1974. Combined effect of day length & morphactin on sex expression in bitter gourd, Momordica charantia L. Indian J. Exp. Biol. 12(6):599-600.
Kerim, T., N. Imin, J. J. Weinman, and B. G. Rolfe. 2003. Proteome analysis of male gametophyte development in rice anthers. Proteomics 3:738-751.
Klucher, K. M., H. Chow, L. Reiser, and R. L. Fischer. 1996. The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8:137-153.
Lebel-Hardenack, S., and S. R. Grant. 1997. Genetics of sex determination in flowering plants. Plant Sci. 2:130-136.
Lohmann, J. U., and D. Weigel. 2002. Building beauty: The genetic control of floral patterning. Dev. Cell 2:135-142.
McCormick, S. 2004. Control of male gametophyte development. Plant Cell [Suppl] 16:142-153.
Mibus, H., and T. Tatlioglu. 2004. Molecular characterization and isolation of the F/f gene for femaleness in cucumber (Cucumis sativus L.) Theor. Appl. Genet. 109:1669-1676.
Naito, S., P. H. Dube, and R. N. Beachy. 1988. Differential expression of conhlycinin and subunit genes in transgenic plants. Plant Mol. Biol. 22: 109-123.
O’Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250:4007-4021.
Pandey, A. and M. Mann. 2000. Proteomics to study genes and genomes. Nature 405:837-846.
Park, J.-H., Y. Ishikawa, R. Yoshida, A. Kanno, and T. Kameya. 2003. Expression of AODEF, a Bifunctional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plant Mol. Biol. 51:867-875.
Pelaz, S., G. S. Ditta, E. Baumann, E. Wisman, and M. F. Yanofsky. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200-203.
Perl-Treves, R., A. Kahana, N. Rosenman, Y. Xiang, and L. Silberstein. 1998. Expression of multiple AGAMOUS-like genes in male and female flowers of cucumber (Cucumis sativus). Plant Cell Physiol. 39(7):701-710.
Picaud, A., M. C. Hours, and A. Tremolieres. 1993. Five palmitoylated polypeptides in the 50 kDa range are not recognized by antibody against ribulose-biphosphated-carboxylase-oxygenase in Chlamydomonas reinhardtii. Biochem. Biophys. Res. Commun. 197:298-303.
Pierce, L. K., and T. C. Wehner. 1990. Review of genes and linkage groups in cucumber. HortScience 25:605-615.
Prakash, G. 1976. Effect of plant growth substances & vernalization on sex expression in Momordica charantia L. Indian J. Exp. Biol. 14(3):360-362.
Prakash, G. 1977. Plant growth regulators and sex expression in flower buds of Momordica charantia in vitro. Curr. Sci. 46(10):328-330.
Prakash, G. 1979. Ecophysiological study of flowering and sex behaviour of Momordica charantia L. Comp. Physiol. Ecol. 4(4):280-285.
Przybecki, Z., M. E. Kowalczyk, E. Seidlecka, E. Urabanczyk-Wochniak, and S. Malepszy. 2003. The isolation of cDNA colnesfrom cucumber (Cucumis sativus L.) floral buds coming from plants differing in sex. Cell. Mol. Biol. Lett. 8:421-438.
Regan, S. M., and B. A. Moffatt. 1990. Cytochemical analysis of pollen development in wild-type Arabidopsis and a male-sterile mutant. Plant Cell. 2:877-889.
Reiser, L., and R. L. Fischer. 1993. The ovule and the embryo sac. Plant Cell 5:1291-1301.
Reiser, L., Z. Modrusan, L. Margossian, A. Samach, Nir. Ohad, G. W. Haughn, and R. L. Fischer. 1995. The BELL1 gene encodes a homneodomain protein involved in pattern formation in the Arabidopsis ovule prmordium. Cell 83:735-742.
Rudich, J., A. H. Halevy, and N. Kedar. 1972. Ethlylene evolution from cucumber plants as related to sex expression. Plant Physiol. 49: 998-999.
Saimbhi, M. S. 1975. Effect of 2-chloroethlphosphonic acid on the growth and sex expression of bitter gourd (Momordica charantia L.) Haryana J. Hort. Sci. 4:157-160.
Sanders, P. M., A. Q. Bui, K. Weterings, K. N. McIntire, Y.-C. Hsu, P. Y. Lee, M. T. Truong, T. P. Beals, and R. B. Goldberg. 1999. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod. 11: 297-322.
Schiefthaler, U., S. Balasubramanian, P. Sieber, D. Chevalier, E. Wisman, and K. Schneitz. 1999. Molecular analysis of NOZZLE, a gene involved in pattern formantion and earpy sporogenesis during sex organ development in Arabidopsis thaliana. Plant Biol. 96:11664-11669.
Schneitz, K., M. Hulskamp, and R. E. Pruitt. 1995. Wild-type ovule development in Arabidopsis thaliana: A light microscope study of cleared whole-mount tissue. Plant J. 7(5):731-749.
Schneitz, K., S. Balasubramanian, and U. Schiefthaler. 1998. Organogenesis in plants: the molecular and genetic control of ovule development. Trends Plant Sci. 3:468-472.
Scott, R. J., M. Spielman, and H. G. Dickinson. 2004. Stamen structure and function. Plant Cell [Suppl] 16:46-60.
Singh, V. P., V. Singh, G. Prakash, P. K. Agrawal, and D. Kumar. 1978. Induction of sex by seed pre-treatment with cold and growth substances in Momordica charantia L. Incompatibility Newsl. 10:110-122.
Soltis, D. E., P. S. Solti, V. A. Albert, D. G. Oppenheimer, C. W. dePamphilis, H. Ma, M. W. Frohlich, and G. TheiBen. 2002. Missing links: the genetic architecture of flower and floral diversification. Trends Plant Sci. 7:22-31.
Shannon, S., and M. D. De La Guardia. 1969. Sex expression and the production of ethylene induced by auxin in the cucumber (Cucumis sativus L.) 223:186.
Taunrdzic, M., and J. A. Banks. 2004. Sex-determining mechanisms in land plants. Plant Cell [suppl] 16:61-71.
Trebitsh, T., J. E. Staub, and S. D. Oneill. 1997. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female sex expression in cucumber. Plant Physiol. 113 (3):987-995.
Verma, V. K., P. S. Sirohi, and B. Choudhury. 1984. Note on the response of chemicals to seed treatment on sex-expression and fruiting in bitter gourd. Indian J. Hort. 41:113-115.
Villanueva, J., J. Broadhvest, B. A. Hauser, R. J. Meister, K. Schneitz, and C. S. Gasser. 1999. INNER NO NOUTER regulates abaxial-adaxial patterning in Arabidopsis ovules. Genes Dev. 13:3160-3169.
Wang, C.-S., L. L. Wanlling, K. J. Eckard, and E. M. Lord. 1992. Patterns of protein accumulation in developing anthers of Llilium longiflorum correlate with histological events. Amer. J. Bot. 79(2):118-127.
Wang, S., L. Tang, and F. Chen. 2001. In vitro flowering of bitter melon. Plant Cell Rep. 20:393-397.
Wesley, S. V., C. A. Helliwell, N. A. Smith, M.-B. Wang, D. T. Rouse, Q. Liu, P. S. Gooding, S. P. Singh, D. Abbott, T. A. Stoutjesdijk, S. P. Robinson, A. P. Gleave, A. G. Green, and T. M. Waterhouse. 2001. Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 26(6):581-590.
Yamasaki, S., N. Fujii, and H. Takahashi. 2000. The ethylene-regulated expression of CS-ETR2 and CS-ERS genes in cucumber plants and their possible involvement with sex expression in flowers. Plant Cell Physiol. 41(5):608-616.
Yamasaki, S., N. Fujii, S. Matsuura, H. Mizusawa, and H. Takashashi. 2001. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant and Cell Physiol. 42(6):608-619.
Yamasaki, S., N. Fujii, and H. Takahashi. 2003a. Photoperiodic regulation of CS-ACS2, CS-ACS4 and CS-ERS gene expression contributes to the femaleness of cucumber flowers through diurnal ethylene production under short-day conditions. Plant Cell Environ. 26(4):537-546.
Yamasaki, S., N. Fujii, and H. Takahashi. 2003b. Characterization of ethylene effects on sex determination in cucumber plants. Sex Plant Reprod. 16:103-111.
Yang, L., M. Chen, F. Liu, G. Yi, C. Chen, Y. Li, Z. Cao, Z. Xu, and S. Bai. 1999. Carpel of cucumber (Cucumis sativus L.) male flowers maintains early primordia characteristics during organ development. Chin. Sci. Bull. 30: 1463-1464.
Yin, T. J., and J. A. Quinn. 1995. Tests of a mechanistic model of one hormone regulating both sexes in Cucumis sativus (Cucurbitaceae). Am. J. Bot. 82(12):1537-1546.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24257-
dc.description.abstract苦瓜(Momordica charantia L.)為雌雄異花同株之葫蘆科作物,施用植物生長調節劑可調節雄雌花比例,但其機制目前尚無定論,本論文以蛋白質二維電泳為分析方法,獲得苦瓜性別表現相關蛋白質。調查月華品種苦瓜的花芽外型、長度,並以埋蠟切片觀察花芽發育狀況,歸納出雄花和雌花的四個發育階段,作為分析不同發育階段蛋白質表現之標準。以根、莖、葉、果實、雄花和雌花之蛋白質萃取物進行二維電泳及比對工作,歸納出8個花器相關蛋白質、15個雄花相關蛋白質、和12個雌花相關蛋白質,並依序編號。雄花不同發育階段的二維電泳結果可比對出51個具有差異性表現的蛋白質,其中13個已歸類為雄花相關蛋白質、4個已歸類為雌花相關蛋白質。另外在雌花不同發育階段的二維電泳結果中,找出31個差異性表現的蛋白質,有5個屬於雌花相關蛋白質,一個屬於雄花相關蛋白質。進一步以0.54 mM naphthalene acetic acid(NAA)和0.12 mM激勃素(gibberellic acid, GA3)噴施於苦瓜8-10片葉大之幼苗,取頂芽進行二維電泳,得知NAA對數個花器相關蛋白質和雌性相關蛋白質有抑制作用,GA則有誘導作用。經整理各試驗得到性別表現相關蛋白質之分子量和等電點,並比較其在不同器官中的表現,可區分為四群:第一群蛋白質在花器發育四個階段中累積量相等;第二群蛋白質只在其中一個性別的發育過程中累積量變化;第三群蛋白質在雄花和雌花發育過程中同時有增加或減少的趨勢;第四群蛋白質在雄花或雌花發育過程中累積量上升,在另一性別發育過程中下降。前三群蛋白質可能與雄花或雌花之生長發育相關,但與花性變化之關聯性較低;第四群蛋白質在兩性器官中有相反的表現,可能參與花性調控之作用機制。由以上結果得知,與花芽生長發育相關之蛋白質中,與花性變化密切相關者為18號、70號及74號蛋白質。日後可針對此蛋白質進行胺基酸定序,設計寡核苷酸探針,進行性別相關基因選殖工作。zh_TW
dc.description.abstractSex expression of bitter gourd (Momordica charantia L.), a monoecious species in Cucurbitaceae, is altered by exogenous application of plant growth regulators, with unkown mechanism of sex determination. In this study, we use 2-dimensional protein gel electrophoresis as the analysis method of sex expression-related protein in bitter gourd. To conclude different development stages in male and female flowers for analysis of protein expression, the morphology, length and microscopic structures of flower buds in M. charantia cv. Moon Shine were observed. Roots, stem, leaves, male and female flowers were used as materials for 2-dimensional electrophoresis. Among these, 8 flower organ-related proteins, 15 male flower-related proteins and 12 female flower-related proteins were obtained and numbered. In different development stages of male flowers, 51 development-distinctive proteins were found; 13 of these are male flower-related and 4 are female flower-related proteins. During female flower development, 31 development-distinctive proteins were found; 5 of these are female flower-related proteins, and 1 are male expression-related protein. On the other hand, shoot apex of bitter gourd at the 8-leaf stage treated with 0.54 mM naphthalene acetic acid (NAA) and 0.12 mM gibberellic acid (GA3) were used to analysis for protein expression. NAA inhibited some of the flower organ-related proteins and female flower-related proteins, and GA could induce them. Based on the molecular weight, pI value and expression level of the proteins, four expression type of sex expression-related proteins were defined. Group 1 proteins expressed constitutively during flower development. Protein amount of group 2 changed during male or female flower development. Group 3 proteins elevated during male and female flower development. Group 4 proteins elevated during female flower development and declined during male flower development. Group 1~3 proteins were possibly involved in male or female flower development, but less related with sex-differentiation. Group 4 proteins were found highly related to sex-determination due to their expression characteristics. The results showed that spot 18, 70 and 74 had close relationship with sex-determination and could be used for cloning of sex expression-related genes.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:19:54Z (GMT). No. of bitstreams: 1
ntu-94-R92628123-1.pdf: 13758690 bytes, checksum: 579a7f7151fb73aad78e4ae9cbc95a52 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要………………………………………………………………1
英文摘要………………………………………………………………2
壹、前言………………………………………………………………4
貳、前人研究…………………………………………………………5
一、植物的性別遺傳……………………………………………5
(一)Active-Y system ………………………………6
(二)X-to-autosome balance system ……………….6
(三)Heterogametic female system …………………6
(四)Loci-affected sex determination system............7
二、花的型態發生與花性決定………………………………………7
(一)ABC model …………………………………………7
(二)ABC model在花性決定過程所扮演的角色………8
(三)植物之花性決定...........................9
三、植物荷爾蒙對胡瓜花性的影響…………………………10
(一)胡瓜之花性調節機制……………………………10
(二)胡瓜乙烯相關基因之表現………………………11
(三)其他參與胡瓜花性決定之因子…………………13
四、影響苦瓜花性之因子……………………………………14
參、材料與方法……………………………………………………17
一、植物材料…………………………………………………17
二、試驗方法…………………………………………………17
(一)花芽發育階段之觀察及分類……………………17
(二)石蠟切片法............………………………17
(三)不同植物荷爾蒙處理苦瓜幼苗…………………………..18
(四)蛋白質樣品之萃取及定量………………………18
1. 蛋白質樣品萃取方法………………………18
2. 蛋白質定量…………………………….…19
(五)蛋白質SDS-聚丙烯醯胺電泳………………… 19
(六)蛋白質二維電泳………………………………………….20
1. 等電點聚焦…………………………………………….20
2. 蛋白質SDS-聚丙烯醯胺電泳………… 20
肆、結果………………………………………………………21
一、花芽發育階段之觀察及分類………………………21
二、苦瓜各部位二維電泳結果及蛋白質差異性表現…………32
(一)蛋白質二維電泳解析條件………………………………..32
(二)第四發育階段雄花及雌花二維電泳結果………………..32
(三)花器相關蛋白質之比對…………………………………..40
(四)花性表現相關蛋白質之比對……………………………..40
三、苦瓜花芽發育各階段二維電泳結果及差異性蛋白質表現..…..40
(一)雄花發育相關蛋白質……….………………………….40
(二)雌花發育相關蛋白質………….……………………….43
四、荷爾蒙處理材料之二維電泳結果.............………43
(一)NAA處理和GA3 處理結果...............43
(二)NAA和GA3 處理之蛋白質表現差異..............50
五、差異性蛋白質表現分析……………………………50
伍、討論……………………………………………………65
一、花芽發育階段分類...............................................65
二、花器相關蛋白質………………………………………67
三、性別表現相關蛋白質…………………………………..68
(一)性別表現相關因子之研究..................68
(二)雄花相關蛋白質..........................70
(三)雌花相關蛋白質..........................71
(四)其他蛋白質..............................73
四、不同生長調節劑處理對花器及性別表現蛋白質之影響…73
陸、結語……………………………………………………………75
柒、參考文獻………………………………………………………76
dc.language.isozh-TW
dc.subject蛋白質zh_TW
dc.subject苦瓜zh_TW
dc.subject性別zh_TW
dc.subjectsexen
dc.subjectbitter gourden
dc.subjectproteinsen
dc.title苦瓜性別表現相關蛋白質之研究zh_TW
dc.titleStudies on sex expression-related proteins in bitter gourd (Momordica charantia)en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃銓珍(Chang-Jen Huang),莊榮輝(Rong-Huay Juang)
dc.subject.keyword苦瓜,性別,蛋白質,zh_TW
dc.subject.keywordbitter gourd,sex,proteins,en
dc.relation.page83
dc.rights.note未授權
dc.date.accepted2005-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
13.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved